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Abstract. Computed Tomography (CT) images provide a
non-invasive alternative for observing soil structures, partic-
ularly pore space. Pore space in soil data indicates empty
or free space in the sense that no material is present there
except fluids such as air, water, and gas. Fluid transport de-
pends on where pore spaces are located in the soil, and for
this reason, it is important to identify pore zones. The low
contrast between soil and pore space in CT images presents
a problem with respect to pore quantification. In this paper,
we present a methodology that integrates image processing,
clustering techniques and artificial neural networks, in order
to classify pore space in soil images. Image processing was
used for the feature extraction of images. Three clustering al-
gorithms were implemented (K-means, Fuzzy C-means, and
Self Organising Maps) to segment images. The objective of
clustering process is to find pixel groups of a similar grey
level intensity and to organise them into more or less homo-
geneous groups. The segmented images are used for test a
classifier. An Artificial Neural Network is characterised by
a great degree of modularity and flexibility, and it is very
efficient for large-scale and generic pattern recognition ap-
plications. For these reasons, an Artificial Neural Network
was used to classify soil images into two classes (pore space
and solid soil). Our methodology shows an alternative way to
detect solid soil and pore space in CT images. The percent-
ages of correct classifications of pore space of the total num-
ber of classifications among the tested images were 97.01%,
96.47% and 96.12%.
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1 Introduction

Soil structure describes the arrangement of the solid parts
of the soil and the pore space located between them. Soil
structure is dependent upon the material it is derived from,
the environmental conditions under which the soil formed,
the amount of clay present and the organic materials present.
Pore space is the portion of the soil volume that is not occu-
pied by solid soil but rather by air and/or water. Soil texture,
presence of organic matter, the nature of the crops cultivated
and soil depth have a great influence on soil pore space. Im-
age analysis of soil has been used for physical and chemical
characterisation, macromorphology and micromorphology.

Several instruments have been used to obtain soil images,
such as light microscopes, Scanning Electron Microscopes
(SEM), Transmission Electron Microscopes (TEM), Com-
puted Tomography (CT) and Magnetic Resonance Imagin-
ing (MRI). In the past few years, geoscientists have started
to use CT images of soil for characterising and modelling
soil properties. CT images provide a non-invasive alternative
for observing soil structure. CT images involve a revolving
x-ray tube that surrounds a soil sample and a detector unit to
produce 2-D images to provide grey-level images of slices of
the sample after computer integration. During this integra-
tion process, 3-D images are generated (Mermut, 2009). The
main issue in CT soil imaging is the low contrast between
soil and pore space. Pore space is represented in CT images
by dark pixels (0 – grey level), and soil is represented by clear
pixels (255 – grey level) (Vogel and Kretzschmar, 1996).

In general, image analysis involves many different tasks,
such as segmentation, classification and interpretation. Seg-
mentation involves identifying objects into images. Classi-
fication assigns labels to individual pixels by taking into ac-
count previous information on the problem of interest. In-
terpretation involves extracting some meaning from the im-
age as a whole. The segmentation of soil images is very
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Fig. 1. The block diagram of our proposed method.

important for the measurement of properties as well as for
detecting and recognising objects in the soil.

Different methods have been used to segment soil images
such as a simple binary threshold method (Perret et al., 2003)
and a multiple threshold method (Pal and Pal, 1993; Vogel
and Kretzschmar, 1996; Capowiez et al., 1998; Tarquis et
al., 2009). Vogel and Kretzschmar (1996) suggested using
thresholds for typical and critical regions. They calculated
a lower limit of the critical region for each individual im-
age as the average of the lower maximum and minimum be-
tween the two maxima in the grey-level histogram. Capowiez
et al. (1998) used a simple rule to determine the threshold
value based on the grey-level histogram. By adding 1/3 of
the distance between the pore peak and the matrix peak to
the pore peak, they identified the approximate minimum of
the distribution function between the two peaks. Pal and
Pal (1993) suggested local thresholding schemes in which
the voxel classification depends on the grey-scale values of
its surrounding voxels instead of using global-level values
as thresholds. Oh and Lindquist (1999) developed a local
threshold method based on the Mardia-Hainsworth spatial
thresholding algorithm; details on this method can be found
in Mardia and Hainsworth (1988).

