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Abstract. Terrestrial and oceanic carbon cycle processes re-
move∼55 % of global carbon emissions, with the remain-
ing 45 %, known as the “airborne fraction”, accumulating in
the atmosphere. The long-term dynamics of the component
fluxes contributing to the airborne fraction are challenging
to interpret, but important for informing fossil-fuel emission
targets and for monitoring the trends of biospheric carbon
fluxes. Climate and land-cover forcing data for terrestrial
ecosystem models are a largely unexplored source of uncer-
tainty in terms of their contribution to understanding airborne
fraction dynamics. Here we present results using a single
dynamic global vegetation model forced by an ensemble ex-
periment of climate (CRU, ERA-Interim, NCEP-DOE II),
and diagnostic land-cover datasets (GLC2000, GlobCover,
MODIS). For the averaging period 1996–2005, forcing un-
certainties resulted in a large range of simulated global car-
bon fluxes, up to 13 % for net primary production (52.4 to
60.2 Pg C a−1) and 19 % for soil respiration (44.2 to 54.8 Pg
C a−1). The sensitivity of contemporary global terrestrial
carbon fluxes to climate strongly depends on forcing data
(1.2–5.9 Pg C K−1 or 0.5 to 2.7 ppmv CO2 K−1), but weak-
ening carbon sinks in sub-tropical regions and strengthening
carbon sinks in northern latitudes are found to be robust. The
climate and land-cover combination that best correlate to the
inferred carbon sink, and with the lowest residuals, is from
observational data (CRU) rather than reanalysis climate data
and with land-cover categories that have more stringent cri-
teria for forest cover (MODIS). Since 1998, an increasing
positive trend in residual error from bottom-up accounting of
global sinks and sources (from 0.03 (1989–2005) to 0.23 Pg
C a−1 (1998–2005)) suggests that either modeled drought
sensitivity of carbon fluxes is too high, or that carbon emis-
sions from net land-cover change is too large.
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(benjamin.poulter@lsce.ipsl.fr)

1 Introduction

Fossil fuel emission targets to limit global warming below a
certain threshold are determined by the sensitivity of the cli-
mate system to greenhouse gas concentrations (Meinshausen
et al., 2009). Nearly half the uncertainty in existing estimates
for climate sensitivity stem from processes, rates and feed-
backs of the global carbon cycle (Huntingford et al., 2009).
Key questions include knowing the sensitivity of the carbon
cycle to changes in climate (Frank et al., 2010) and how long
the carbon cycle will act as a negative feedback to rising fos-
sil fuel emissions (Friedlingstein et al., 2003).

Currently, about 55 % of fossil fuel carbon emissions are
removed from the atmosphere by a suite of terrestrial and
oceanic processes with uptake rates governed by factors such
as climate variability and changes in land cover (Le Quere
et al., 2009). The remaining CO2 – the so called “airborne
fraction” – is a key metric of both the anthropogenic con-
tribution to global warming and a top-down estimate of all
carbon-cycle processes.

Recent work has highlighted the challenge of monitoring
and interpreting inter-annual variability of the airborne frac-
tion. Direct analysis of the airborne fraction and its contem-
porary trend (1850–2007) suggests that any increase, repre-
senting weakening carbon sinks, is not statistically signifi-
cant (Knorr, 2009). However, independent accounting of car-
bon sinks and fluxes from process-based ocean and dynamic
global vegetation models suggest a possible weakening of
biospheric carbon sinks (Le Quere et al., 2009). Account-
ing approaches are problematic, because they are unable to
close the global carbon budget to less than a 2.1 Pg C a−1

residual error, mostly due to uncertainty in modeling the ter-
restrial carbon cycle (Le Quere et al., 2009). In contrast,
Sarmiento et al. (2010) assumed that the error from model-
ing terrestrial carbon fluxes could be reduced by using better
constrained ocean and atmospheric measurements of CO2 to
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Table 1. Spatial and temporal characteristics for the climate forcing data.

