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Abstract. A major drawback of current soil organic car-
bon (SOC) models is that their conceptually defined pools
do not necessarily correspond to measurable SOC fractions
in real practice. This not only impairs our ability to rigor-
ously evaluate SOC models but also makes it difficult to de-
rive accurate initial states of the individual carbon pools. In
this study, we tested the feasibility of inverse modelling for
estimating pools in the Rothamsted carbon model (ROTHC)
using mineralization rates observed during incubation exper-
iments. This inverse approach may provide an alternative
to existing SOC fractionation methods. To illustrate our ap-
proach, we used a time series of synthetically generated min-
eralization rates using the ROTHC model. We adopted a
Bayesian approach using the recently developed DiffeRential
Evolution Adaptive Metropolis (DREAM) algorithm to infer
probability density functions of the various carbon pools at
the start of incubation. The Kullback-Leibler divergence was
used to quantify the information content of the mineralization
rate data. Our results indicate that measured mineralization
rates generally provided sufficient information to reliably es-
timate all carbon pools in the ROTHC model. The incubation
time necessary to appropriately constrain all pools was about
900 days. The use of prior information on microbial biomass
carbon significantly reduced the uncertainty of the initial car-
bon pools, decreasing the required incubation time to about
600 days. Simultaneous estimation of initial carbon pools
and decomposition rate constants significantly increased the
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uncertainty of the carbon pools. This effect was most pro-
nounced for the intermediate and slow pools. Altogether, our
results demonstrate that it is particularly difficult to derive
reasonable estimates of the humified organic matter pool and
the inert organic matter pool from inverse modelling of min-
eralization rates observed during incubation experiments.

1 Introduction

A substantial part of the global carbon cycle occurs in the
pedosphere. Jobb́agy and Jackson(2000) estimated that
the upper three meters of the soils of the world contain
about 2340 Pg organic carbon. More recently,Tarnocai et al.
(2009) reported that the amount of soil organic carbon (SOC)
in the northern circumpolar permafrost region was previously
underestimated. They concluded that the upper three meters
of the soils in this region contain about 1020 Pg organic car-
bon. These numbers suggest that at the global scale total
SOC amounts to about 3070 Pg in the upper three meters of
the soil profile. This is about fourfold the amount of carbon
in the atmosphere and sixfold that stored in living plant ma-
terial (Prentice et al., 2001). The link between terrestrial car-
bon cycling and climate change has recently received much
attention because the pedosphere has the potential to either
amplify or dampen global warming (e.g.Friedlingstein et al.,
2006; Heimann and Reichstein, 2008). Moreover, it has long
been recognized that SOC levels exert strong influence on
the physical and chemical properties of soils, and conse-
quently, determine soil productivity and thus the functioning
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of terrestrial ecosystems. Both fields of science demand for
reliable modelling of SOC dynamics.

The turnover of soil organic matter (SOM) is usually de-
scribed with multi-compartment models. The model com-
partments (or pools) are generally defined by functional
properties such as decomposition rate constants, input and
output pathways, and partitioning of decomposition prod-
ucts. These models have been successfully applied for sim-
ulating total SOC levels observed in long-term field experi-
ments (Smith et al., 1997). A major drawback of these mod-
els, however, is that their functionally defined compartments
do not necessarily correspond to measurable SOC fractions
in real practice (e.g.Christensen, 1996; Elliott et al., 1996;
Cambardella, 1998; Arah and Gaunt, 2001). The ongo-
ing difficulty with direct measurement of the various carbon
pools not only impairs our ability to rigorously evaluate SOC
models, but also downplays the utility of these models for
predictive purposes. Accurate estimates of the initial states
of the various carbon pools are a prerequisite for studying
and predicting organic carbon dynamics in the soil.