The aim of the present work is to detect pore space in 2-D
images (that is, axial views) acquired using tomography tech-
niques. The methodology is composed of three steps. The
first step is called feature extraction; we applied an erosion
morphological operation to enhance the dark regions (pore
space). In the next step, three clustering methods were imple-

mented to segment soil images, including (K-means, Fuzzy
C-means and Self Organising Maps). In the last step, an Ar-
tificial Neural Network was implemented to classify soil and
pore space using the segmented images. Figure 1 shows the
block diagram of our proposed method. Our goal is to obtain
an image in which pore and soil spaces can be distinguished.

2 Materials and methods

2.1 Soil image

Soil samples were collected from four horizons of an argis-
sol formed on the Tertiary Barreiras group of formations in
Pernambuco, Brazil, at the Itapirema Experimental Station.
According to the classification scheme of Köppen, the area
has a tropical monsoon climate. The physical and chemi-
cal characterisation, macromorphology and micromorphol-
ogy of this soil have been broadly analysed by Melo and dos
Santos (1996). The physical characteristics of the soil are
provided in Table 1.

The intact soil samples were imaged using an EVS MS-
MicroCT scanner (now GE Medical, London, Canada).
Though some samples required paring to fit into the 64-mm-
diameter imaging tubes, the field orientation was maintained.
Imaging parameters were 155 keV and 25 µA.

Proprietary software (GE Medical) was used to recon-
struct the 16-bit 3-D imagery from the axial sequence views.
The resulting voxel size was 45.1 µA. Accordingly, three
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Table 1. Physical properties of the selected horizons of Argissol
according to Melo and dos Santos (1996).

Horizon Depth (cm) Particle size distribution (%)

C. Sand F. Sand Silt Clay

A2 10–35 62 24 3 11
AB 35–57 26 53 4 17
Bt2 98–152 21 40 4 23

Bt/Bw 150–190 18 37 10 35

sub-volumes were extracted from each of the four original
volumes using GE Medical Microview; care was taken to en-
sure no overlay of the sub-volumes. The sub-volumes mea-
sured 256×256×256 units, corresponding to about 16.8 mil-
lion voxels. A 3-D Gaussian filter was also run in Microview
(GE Healthcare, 2006) on each sub-volume to reduce noise
and beam-hardening artefacts, typically occurs in CT imag-
ing (Tarquis et al., 2009). In this work, we used 2-D images,
these images were extracted from 3-D images.

2.2 Feature extraction

Feature extraction is the process of locating information of
interest to detect pore space in soil images. The idea is that
feature extraction identifies different features of the same
pattern corresponding to different levels of importance and
thereby carrying different information. First, an erosion mor-
phological operation was applied to enhance pore areas. Sec-
ond, spatial domain features were used to obtain information
on the neighbourhood of each pixel; in this work, we com-
puted two window-based features (namely, mean and stan-
dard deviation) with different window sizes (3×3, 5×5) in
the eroded image. In order to select the best size window,
we calculated the correlation between the mean and standard
deviation for each image.

Using the extracted features and the grey-level inten-
sity of the original image, a Feature Vector (FV) was con-
structed. This FV is used for image segmentation. The
FV is composed asx(qs)

1 = {[x
(qs)

1 ,x
(qs)

2 ,x
(qs)

3 ,x
(qs)

4 ]}, where
qs = 1,...,Qs . Note thatQs;=M ×N , whereM ×N is the
image size.x(qs)

1 corresponds to the grey-level intensity of

the original images.x(qs)

2 corresponds to the grey level of

the eroded image, andx(qs)

3 andx
(qs)

4 correspond to the mean
and standard deviation of the eroded image, respectively.

2.2.1 Mathematical morphology

Mathematical Morphology is a discipline in the field of im-
age processing that involves an analysis of the structure of
images. Image processing using morphological transforma-
tion is a process of information removal based on size and
shape. In this process, irrelevant image content is elimi-

nated selectively, and thus the essential image features can
be enhanced. Using the concept of structuring elements, in-
tersections and unions in the image with the translations of
the structuring element yield two basic morphological oper-
ations, namely, erosion and dilation (Gonzalez and Woods,
2002).