Dataset Type Spatial resolution Temporal resolution Time period Reference

CRU TS 3.0 Observations 0.5 degrees Monthly 1901–2006 Mitchell and Jones
(2005)

ERA-Interim Reanalysis 1.5 degrees (T255 gaussian grid) 6-hourly 1989–2010 Berrisford et al. (2009);
Uppala et al. (2005)

NCEP-DOE II Reanalysis 1.5 degrees (T255 gaussian grid) 6-hourly 1979–2010 Kalnay et al. (1996);
Kanamitsu et al. (2002)

infer terrestrial carbon dynamics. They concluded that the
strength of the residual global terrestrial carbon sink may be
increasing from a combination of a longer growing season
in the Northern Hemisphere and CO2 fertilization. Clearly,
improvements in terrestrial carbon-cycle model simulations,
especially a rigorous quantification of associated uncertain-
ties, are required to provide a more robust interpretation and
quantification of the airborne fraction.

In addition to numerical descriptions of ecological pro-
cesses (Ostle et al., 2009; Sitch et al., 2008) and model pa-
rameters (Zaehle et al., 2005), climate and land-cover forcing
used in model simulations are a large source of uncertainty
in dynamic global vegetation modeling (Hicke, 2005; Jung
et al., 2007; Quaife et al., 2008; McGuire et al., 2001). Dif-
ferent methods used to create time series of gridded climate
data from meteorological stations introduce uncertainty that
propagates through ecosystem models (Zhao et al., 2006).
And challenges in mapping and modeling land cover result
in different estimates of productivity and respiration (Jung et
al., 2007). While these uncertainties have been evaluated at
continental scales, less is known about their effects globally.
Here we systematically explore the choice of forcing data
and how the resulting differences in model output (i) affects
the interpretation of recent trends in the airborne fraction and
(ii) contributes to residual error using standard source-sink
accounting procedures (as in Le Quere et al., 2009). We esti-
mate the range of terrestrial carbon cycle-climate sensitivities
arising from three climate and four land-cover forcing com-
binations, then assess the robustness of carbon flux trends.
Our discussion focuses on the main features of residual error
that arise from bottom-up carbon-budget assessments to bet-
ter understand process-based interpretations of the airborne
fraction.

2 Data and methods

2.1 Forcing data

Climate forcing data are available globally for either spatially
interpolated observations from weather stations or for as-
similated observational datasets using reanalysis techniques.
For climate observations, we obtained data for precipitation,

temperature, cloud cover, and monthly wet days from the
Climatic Research Unit (CRU) TS3.0 dataset (Mitchell and
Jones, 2005). Two reanalysis datasets were also included:
ERA-Interim (Berrisford et al., 2009; Uppala et al., 2005)
and the NCEP-DOE Reanalysis II (Kanamitsu et al., 2002).
In the case of reanalysis data, short and longwave downward
radiation estimates directly replaced cloud cover inputs. The
spatial and temporal resolution of the climate forcing data
(Table 1) was resampled to a regular-interval 0.5◦ latitude-
longitude grid using a bilinear interpolation method.

We modified a coupled biogeography-biogeochemistry
model, the LPJmL v3.1 DGVM (Sitch et al., 2003), which
includes updated hydrology and land-use schemes (Gerten
et al., 2004; Bondeau et al., 2007), to assimilate static plant
functional type (PFT) distributions. In dynamic vegetation
mode, DGVM models only approximately represent present
day patterns of natural and managed land-cover fractions,
and include considerable uncertainty in the geographic dis-
tribution of PFTs. This uncertainty in PFT distributions re-
sults from both incomplete bioclimatic information to de-
fine the fundamental niche, and to the complexity of mod-
eling species competitive interactions that define the realized
niche. To better represent present-day managed and natural
land cover, four plant functional type datasets were created
using a uniform methodology that combined Köppen-Geiger
climate zones (delineated with climate data from the Global
Historical Climatological Network v2.0 (Peel et al., 2007))
with physiognomy and phenology-type, and managed or nat-
ural grasslands, from land-cover data provided by MODIS
(V004 and V005), GLC2000, and GlobCover (Table 2; Poul-
ter et al., 2011). The satellite derived PFT fractions were
prescribed directly to the maximum annual FPAR variable in
LPJ, which defines the fraction of photosynthetic active ra-
diation (FPAR) absorbed by each PFT and is equal to that
PFT’s fractional coverage. Maximum annual FPAR was ad-
justed on a daily time step to reflect changes in temperature
or moisture limited phenological status. PFT-specific biocli-
matic thresholds (from Sitch et al., 2003) were modified to
allow establishment whenever a PFT fraction was present in
the prescribed dataset.