In recent years, the Rothamsted carbon model (ROTHC,
Coleman and Jenkinson, 1999) has found widespread appli-
cation and use to study SOC dynamics. Several studies have
developed fractionation procedures that yield SOC fractions
that match as closely and consistently as possible the var-
ious pools considered in ROTHC (Jenkinson et al., 1992;
Balesdent, 1996; Skjemstad et al., 2001; Ludwig et al., 2003;
Skjemstad et al., 2004; Zimmermann et al., 2007). Notwith-
standing this progress made, we think that this approach of
“measuring the modelable” (Elliott et al., 1996) is subject
to considerable uncertainty and debate. For instance,Smith
et al.(2002) pointed out that to be equivalent to a model pool
a measured fraction must be both unique (isolating all SOM
pertaining to a conceptual pool) and non-composite (isolat-
ing SOM from one conceptual pool only). SOM fractiona-
tion is generally based on physical or chemical properties, or
both. But it seems questionable if these properties alone or a
combination thereof can be used to isolate unique and non-
composite SOC fractions that exhibit similar behaviour and
fate as the individual carbon pools defined in ROTHC. In a
recent review on SOM fractionation methods and their rele-
vance for modelling,von Lützow et al.(2007) concluded that
only the microbial biomass and the light fraction (SOM not
firmly associated with soil minerals and consisting mostly of
plant residues) can be reliably isolated. They argue that the
currently available fractionation techniques are not specific
enough with regard to SOM stabilization mechanisms, and
therefore, do not yield functional pools with homogeneous
turnover rates. This might explain why the opposite strategy
of “modelling the measurable” (Elliott et al., 1996) – that
is, building mathematical models based on measurable SOM
fractions – has not yet found its way into modelling practice.

In this study, we explored the feasibility of inverse mod-
elling to estimate the initial carbon pools in the ROTHC
model. This approach may provide an alternative to exist-

ing SOM fractionation methods. To test our approach, we
used a synthetic time series of mineralization rate data. This
has the advantage that the true pool sizes are known, which
enables us to benchmark the reliability and robustness of our
inverse modelling approach. In our analyses we considered
measurements made during incubation because such experi-
ments are admirably suited to maximize the information con-
tent of the measured mineralization rate data by controlling
the boundary conditions. Incubation experiments also reveal
the dynamics of the intermediate and slow pools after de-
pletion of the labile compounds. To appropriately infer un-
certainty of the initial states of the carbon pools, we posed
our inverse problem in a Bayesian framework using the re-
cently developed DiffeRential Evolution Adaptive Metropo-
lis (DREAM) algorithm (Vrugt et al., 2008, 2009). We ex-
plicitly addressed the following questions: (i) do incubation
experiments provide sufficient information to reliably esti-
mate all carbon pools in the ROTHC model, especially those
pools with intermediate and slow turnover? (ii) What length
of incubation is required to appropriately constrain all carbon
pools? (iii) Would prior information on microbial biomass
carbon reduce uncertainty of the initial pool size estimates?
And (iv), how does uncertainty in some of the ROTHC model
parameters affect the final carbon pool size estimates?

2 Methods

2.1 Model description

A schematic overview of the Rothamsted carbon model
(ROTHC,Coleman and Jenkinson, 1999) appears in Fig.1.
The ROTHC model has four active carbon pools: de-
composable plant material (DPM), resistant plant material
(RPM), microbial biomass (BIO) and humified organic mat-
ter (HUM). The mass balance of theith active pool,ci

(g C kg−1 soil), is described with the following ordinary dif-
ferential equation:

dci(t)

dt
=−k∗

i (t) ci(t)+si(t) (1)

wheret (year) is time,k∗

i (year−1) denotes the actual decom-
position rate, andsi (g C kg−1 soil year−1) represents inputs.
The actual decomposition ratek∗

i is modelled as a multiplica-
tive product of the decomposition rate constant,ki (year−1),
and three rate modifying functions,f (dimensionless), ac-
counting for the effects of soil temperature, soil moisture,
and soil cover:

k∗

i (t)=kif1(temperature(t))f2(moisture(t))f3(cover(t)) (2)