Erosion generally decreases the size of objects and re-
moves small anomalies by subtracting objects with radii
smaller than the given structuring element. With grey-scale
images, erosion reduces the brightness (and therefore the
size) of bright objects on a dark background using the neigh-
bourhood minimum when shifting the structuring element
over the image. Erosion is denoted by

(I2E)(x,y) = max[I (x − i,y −j)−E(i,j)], (1)

whereI (x,y) is a grey-scale image, andE(i,j) is the struc-
turing element.

In contrast to erosion, dilation generally increases the sizes
of objects, fills in holes and broken areas and connects areas
that are separated by spaces smaller than the size of the struc-
turing element. With grey-scale images, dilation increases
the brightness of objects by taking the neighbourhood max-
imum when shifting the structuring element over the image.
Dilation is denoted by

(I ⊕E)(x,y) = min[I (x − i,y −j)+E(i,j)] (2)

whereI (x,y) is a grey-scale image, andE(i,j) is the struc-
turing element.

2.2.2 Spatial domain features

Spatial domain features include both shape-related features
and window-based features. In this work, we applied
window-based features. These features are the mean and
standard deviation, which are extracted from images within
a rectangular window.

Iµ =
1

n×m

n∑
i=1

m∑
j=1

I (i,j) (3)

ISTD=

(
1

n×m

n∑
i=1

m∑
j=1

(I (i,j)−Iµ)2

)1/2

, (4)

whereIµ and ISTD represent the mean and standard devi-
ation, respectively, of an image, withn×m is the window
size,I is an image and(i,j) is the pixel position.

2.3 Image segmentation using clustering techniques

Another important role of segmentation in image analysis is
in high-level image interpretation and understanding. Seg-
mentation subdivides an image into its constituent regions or
objects. The level to which the subdivision is carried out de-
pends on the problem being solved (Gonzalez and Woods,
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2002). The segmentation of soil images is very important for
the measurement of properties as well as for detecting and
recognising objects in the soil. The approaches to segmenta-
tion proposed in the literature vary depending on the specific
application, such as CT or MRI. The main problem in CT
soil images is the low contrast between soil and pore space.
Pore space is represented in CT images by dark pixels (0 –
grey level), and soil is represented by clear pixels (255 – grey
level) (Vogel and Kretzschmar, 1996).

Tarquis et al. (2009) and Piñuela et al. (2009), used the
Peak Fitting Module to analyze the histogram, in order
to identification of constituent peaks in the grey-scale his-
togram. The major peak with the lowest mean digital num-
ber was taken to be that corresponding to the pore space; the
next major peak was considered to be solid soil, assuming
Gaussian distribution for both peaks. In this work, we used
clustering techniques based on partitional clustering. Parti-
tional techniques have advantages in applications involving
large data sets, for example, soil image data. Soil images
present different regions in which the pore and solid mix may
hinder the identification of each region. A problem that ac-
companies the use of a partitional algorithm is the need to
choose the number of desired output clusters. We propose
and compare three clustering methods to segment soil im-
ages (K-Means, Fuzzy c-Means and Self Organising Maps).
These clustering methods have been used to segment natural
images (Jian and Zhou, 2004; Lázaro et al., 2006; Ye, 2009),
satellite images (Chuang et al., 2006; Arias et al., 2009) and
mammograms images (Vega-Corona et al., 2003; De Oliveira
et al., 2009; Quintanilla-Dominguez et al., 2009).

The objective of the clustering process used to segment
images is to find pixel groups with a similar grey-level in-
tensity in order to integrate them into homogeneous groups.
Similarity is evaluated according to a distance measure be-
tween the pixel and the prototypes of the object or region
prototypes, and each pixel is assigned to the nearest or most
similar prototype. However, this process must distribute all
data to the different groups, even if some pixels are not very
representative of the group as a whole (Ojeda-Magaña et al.,
2009).