Fifteen global simulations were performed, one for each
unique climate and diagnostic (i.e. prescribed) land-cover
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Table 2. Remotely sensed land-cover data sets and their corresponding spatial resolution and classification approach (where IGBP is the
International Geosphere Biosphere Program, and UN LCCS is the United Nations Land Cover Classification System).

Land cover product Satellite and sensor type Time period Spatial Number of land cover classes Reference
resolution

GLC2000 v1.1 SPOT-4 (VEGA2000) 2000 1000 m 22 (modified UN LCCS) Bartholome and
Belward (2005)

Mod12q1 C004 Terra 2001 1000 m 17 (IGBP legend) Friedl et al.
(2002)

Mod12q1 C005 Terra 2005 500 m 17 (IGBP legend) Friedl et al.
(2010)

GlobCover v2.2 Envisat (Meris) Dec 2004/Jun 2006 300 m 22 (modified UN LCCS) Arino et al.
(2008)

combination, as well as a control run with prognostic (fully
dynamic) vegetation and the HYDE database representing
cropland fractions (Ramankutty and Foley, 1998). A 1000-
year spin up with natural vegetation (followed by a 398-year
spin up for natural and managed lands) to equilibrate soil
and vegetation carbon stocks was implemented by applying
pre-industrial CO2 concentrations and recycling the first 30
years of climate data for CRU. In the case of ERA-Interim
and NCEP-DOE forcing, we applied 20th century CRU cli-
mate trends to hind-cast from the reanalysis start year to 1901
so that consistency was maintained between the spin-up and
transient simulation; Table 1). Transient simulations, begin-
ning in 1901 and ending in 2005, included CO2 concentra-
tions from CDIAC (Keeling and Whorf, 2005) and soil tex-
ture characteristics from FAO (Zobler, 1986). Monthly tem-
perature and precipitation were interpolated to quasi-daily
values, while monthly precipitation was randomly distributed
to quasi-daily values using a weather generator dependent
on number of wet days per month (Geng et al., 1986), or
daily climate data were used when available (Table 1). Cloud
cover was converted to photosynthetic active radiation (PAR)
following Prentice et al. (1993) and transmissivity coeffi-
cients of Linacre (1968). Land cover was maintained fixed
to the diagnostic input and therefore carbon emissions from
net land-cover change were estimated from independent data
(Sect. 3.1). Fire dynamics were implemented for natural
PFTs but not for croplands, all of which were treated as pas-
ture, with the assumption that grass harvest occurred when
LAI reached its maximum annual value (Bondeau et al.,
2007). Mortality caused by fire had the effect of reducing the
PFT population size and the scaling of productivity and res-
piration from the individual, but not the fractional abundance
of PFTs, which remained fixed to prescribed PFT input.

2.2 Climate sensitivities and trends in carbon fluxes

Annual net ecosystem exchange (NEE; Pg C a−1) was cal-
culated as the difference between carbon inputs from net
primary production (NPP) and seedling establishment, and

carbon losses from heterotrophic respiration (RH), fire emis-
sions (F) and harvested grass (H). Annual anomalies, from
1989 to 2005, of global NEE and air temperature were cal-
culated with respect to a 10-year baseline period (1996 to
2005). To estimate the sensitivity of NEE to climate, simple
linear regression of annual NEE and temperature anomalies
obtained in the 15 simulations was performed. The signifi-
cance of the contemporary (1989–2005) trends in NEE and
its component fluxes (NPP and RH) were evaluated using the
signal to noise ratio for each 0.5◦ grid cell (n = 59199). The
signal to noise ratio was estimated as the mean of each in-
dividual annual carbon flux trend (i.e. for each climate and
land cover combination) divided by the standard deviation of
the trend for all combinations.