Decomposition rate constants (Table1) were derived from
field experiments with14C labelled plant material and15N
labelled microbial biomass, as well as measurements of total
SOC from long-term field experiments at Rothamsted (Jenk-
inson et al., 1992). These constants are assumed to be time
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Table 1. Values of the initial states and model parameters used to generate the synthetic time series of mineralization rate measurements
using the ROTHC model. We also report the ranges for those carbon pools and model parameters that were inversely estimated. Subscripts
stand for decomposable plant material (DPM), resistant plant material (RPM), microbial biomass (BIO), humified organic matter (HUM),
and inert organic matter (IOM).

Symbol Description Value Bounds Unit

cDPM Initial pool size 0.2 0 . . . 0.5 g C kg−1 soil
cRPM Initial pool size 3.7 0 . . . 10 g C kg−1 soil
cBIO Initial pool size 0.5 0 . . . 1.5 g C kg−1 soil
cHUM Initial pool size 20.4 5 . . . 25 g C kg−1 soil
cIOM Pool size 3.8 Not estimated g C kg−1 soil
kDPM Decomposition rate constant 10 2.5 . . . 17.5 year−1

kRPM Decomposition rate constant 0.3 0.075 . . . 0.525 year−1

kBIO Decomposition rate constant 0.66 0.165 . . . 1.155 year−1

kHUM Decomposition rate constant 0.02 0.005 . . . 0.035 year−1

f1(temperature= 20◦C) Rate modifier for soil temperature 2.83 Not estimated Dimensionless
f2(moisture= optimal) Rate modifier for soil moisture 1.00 Not estimated Dimensionless
f3(cover= bare) Rate modifier for soil cover 1.00 Not estimated Dimensionless
p2(clay= 23%) Partitioning coefficient 0.78 Not estimated Dimensionless
p3 Partitioning coefficient 0.46 Not estimated Dimensionless

and space invariant, and thus applicable to other environmen-
tal conditions (Coleman et al., 1997). The incoming plant
material is partitioned between DPM and RPM in a ratio that
depends on vegetation type,p1(vegetation). The decompo-
sition process releases part of the carbon as CO2 to the at-
mosphere and distributes the remaining carbon between the
BIO and HUM pools. The proportion of carbon that is min-
eralized,p2(clay), depends on the clay content of the soil
whereas a fixed ratio,p3, is used to partition the carbon flux
between the BIO and HUM pools. A detailed description of
the rate modifying functions and partitioning coefficients ap-
pears inColeman and Jenkinson(1999) and so will not be
repeated here. In addition to the four active pools (DPM,
RPM, BIO and HUM), the ROTHC model also contains a
fifth pool that is made up of inert organic matter (IOM). This
pool is resistant to microbial decomposition and does not re-
ceive any carbon from the four active pools or other sources.
It is assumed that the carbon in the IOM pool is of geological
rather than pedological age, implying that it virtually con-
tains no14C. The IOM pool is necessary to be able to match
the 14C signature of soils, which usually indicates the pres-
ence of some small amount of very old carbon (Jenkinson
et al., 1992). In all our calculations, we used a MATLAB im-
plementation of the ROTHC model with an explicit Runge-
Kutta numerical solution scheme to solve for the system of
ordinary differential equations. This scheme is especially de-
signed to maintain mass balance, a requirement for efficient
inverse modelling (Schoups et al., 2010).

cDPM

 plant material

kDPM
* cDPM

1− p2

1− p1p1

1− p3
p3

CO2

kRPM
* cRPM

kBIO
* cBIO

p2

1− p3p3

CO2

p2

kHUM
* cHUM

cRPM

cBIO cHUM

c IOM

CO2

p2 1− p2
CO2
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p21− p2

1− p3
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Fig. 1. Structure of the ROTHC model. The model has four active
pools: decomposable plant material (cDPM), resistant plant mate-
rial (cRPM), microbial biomass (cBIO) and humified organic matter
(cHUM ). The inert organic matter pool (cIOM ) is assumed to be
passive. Three partitioning coefficients (p1, p2 andp3) govern the
flow of carbon.
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Fig. 2. Precision of mineralization rate measurements using an au-
tomated respirometer. The circles represent the actual measure-
ments, error bars depict the width of the corresponding 95% con-
fidence intervals. The solid line represents the fit of the linear error
model, dashed lines mark the associated 95% confidence envelope.