2.3.1 K-means algorithm

The K-means algorithm (MacQueen, 1967) is one of the sim-
plest unsupervised learning algorithms that is used to solve
the well-known clustering problem. The procedure involves
a simple and easy way to classify a given data set into a cer-
tain number of clusters (namely,k clusters), which is fixed a
priori. The main idea is to definek centroids, that is, one for
each cluster. The next step is to take each point belonging
to a given data set and associate it with the nearest centroid.
When no additional points are available for clustering, the
first step is completed, and an early group is done. At this
point, we must re-calculatek new centroids at vary centres of
the clusters resulting from the previous step. After we obtain

thesek new centroids, a new binding is conducted between
the same data set points and the nearest new centroid. A loop
is then generated. Based on this loop, we may notice that the
k centroids change their location step by step until no more
changes occur, that is, centroids do not move anymore. Fi-
nally, this algorithm minimises an objective function, which
in this case is a squared error function, as follows:

J =

k∑
j=1

n∑
i=1

∥∥∥x(j)
i −cj

∥∥∥2
, (5)

where
∥∥∥x(j)

j −ci

∥∥∥2
is the Euclidean distance measure be-

tween a data pointx(j)
j and the clustercj , which serves as an

indicator of the distance between then data points and their
cluster centres. The algorithm is composed of the following
steps:

– Placek points into the space represented by the objects
that are being clustered. These points represent the ini-
tial centroids.

– Assign each object to the group with the closest cen-
troid.

– When all objects have been assigned, recalculate the po-
sitions of thek centroids.

– Repeat the second and third steps until the centroids no
longer move. This produces a separation of the objects
into groups from which the metric to be minimised can
be calculated.

Although it can be proven that the procedure will always ter-
minate, the K-means algorithm does not necessarily iden-
tify the most optimal configuration in terms of the global
objective function minimum. The algorithm is also signifi-
cantly sensitive to the initial randomly selected cluster cen-
tres. However, the K-means algorithm can be run multiple
times to reduce this effect.

2.3.2 Fuzzy c-means algorithm

The Fuzzy c-Means clustering algorithm (FCM) was ini-
tially development by Dunn (1973) and later generalised by
Bezdek (1981). This algorithm is based on optimising the
objective function given by Eq. (6)

Jfcm(Z;U;V ) =

c∑
i=1

N∑
k=1

(µik)
m

‖zk −vi‖
2, (6)

where the matrixU = [µik] ∈ Mfmc is a fuzzy partition ofZ,
andV = [v1,v2,...vc] is the vector of prototypes of the clus-
ters, which are calculated according toDikAi

= ‖zk −vi‖
2,

which is a square inner-product distance norm.m ∈ [1,∞]

is a weighting exponent that determines the fuzziness of the
resulting clusters. The optimal partitionU∗ of Z using the
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Fuzzy c-Means algorithm is reached by implementing the
couple(U∗,V ∗) to locally minimise the objective function
Jfmc according to an alternating optimisation method (Ojeda-
Magãna et al., 2009).

Theorem FMC: ifDikAi
= ‖zk −vi‖ > 0 for everyi,k,m >

1 andZ containing at leastc different patterns,(U,V ) ∈

Mfmc×<
c×N andJfmc can be minimised only if

µik=

(
c∑

j=1

(
DikAi

DjkAi

)2/(m−1)
)−1

1≤i≤c; 1≤k≤n (7)

vi =

N∑
k=1

µm
ikz

k

µm
ik∑

k=1

1≤ i ≤ c (8)

Following the Eqs. (7) and (8) presented above with respect
to the FCM algorithm, givenZ, choose the number of clus-
ters 1≤ i ≤ N , the weighting exponentm > 1 and, the ending
toleranceδ > 0. Then, the solution can be reached with the
following steps:

– Provide an initial value to each one of the prototypesvi ,
i = 1,...,c. These values are generally generated ran-
domly.

– Calculate the distance of patternszk from each of the
i-th prototypesvi usingD2

ikAi
= (zk −vi)

T Ai(zk −vi),
1≤ i ≤ c, 1≤ k ≤ N .

– Determine the membership degrees of the matrixU =

[µik], if DikA > 0 using Eq. (6).

– Calculate the new values of the prototypesvi using
Eq. (7).

– Verify if the error is greater thanδ. If it is, move on to
the second step. Otherwise, stop.