3 Results and discussion

3.1 Comparison of forcing data and carbon fluxes

Averaged over the 1996 to 2005 period, the global CRU
climate data tended to be slightly warmer (13.8◦C),
drier (850.9 mm a−1), and have lower solar radiation
(166.9 W m−2) than ERA-Interim (13.7◦C, 901.4 mm a−1,
190.3 W m−2) and NCEP-DOE (13.1◦C, 930.6 mm a−1,
195.6 W m−2). Differences in incoming solar radiation can
be partly explained by the use of atmospheric transmissivity
constants (Linacre, 1968) used to convert CRU cloud cover
to shortwave radiation, however previous studies have con-
firmed a systematic positive bias to be common in both re-
analysis datasets (Hicke, 2005; Zhang et al., 2007). At the
regional scale, NCEP-DOE had higher summertime precipi-
tation for all mid-latitude regions (Europe, South and North
America) as well as in tropical Asia, but NCEP-DOE tended
to be drier in tropical South America (Fig. 1). CRU was
noticeably warmer over tropical South America (1–1.5◦C)
and NCEP was approximately 1◦C cooler over North Africa
and Tropical Asia. The plant functional type datasets di-
verged from one another mainly over dry-regions because of
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Table 3. Summary of mean annual carbon fluxes for each of the 15 global simulations, averaged over the period 1996–2005.

Climate forcing Land cover forcing Cropland & pasture area (km2)
C- fluxes (Pg C a−1)

NPP RH NEE

CRU TS3.0

Hyde/dynamic 3.2 (21.9 %) 56.97 48.81−1.68
GLC2000 1.8 (12.4 %) 57.97 47.49 −1.91
GlobCover 1.7 (11.7) 56.19 46.46 −1.72
Modis V4 1.3 (9.2 %) 55.73 47.59 −1.55
Modis V5 1.3 (9.2 %) 56.89 48.59 −1.66

ERA-Interim

Hyde/dynamic

(as above)

54.1 47.31 −1.75
GLC2000 54.6 45.37 −1.99
GlobCover 53.2 44.29 −1.89
Modis V4 52.43 44.83 −2.04
Modis V5 53.46 45.78 −2.14

NCEP-DOE II

Hyde/dynamic 60.17 54.8 1.08
GLC2000 60.1 50.64 −1.03
GlobCover 58.62 49.57 −1.08
Modis V4 58 50.07 −1.18
Modis V5 59.27 51.29 −1.28

Table 4. Sensitivity (slope of linear regression) of the uncertainty of
net ecosystem exchange, expressed as coefficient of variation (CV),
to the uncertainty of net primary production and heterotrophic respi-
ration component fluxes (CV). The analysis was conducted on area
aggregated fluxes that corresponded TransCom3 regions (Fig. 1).
The uncertainty of NEE in northern regions is mainly controlled
by RH uncertainty (implying greater temperature sensitivity of soil
respiration), whereas in topical and arid regions, NPP and RH un-
certainty are equally important.

Region (ordered from cool/dry Slope of NEE CV to component
to wet to warm/dry) flux CV (%)

NPP RH

Boreal North America 0.094 0.137
Boreal Russia 0.053 0.131
Europe 0.012 0.123
Temperate North America 0.12 0.163
Temperate Asia 0.055 0.052
South Africa 0.05 0.061
Tropical Asia −0.005 −0.01
Tropical South America 0.067 0.138
South America 0.02 0.047
North Africa 0.012 0.015
Australia 0.085 0.092

differences in how the classification systems handled forest
cover thresholds (Poulter et al., 2011; Fritz and See, 2008).
Due to these classification differences, the GLC2000 and
GlobCover datasets tended to have 4–5 % higher woody veg-
etation in warm regions, which MODIS categorized as C4
grasslands.