2.2 Generation of synthetic incubation data

We generated a time series of synthetic mineralization rates
using the ROTHC model with values of the initial pool sizes
and model parameters listed in Table1. The sizes of the
initial carbon pools were obtained from a simulation of the
Broadbalk Continuous Wheat experiment following the pro-
cedure and input data given inJenkinson et al.(1992). In
all our simulations, incubation temperature was set to 20◦C,
soil moisture was assumed to be at an “optimal” level and
soil cover was set to “bare”. FollowingEllert and Bettany
(1988) andHess and Schmidt(1995), we used rates of miner-
alization rather than cumulative amounts during inverse mod-
elling to obtain realistic estimates of pool and parameter un-
certainty.

We simulated an incubation experiment of 1200 days.
From this data set, we selectedn = 80 different measure-
ments with equidistant intervals on a transformed time scale
t0.6. This approach ensures that more measurements are
available at the start of incubation when mineralization rates
typically show the steepest decline. To include the effect
of measurement error, simulated mineralization rates were
corrupted with a normally distributed (Gaussian) error. The
size of this random error was determined using a data set of
actual mineralization rate measurements conducted with an
automated respirometer. Figure2 plots the standard devia-
tion of the observed mineralization rates against their mean
value. We used a total of 8 different samples with 12 repli-
cate measurements on each sample. This was the maxi-
mum number of repetitions possible within a 24 h interval
using our respirometer setup. The scatter plot clearly illus-
trates the presence of heteroscedasticity: the measurement
error increases with increasing mineralization rate. To use
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Fig. 3. Time series of synthetic mineralization rate measurements
used in this study.(a) Model simulation and synthetic measure-
ments. The error bars indicate the 95% confidence intervals of the
synthetic observations, but are usually so small that they are hid-
den behind the data.(b) Residuals between model simulation and
synthetic measurements.

this information in our Bayesian analysis, we fitted a straight
line through the data with intercept of 0.00014 and slope of
0.019 g C kg−1 soil day−1. This error model was used to cal-
culate the measurement error for each observation of miner-
alization rate. We also used 12 realizations to generate the
synthetic data. From these realizations, the mean and stan-
dard deviation of each observation was calculated. The syn-
thetic data set is depicted in Fig.3a. The error bars, which
represent 95% confidence intervals of the synthetic observa-
tions, are hardly visible and mostly hidden behind the circles
that represent the mean values. The residuals between (true)
model simulation and generated measurements are shown in
Fig. 3b. Both the tight confidence intervals and the small
residuals illustrate the high precision of the synthetically gen-
erated mineralization rate data.

This synthetic data set was used in our subsequent anal-
yses. To investigate the information content of incubation
experiments for estimating the initial carbon pools, we var-
ied the duration of incubation from 25 to 1200 days. In the
remainder of this paper, we focus on incubation experiments
with length of 300, 600, and 900 days withn=34, 52, and 67
observations of mineralization rate, respectively. Consistent
conclusions were drawn for the other durations.
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2.3 Inverse modelling

To help describe the inverse method utilized herein, let us
denote the ROTHC model with the symbolM that simulates
n mineralization ratesR={R1,...,Rn} from the initial states
S, with measured forcing variableŝF , and model parameters
P :

R=M(S,F̂ ,P ) (3)

whereS is the subject of inference in the rest of this paper,
as it contains the sizes of the individual carbon pools at the
start of the ROTHC simulation. The forcing variablesF̂ in-
clude observed soil temperature and soil moisture, whereas
P consists of decomposition rate constants (k), rate modify-
ing factors (f ) and partitioning coefficients (p).