2.3.3 Self Organising Maps

An artificial Neural Network (ANN) is a mathematical model
that attempts to simulate the structural and functional aspects
of biological neural networks. ANN can be classified as
both supervised and unsupervised. The most important fea-
tures that relate to an ANN with respect to biological neural
networks are that knowledge is acquired through a learning
process, and synaptic weights are used to store knowledge
(Haykin, 1999). ANNs are considered very powerful classi-
fiers compared to classical algorithms. The algorithms used
in ANN applications are capable of finding good classifiers
based on a limited and generally small number of training
examples. This capability, also referred to as generalisation,
is useful from a pattern recognition standpoint since a large
set of parameters is estimated using a relatively small data
set.

Self Organising Maps (SOM; Kohonen, 1990) are a type
of unsupervised learning tool used for the goal of discov-
ering the underlying structure of data. A topological map
is simply a mapping that preserves neighbourhood relations,
and it consists of a set of units that are arranged in a certain
topology. SOM basically provide a form of cluster analysis
by producing a mapping of high-dimensional input dataX,
X ∈ <

n, in the output space while preserving the topological
relationship between the input data items as faithfully as pos-
sible. Each of the unitsi is assigned a weight vectormi of
the same dimension as the input data, wheremi ∈ <

n. In the
initial setup of the model prior to training, the weight vec-
tor is filled with random values. During the learning step,
the unitc with the highest activity level, which is the win-
nerc with respect to a randomly selected input patternx, is
adapted in a way that will allow it to exhibit an even higher
activity level at future presentations of that specific input pat-
tern. Commonly, the activity level of a unit is based on the
Euclidian distance between the input pattern and the pattern
weight unit of that vector. The unit showing the lowest Eu-
clidean distance between its weight vector and the current
input vector is selected as the winner. Hence, the selection or
winnerc may be written as follows:

c : ‖x −mc‖ = min
i

‖x −mi‖ (9)

Adaptation takes place at each learning iteration and is per-
formed as a gradual reduction of the difference between the
respective components of the input vector and the weight
vector. The amount of adaptation is guided by the learning
rateα, which gradually decreases over time. As an extension
to standard competitive learning, units in a time-varying and
gradually decreasing neighbourhood surrounding the winner
are adapted. This strategy enables the formation of large
clusters in the beginning and fine-grained input discrimina-
tion toward the end of the learning process. In combining
these principles of SOM training, we may write the learning
rule as given in Eq. (10):

mi(t +1) = mi(t)+α(t)hci[x(t)−mi(t)], (10)

wheret denotes the current learning iteration, andα repre-
sents the time-varying learning rate.ci represents the time-
varying neighbourhood kernel, andx represents the current
input pattern. Finally,mi denotes the weight vector assigned
to unit i.

2.4 Classification

Classification is one of the most frequently encountered
decision-making tasks in human activity. A classification
problem occurs when an object needs to be assigned to a
predefined group or class based on a number of observed at-
tributes related to that object. In this case, we must classify
soil images in two classes, one representing soil and the other
representing pore space.
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An ANN was used to classify soil images into two classes
(pore space and solid soil). ANN is characterised by a great
degree of modularity and flexibility, also it is very efficient
for demanding large-scale and generic pattern recognition
applications.

2.4.1 Feed Forward Neural Network

Feed Forward Neural Network (FFNN), also known as mul-
tilayer perceptrons (MLP), are popularly used in many prac-
tical applications. FFNN is a type of supervised learning.
Knowledge is acquired by the network through a learning
process known as the Back Propagation (BP) algorithm. The
BP algorithm serves as a workhorse in the design of a spe-
cial class of layered FFNN. A FFNN has an input layer of
source nodes and an output layer of neurons; these two lay-
ers connect the network to the outside world. In addition to
these two layers, the multilayer perceptron usually has one
or more layers of hidden neurons, which are called hidden
because they are not directly accessible. The hidden neurons
extract important features contained in the input data. Using
supervised learning, these networks can learn the mapping
from one data space to other examples. The term BP refers
to the way in which the error is computed at the output side.
Namely, it is propagated backwards from the output layer to
the hidden layer and finally to the output layer; details on this
method can be found in Basheer and Hajmeer (2000).