The carbon flux estimates (Table 3) were within the range
of previous studies using independent methods from remote
sensing (Zhao and Running, 2010) and also comparable to
other DGVM models (Sitch et al., 2008) and global atmo-
spheric inversions (Gurney et al., 2002). Variation in the
magnitude of carbon fluxes was mainly related to climate
forcing uncertainty, with global NPP (for the averaging pe-
riod 1996–2005) ranging from 52.4 to 60.2 Pg C a−1 (a 13 %
range) and RH from 44.3 to 54.8 Pg C a−1 (19 %). Because
soil respiration is tightly coupled to aboveground production
and carbon inputs, RH tended to respond proportionally with
NPP, resulting in a smaller range of absolute NEE variabil-
ity −1.08 to−2.14 Pg C a−1, but representing∼50 % un-
certainty. The uncertainty of NEE was especially large in
tropical South America, Central Africa and in Eastern Eu-
rope (Fig. 2). These hotspots of uncertainty either have large
absolute fluxes that lead to large uncertainty (i.e. the trop-
ics), and/or occur where differences in climate and land-
cover forcing caused a disproportionately larger uncertainty
for RH fluxes rather than NPP (i.e. in central Europe, Ta-
ble 4). The temporal dynamics and inter-annual variability of
global NEE showed strong coherence among climate forcing
(Fig. 3a), but large systematic biases emerged from climate,
and less so, for land-cover forcing datasets.

We estimated the inferred terrestrial carbon sink (ICS)
from carbon cycle observations, where, ICS = (fossil
fuel + net land use) – atmospheric sink – ocean sink
(using sink/source data from Le Quere et al. (2009),http:
//lgmacweb.env.uea.ac.uk/lequere/co2/carbonbudget.htm;
accessed January 2011), In comparison to the ICS, the
LPJ simulated terrestrial carbon sink followed similar
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Fig. 1. (a)Spatial pattern of climate forcing differences between mean annual temperature,(b) total annual precipitation, and(c) downward
shortwave radiation.

inter-annual variability and decadal trends, but was unable
to reproduce a strong 1991/92 anomaly following the
Mt. Pinatubo eruption (Fig. 3a). The Pinatubo eruption was
associated with cooler temperatures and increased diffuse
solar radiation (Mercado et al., 2009; Peylin et al., 2005),
resulting in an enhanced effect on photosynthesis that is not
explicitly considered in LPJ.

3.2 Carbon-climate sensitivities and temporal trends

The range of carbon flux sensitivity of to climate forcing
provides a useful indicator for interpreting the magnitude
of component and net flux inter-annual variability. Overall,
we found that climate forcing explained most of the varia-
tion between carbon-climate sensitivities, via its role on en-
hancing or alleviating abiotic limitations, and that land cover
had a minor secondary role (Table 5). At the global scale,
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Fig. 2. Standard deviation of annual net ecosystem exchange (g C m−2 a−1) calculated from the 3 climate× 5 land cover forcing simulations.
Borders represent TransCom 3 regions (Gurney et al., 2002) that correspond to biogeographic zones used in the analysis for Table 5.

Fig. 3. (a)Temporal dynamics of net ecosystem exchange for the common overlapping time period of CRU, ERA-Interim, and NCEP-DOE
(Table 1), and(b) the residual error from accounting method to assess global carbon sources and sinks (Sect. 3.1). The Mt. Pinatubo eruption
and El Nĩno Southern Oscillation event of 1997/98 are both highlighted.

NCEP-DOE had the largest NEE sensitivity to changes in
temperature (4.2–5.9 Pg C K−1), followed by ERA-Interim
(4.1–4.5 Pg C K−1) and then CRU (1.2–2.5 Pg C K−1).
These differences were largely explained by tropical ecosys-
tem dynamics, where productivity reacted strongly to varia-
tion in temperature in the absence of temperature stress and

water limitations (i.e. where NCEP-DOE tended to be cooler
in the tropics, Fig. 1). In temperate regions, the ERA-Interim
climate forcing caused higher NEE sensitivity to temperature
mainly because of higher heterotrophic respiration sensitivity
to changes in air temperature (Table 5). Terrestrial NEE in-
ferred from observations (the ICS, Sect. 3.1) exhibited lower
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Table 5. Sensitivity of global annual net ecosystem exchange fluxes (NEE) to temperature anomalies for 1989–2005 (p < 0.1 for all land
cover and climate forcing combinations, except for the dynamic vegetation and CRU combination = 0.15).