Inverse modelling is a general method for estimating some
of the arguments ofM by minimizing a predefined measure
of the residual vectorε={ε1,...,εn}. The residuals are de-
fined by the differences between simulated variablesR and
corresponding measurementsR̂={R̂1,...,R̂n}:

εi(S|F̂ ,P ,R̂i)=Ri(S|F̂ ,P )− R̂i i=1,...,n (4)

The closer the residuals are to zero, the better the model rep-
resents the observational data. However, because of errors in
observed forcing variableŝF , structural inadequacies in the
model (the model is not perfect), errors in the actual response
variable measurementŝR, and uncertainty in the model pa-
rametersP , the residuals are not expected to go to zero. Note
that our use of inverse modelling in this paper is rather differ-
ent than typical implementations of this methodology. Here,
we estimated the initial states whereas most inverse mod-
elling approaches focus on estimating the model parameters.

A common measure that is minimized during inverse mod-
elling is the weighted least squares objective function:

8(S|F̂ ,P ,R̂)=

n∑
i=1

(
εi(S|F̂ ,P ,R̂i)

2

σ 2
i

)
(5)

whereσ 2
i is the variance of theith measurement. For mod-

els that are nonlinear in their estimated arguments the mini-
mum of8(S|F̂ ,P ,R̂) cannot be found analytically. Various
optimization methods have therefore been developed during
the past decades to efficiently minimize Eq. (5) for multi-
dimensional search spaces. Unfortunately, most of these al-
gorithms only provide an estimate of the best values of the
estimated arguments. This would suffice in many practical
applications, yet it would also be desirable to have an esti-
mate of the uncertainty of the final optimized arguments. A
probability density function (pdf) will help assess the infor-
mation content of the measured variables and help generate
predictive distributions ofR.

Bayesian statistics provide a generic framework to esti-
mate uncertainty of state variables, parameters and model
predictions. In this approach, the estimated arguments are
treated as probabilistic variables having a joint posterior pdf,

p(S|F̂ ,P ,R̂). The posterior pdf summarizes what is known
about the estimands given the measurements and prior infor-
mation. If we assume that the measurement errors are in-
dependent and normally distributed with individual variance
σ 2

i , the posterior pdf takes the following form:

p(S|F̂ ,P ,R̂) ∝ p(S)

n∏
i=1

1√
2πσ 2

i

exp

(
−

εi(S|F̂ ,P ,R̂i)
2

2σ 2
i

)
(6)

wherep(S) signifies the prior pdf ofS. It summarizes the
information onS before any measurements are available.
In many applications of Bayesian statistics prior knowledge
about the estimands is typically vague. In that case a non-
informative (uniform) prior distribution is usually imposed.
The Bayesian framework of statistical inference and predic-
tion offers several important advantages over the classical
frequentist approach. A detailed description and overview
of both approaches can be found, for example, inReichert
and Omlin(1997) andOmlin and Reichert(1999).

Unfortunately, for most practical problems the posterior
pdf in Eq. (6) cannot be obtained by analytical means nor
by analytical approximation. We therefore resort to iterative
approximation methods such as Markov chain Monte Carlo
(MCMC) simulation to generate a sample from the poste-
rior pdf. The basis of the MCMC method is a Markov chain
that generates a random walk through the search space with
stable frequency stemming from a fixed probability distribu-
tion, p(S|F̂ ,P ,R̂). Here, we use the DiffeRential Evolution
Adaptive Metropolis (DREAM) algorithm that was recently
introduced byVrugt et al.(2008, 2009). The DREAM sam-
pling scheme is an efficient MCMC sampler that runs multi-
ple chains simultaneously for global exploration of the search
space and automatically adapts the scale and orientation of
the proposal distribution during the evolution to the poste-
rior distribution. This scheme is an adaptation of the Shuf-
fled Complex Evolution Metropolis algorithm (Vrugt et al.,
2003) and has the advantage of maintaining detailed balance
and ergodicity while showing good efficiencies on complex,
highly nonlinear and multi-modal target distributions (Vrugt
et al., 2009).