Three FFNN with the same structure were tested, one for
each segmentation method. The network structures used are
as follows:

– Input layer: four neurons, where each neuron is an
image feature.

– Hidden layer: one hidden layer with ten neurons.

– Output layer: one output layer, where in the output layer
two classes are obtained.

– Learning rate: 1.

– The used activation function: the log-sigmoid function.

– Training set: eight images, two for each horizon.

– Training conditions: epoch= 250.

– Performance function: Mean Squared Error
(MSE)= 0.01.

– Test set: four images, an image for each horizon.

All mathematical computations were performed using
Matlab®.

(a) (b)

Fig. 2. The obtained result for a soil image: (a) the CT soil image in
grey scale; (b) the results after a morphological erosion operation.

3 Results and discussion

3.1 Feature extraction

For each studied image, we applied an erosion morphological
operation to enhance the dark regions (that is, pore space).
The structuring element will darken the image. Bright re-
gions surrounded by dark regions (pore space) shrink in size,
and dark regions surrounded by bright regions (that is, soil
solid) grow in size. Small, bright pixels in images will dis-
appear as they are eroded down to the surrounding intensity
value, and small dark pixels will become larger pixels. The
effect is most marked at places in the image where intensity
changes rapidly, whereas regions with fairly uniform inten-
sity will be left more or less unchanged, except at their edges.
A cross-shaped structuring element of 3×3 size window was
applied. Figure 2 shows the results for a given image. Fig-
ure 2a shows grey-scale CT soil images. Figure 2b depicts
the results after a morphological erosion operation.

In this work, we applied two window-based features,
namely, mean and standard deviation; they were extracted
from eroded images within a rectangular window. Two win-
dows of different sizes were applied. The correlation analysis
was implemented to find the best pixel block window accord-
ing to the results already obtained; as such, we chose a 5×5
pixel window.

3.2 Image segmentation

Three clustering methods were implemented to obtain seg-
mented images. We built a FV,Ss = {x(qs)

: qs = 1,...,Qs},
where x(qs)

∈ <
D is a D-dimensional vector, andQs

is the number of pixels in the image, wherex(qs)
=

{[x
(qs)

1 ,x
(qs)

2 ,x
(qs)

3 ,x
(qs)

4 ]}. The FV set is then clustered us-
ing three different methods.

Ss are grouped intok clusters, where only one group cor-
responds to pore space, and the others correspond to different
types of soil solid. Various approaches are used to determine
which cluster represents the pore group, including the min-
imum percentage of total data and the minimum grey level
of the original image. The remaining clusters represent soil
group. The previous clustering results are represented as a
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(a) (b)

Fig. 3. The obtained results for the K-means method:(a) the image
segmented with nine clusters; and(b) the binary image obtained
from the segmentation process, where 0 value corresponds to the
pore space class and 1 value corresponds to the soil solid class.

segmented image of binary form, where 0 value corresponds
to a pore space class and 1 value corresponds to a soil solid
class. Next, we show the initial conditions for segmentation
and the results of each clustering method.

In the implementation of segmentation algorithm is nec-
essary to have information about the images, this informa-
tion help us to adjust the parameters and number of groups
in which the image will be segmented. Once we know how
many groups are needed to represent the gray levels corre-
sponding to pore, more images with the same features can be
segmented.

3.2.1 K-means

The initial conditions for this method were as follows.

– The cluster number took values from 7 to 11.

– Centroids were initialised as random values.

– The Euclidean distance function was used to measure
distance.

– The maximum iteration number was set at 100.

To illustrate the results, Fig. 3 shows the segmented image
and the binary image obtained by applying the K-means al-
gorithm.

3.2.2 FCM

The initial conditions for this method were as follows:

– The cluster number took values from 7 to 11.

– Centroids were initialised as random values.

– The number of membership degrees was set to 2.

– The maximum number of iterations was set to 100.

– The minimum amount of improvement was set to
1×10−3.

To illustrate the results, Fig. 4 shows the segmented and
binary images obtained by applying FCM algorithm.

(a) (b)

Fig. 4. The obtained results for the Fuzzy c-means method:(a) the
image segmented with nine clusters; and(b) the binary image ob-
tained from the segmentation process, where 0 value corresponds to
the pore space class and 1 value corresponds to the soil solid class.