Land cover forcing
Climate forcing and carbon-climate sensitivity (Pg C K−1)

CRU TS 3.0 ERA-Interim NCEP-DOE II

Hyde/dynamic 1.25±0.82 4.45±1.09 5.99±1.36
GLC2000 2.02±0.91 3.65±1.14 4.50±1.37
GlobCover 2.26±0.89 3.58±1.05 4.19±1.27
MODIS V004 2.54±0.95 4.18±1.06 4.53±1.40
MODIS V005 2.53±0.97 4.07±1.07 4.23±1.46
Observations (inferred terrestrial carbon sink) 1.92±0.87 1.90±0.84 1.78±0.97

carbon-climate sensitivity (1.7–1.9 Pg C K−1), and was more
closely aligned to the simulated carbon-climate sensitivities
from the CRU forcing.

Overall, the estimated global carbon cycle temperature
sensitivities presented here are substantially lower than best
estimates for carbon-cycle climate sensitivities quantified
for multi-decadal to centennial time-scales during the pre-
industrial past millennium (Frank et al., 2010). Our compar-
ison among forcing scenarios clearly demonstrates how even
small biases in absolute temperature and/or precipitation in
coupled carbon-cycle climate simulations can contribute to
a wide spread and possible overestimation of the strength of
carbon cycle feedbacks (Friedlingstein et al., 2003). Com-
pared to the sensitivity of the inferred terrestrial carbon sink,
it thus appears particularly important to have unbiased esti-
mates of climate when trying to diagnose vegetation coupling
in earth system simulations.

Among land-cover forcing datasets, the MODIS land
cover was more sensitive to temperature variability (Table 5),
possibly because the more extensive, shallow-rooted grass-
lands had less access to water in the deeper soil layer (>0.5 m
depth). The prognostic vegetation simulations with dynamic
PFT fractions showed a lower NEE sensitivity to temper-
ature using CRU than with ERA-Interim and NCEP-DOE.
With dynamic vegetation, physiological processes can be ex-
pected to be closer to a climatic equilibrium than the fixed
PFT fractions, which were at less-than optimal climate con-
ditions. However, because ERA-Interim and NCEP-DOE
forcing were both slightly cooler and wetter, the dynamic
vegetation sensitivities were larger, because they were not
constrained by high-temperature or low-moisture limitation.

Robust trends of increasing NPP and RH were observed
at higher latitudes (Boreal North America and Boreal Rus-
sia) for most climate and land-cover forcing datasets, with
signal to noise ratios>2 (Fig. 4). These findings support
previous work showing the effects of increased growing sea-
son and CO2 fertilization on the productivity of circumpo-
lar vegetation (Piao et al., 2007). Decreasing NPP was ob-
served in dryland regions, including Australia and parts of
South America, as well as in semi-humid areas of South-

Fig. 4. Signal to noise ratio (for values< −1 or > +1) for annual
net primary production (ANPP), heterotrophic respiration (RH),
and net ecosystem exchange (NEE). A positive value for NPP and
RH indicate increasing rates and a positive value for NEE indicates
a trend toward a carbon source.

east Asia. In these regions, RH did not show as large a
decrease as compared to NPP, possibly because of increas-
ing air temperatures, meaning that NEE trended toward a
stronger carbon source (Fig. 4). Our results on declining
dryland NPP correspond to recent independent studies us-
ing remote sensing based models (Zhao and Running, 2010),
empirical upscaling (Jung et al., 2010), and field observa-
tions (Allen et al., 2010) that suggest soil moisture limita-
tions are increasing in the past decade. At the global scale,
decreases in NPP, not offset by a similar decrease in RH,
explained the general global trend toward a weakening ter-
restrial carbon sink (Fig. 3a). This trend was observed for all
climate-land cover combinations, and appeared increasingly
important from 1998 onward.

www.biogeosciences.net/8/2027/2011/ Biogeosciences, 8, 2027–2036, 2011
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Fig. 5. Taylor diagram assessing model skill in comparison to
the inferred terrestrial carbon sink. The black circle located at
RMSE = 1.0 and Standard Deviation = 0 indicates the observations.