(a) (b)

Fig. 5. The obtained results for the SOM method:(a) the image
segmented with nine clusters; and(b) the binary image obtained
from the segmentation process, where 0 value corresponds to the
pore space class and 1 value corresponds to the soil solid class.

3.2.3 SOM

The initial conditions for this method were as follows:

– The network structure [4k] was such thatk took values
from 7 to 11.

– The weight vector was randomly initialised.

– The topology function was hextop.

– The distance function was linkdist.

– The maximum epoch was set at 100.

To illustrate these results, Fig. 5 shows the segmented and
binary images obtained by applying SOM.

The group corresponding to the pore class was obtained
under the following conditions.

The data were clustered into several groups, the number of
which ranged from 7 to 11; the percentage that corresponded
to pore space was then computed. The obtained percent-
ages in this work were compared with the results obtained by
Piñuela et al. (2009), who used the threshold method. Tak-
ing into account their results, we chose a number of groups
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Table 2. Porosity percentages using thresholding criteria (Piñuela,
2009).

Horizon Porosity (%)

A2 13.45
AB 14.73
Bt2 12.14

Bt/Bw 12.76

equal to 9. Care must be taken not to over-segment the im-
age, therefore it is necessary to have information of the im-
age when the algorithm is implemented. Table 2 shows the
porosity percentage from Piñuela et al. (2009). Table 3 shows
the percentage of pore space obtained using our method, the
results show that the more the image is segmented group that
corresponds to the pore is divided, for this reason the per-
centage of pore decreases. Based on this comparison, the FV
was clustered and labelled into nine groups. These labelled
vectors were then used for classification.

3.2.4 Pore space distribution

In this study, we observed that it is not only the percentage
of porosity that influences the threshold method; in addition,
certain pore sizes present a higher influence, as is shown in
Fig. 6. Pores with sizes ranging from 50 pixels to 400 FCM
and K-means show a similar accumulative porosity curve;
meanwhile, SOM shows a lower increase. For pores that
are greater than 400 pixels, the accumulative curves decrease
until the pore size reaches 2000 pixels under the FCM and
-means algorithms. However, in terms of total porosity, this
may not be significant, especially considering the substantial
influence of hydraulic simulation and behaviour.

3.3 Image classification

We used 2-D CT soil images to detect the percentage of pore
space in soil. The image resolution is 45.1 µm, and the image
size is 256×256 pixels, so that we have 65 536-pixels by im-
age. We built a FV from the setSs , which includes 786 432
feature vectors obtained from feature extraction (pixels cor-
responding to twelve images). Then, we clustered and la-
belled FV into the setSs using the K-means, FCM and SOM
algorithms to compare results. Each FV was partitioned into
two sets, namely, a training set with 524 288 feature vectors
and a test set with 262 144 feature vectors.

The classification results are represented by the output
vector (V out). Three FFNNs were used for training and test-
ing with the same conditions to compare classification re-
sults.

Classification was performed for each FV obtained in the
clustering step. Table 4 shows the results of the classification
for each FV (test set). The output of FFNNs were compared

Fig. 6. Pore space distribution for the A2 horizon.

with FV label. According to the obtained results, the best
classification rate was obtained using the FV for the K-means
algorithm.

3.3.1 Image reconstruction

V out contains the classification results, whereV out is formed
by two classes, with one corresponding to solid soil and the
other corresponding to pore space. UsingV out, we built four
images and computed the pore percentage for each recon-
structed image. These results are compared with the obtained
percentage in Table 3.

Table 5 shows the comparison results, where the initial
percentage obtained in the segmented images is compared
with the classifier output. In the results, we can observe that
the final percentages obtained for A2, Bt2 and Bt/Bw hori-
zons are very similar to initial percentage, but with the AB
horizon, the classifier has a very big mistake. The method
has limitations in the classification of the AB horizon, to im-
prove the outcome in future work will analyze the feature
extraction and segmentation in order to improve the classi-
fication. Figure 7 shows the reconstructed image for each
V out, the obtained classification is represented as binary im-
age where 0 value corresponds to the pore space class and 1
value corresponds to the soil solid class.