3.3 Contribution to reducing the uncertainty of air-
borne fraction dynamics

The summing of global carbon sinks and sources using inde-
pendent observations results in a residual error if the bud-
get is not closed (Sect. 3.1; Fig. 3b). This residual error
and its inter-annual dynamics can be considered an indica-
tor for further constraining and identifying the main compo-
nent sources of error (i.e. atmosphere, ocean, land sinks and
sources). We investigated the year-to-year variability as well
as a long-term trend of the residual error and observed a se-
ries of positive anomalies beginning in 1998. These positive
anomalies modified the long-term trend from 0.03 (1989–
2005) to 0.23 Pg C a−1 (1998–2005). The recent trend to-
ward increasing residual error suggests that either weaken-
ing terrestrial NPP is too sensitive to recent climate trends,
or that another sink/source term in the global carbon budget
is poorly constrained. For example, carbon fluxes from net
land-use change have high uncertainty (mean 1.5±0.7 Pg C
a−1) in comparison to ocean fluxes (2.3±0.5 Pg C a−1) and
the residual trend suggests that downward revisions for de-
forestation for the 2000–2005 period, using revised land-use
change data (Friedlingstein et al., 2010; Houghton, 1999),
may be continue to be too small (Grainger, 2008). These
results agree with Knorr (2009), who found that the uncer-
tainty of net land-use emissions may be the most a critical
component flux in determining the long-term dynamics of
the airborne fraction.

3.4 Evaluation of forcing data and agreement with
inferred terrestrial carbon sink

We compared the time series (1989 to 2005) of all NEE
climate and land cover simulations to the inferred carbon
sink using a Taylor diagram (Taylor, 2001) to assess mul-
tiple metrics of model-data agreement and skill (Fig. 5). The
CRU dataset had consistently higher agreement with the in-
ferred terrestrial carbon dynamics (R2

= 0.7–0.8), with the
MODIS-derived PFT datasets performing slightly better than
the GLC2000 and GlobCover. ERA-Interim and NCEP-DOE
matched the ICS less well (R2

= 0.45–0.65), and resulted in
a larger inter-annual amplitude (compared to the ICS) be-
cause of the higher NEE-temperature sensitivity (represented
by the large standard deviation on the y-axis of Fig. 5).

4 Conclusions

Our study demonstrates that the choice of forcing data has
significant consequences for interpreting trends and variabil-
ity of the residual carbon sink, with implications for in-
terpreting the dynamics of the airborne fraction. We con-
clude that (1) trends in global sinks and sources are robust
in Northern latitudes and dry regions, (2) inter-annual vari-
ations within these regions can be significant and occur on
at least inter-annual to decadal time scales, and (3) reduc-
ing uncertainty from net land-use fluxes will be necessary
for reducing residual error of the global carbon budget. Le
Quere et al. (2009) recommend that the residual error from
bottom-up accounting procedures must be reduced to less
than 0.9 Pg C a−1, corresponding to the uncertainty in the
fossil fuel emissions, to make process-based model interpre-
tations of the airborne fraction policy-relevant. We show here
that the residual error due to land-cover and climate forcing
uncertainty is 3.1 Pg C a−1, which is larger than the model
structural uncertainties presented by Le Quere et al. (2009).
Land cover contributes approximately 1.1 Pg C a−1 and cli-
mate 1.7 Pg C a−1 to this overall uncertainty. Consideration
of forcing data is required to reduce uncertainty in the inter-
pretation of future trends in the airborne fraction.
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