4 Conclusions

This paper proposed an alternative way to detect pore space
in CT soil images using image processing, data clustering
and ANN. Feature extraction in soil images is an important
factor for the pore space detection due to the low level of con-
trast in these image types. We applied an erosion morpho-
logical operation to enhance the dark regions (pore space);
in addition, the mean and standard deviation were used to
generate additional information about areas of interest.

Clustering algorithms help us to get a better comprehen-
sion and knowledge of data with the objective of segmented
image into different areas according to given objectives. Af-
ter a learning process, the partitional clustering algorithms
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(a) (b) (c)

Fig. 7. The obtained classification results, in each image 0 value (black) corresponds to the pore space class and 1 value (white) corresponds
to the soil solid class:(a) the classification obtained with the K-means segmented images;(b) the classification obtained with the FCM
segmented images;(c) the classification obtained with the SOM segmented images. The binary image obtained from the segmentation
process.

Table 3. The percentage of pore space obtained in clustering methods for each horizon, where the cluster number takes values ranging from
7 to 11.

No. of Clusters K-Means (%) Fuzzy C-Means (%) SOM (%)
A2 AB Bt2 Bt/Bw A2 AB Bt2 Bt/Bw A2 AB Bt2 Bt/Bw

7 19.60 18.00 14.13 16.94 18.11 16.80 13.86 15.96 20.44 18.52 17.46 18.66
8 16.72 15.17 13.35 13.42 15.54 13.79 11.87 13.34 17.79 15.89 14.77 16.02
9 13.57 11.86 11.98 12.06 13.32 11.70 10.46 11.61 15.59 13.83 12.77 13.95
10 11.92 10.15 10.11 11.98 11.49 10.00 0.27 10.51 13.80 12.11 11.27 12.47
11 9.58 8.84 6.25 10.39 10.00 8.79 8.36 9.16 12.45 10.74 10.04 11.13

Table 4. The classification percentages obtained for each FV.

FV for Correct classification
clustering method (%)

K-means 97.01
FCM 96.44
SOM 96.12

Table 5. Porosity percentages for FFNN classifications.

Horizon K-Means (% ) Fuzzy C-Means (%) SOM (%)

Initial Final Initial Final Initial Final
percentage percentagepercentage percentagepercentage percentage

A2 13.57 13.30 13.32 12.29 15.59 14.83
AB 11.86 3.45 11.70 3.03 13.83 3.98
Bt2 11.98 14.55 10.46 13.06 12.77 16.68

Bt/Bw 12.06 10.72 11.61 9.68 13.95 12.17
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provide a set of centroids as the most representative elements
of each group. As such, clustering algorithms partition the
input images in homogeneous areas, each of which is con-
sidered homogeneous with respect to a property of interest.

Unlike image segmentation based on histograms, this
method allows a deeper analysis of the areas where the pore
and soil are mixed because segmentation by clustering facili-
tates the analysis of multidimensional data, while segmenta-
tion using histogram analysis allows us to analyse only one
dimension.

In this work, we proposed an ANN as a classifier. ANN
has been used with success in different investigation fields.
This classifier plays an important role in our methodology
because ANN can learn structure in data through examples
contained in a training set and then can conduct complex de-
cision making. Our methodology provides an alternative way
to detect solid soil and pore space in CT images. The percent-
ages of correct classifications of pore space in images were
97.01%, 96.47 % and 96.12%.
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Piñuela, J., Alvarez, A., Andina, D., and Tarquis, A. M.: Quantify
a soil pore distribution from 3D images: Multifractal sprectrum
through wavelet approach, Geoderma, 155, 203–210, 2009.

Quintanilla-Dominguez, J., Cortina-Januchs, M. G., Barrón-
Adame, J. M., Vega-Corona, A., Buendı́a-Buend́ıa, F. S., and An-
dina, D.: Detection of microcalcification using coordinate logic
filters and artificial neural networks, Lect. Notes Comput. Sc.,
5602, 179–187, 2009.

Tarquis, A. M., Heck R. J., Andina, A., and Antón, J. M.: Pore
network complexity and thresholding of 3D soil images, Ecol.
Complex., 6, 230–239, 2009.
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