In all our calculations reported herein, we assumed that
soil temperature and soil moisture are constant and known
during the entire incubation experiment. In the first case,
we fixed all model parameters at their standard values (Ta-
ble 1) and inversely estimated the sizes of the active pools
(DPM, RPM, BIO and HUM) at the beginning of the incu-
bation experiment. We further assumed that no prior infor-
mation was available for any of these (Sect.3.1). The inert
pool (IOM) is by definition not decomposed, and hence, ob-
served mineralization rates do not contain any information
about the size of this particular carbon pool. Consequently,
its size cannot be estimated from measured mineralization
rates. The size of the IOM pool was therefore calculated from
the difference between total SOC measured at the beginning
of the experiment and the combined size of the other carbon
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pools. The amount of total initial SOC (28.6 g C kg−1 soil)
was assumed to be known. Our second case study investi-
gated whether prior information of microbial biomass carbon
at the beginning of incubation will reduce the uncertainty as-
sociated with the various carbon pools. We used this infor-
mation to formulate an informative prior for the BIO pool
(Sect.3.2). Finally, our third case study jointly estimated de-
composition rate constants and initial pool sizes to address
ROTHC model parameter uncertainty explicitly (Sect.3.3).
Our first two studies assume that the ROTHC model parame-
ters are perfectly known, whereas in reality these are subject
to considerable uncertainty. The findings from this last study
were used to make recommendations about the usefulness
of inverse modelling for determining the initial carbon pool
sizes in the ROTHC model.

2.4 Kullback-Leibler divergence

We used the Kullback-Leibler divergence (Kullback and
Leibler, 1951) to quantify the information content of the syn-
thetic time series of mineralization rates. Kullback-Leibler
divergence,DKL (dimensionless), is a non-symmetric mea-
sure of the dissimilarity between two probability distribu-
tions. In the Bayesian context of this study, it was used to
quantify the gain of information that results from moving
from the marginal prior distribution of theith state variable,
p(Si), to its posterior,p(Si |F̂ ,P ,R̂). For continuous vari-
ables Kullback-Leibler divergence can be defined as:

DKL

(
p(Si |F̂ ,P ,R̂),p(Si)

)
(7)

=

∫
p(Si |F̂ ,P ,R̂)ln

(
p(Si |F̂ ,P ,R̂)

p(Si)

)
dSi

where the integral is evaluated over the feasible space of the
state variableSi . We solved Eq. (7) using numerical integra-
tion.

2.5 Informative prior for microbial biomass carbon

In this study, we investigated whether an informative prior
for cBIO would improve the identifiability of this and possi-
bly other carbon pools. For that purpose, we assumed that
microbial biomass carbon was measured at the beginning
of the experiment using the fumigation-extraction method
(Vance et al., 1987). Jenkinson et al.(1992) demonstrated
that microbial biomass carbon measured using fumigation-
extraction is closely related to simulatedcBIO in the ROTHC
model. The basic principle of the fumigation-extraction
method is that soil microorganisms die after chloroform fu-
migation and part of the microbial constituents is degraded
by enzymatic autolysis and transformed into extractable
components (Joergensen, 1996). Microbial biomass carbon,
CBIO (g C kg−1 soil), is calculated as:

CBIO=
EC

KEC
(8)

where EC (g C kg−1 soil) is the organic carbon extracted
from fumigated soil minus that extracted from non-
fumigated soil andKEC (dimensionless) is the extractable
part of microbial biomass carbon after fumigation. Through-
out this paper we used the upper caseC to denote measurable
fractions and lower casec to denote the modelled pools. The
KEC value can be obtained from direct or indirect calibration
but most often a fixed value of 0.45 (Wu et al., 1990) is used.
As Joergensen(1996) pointed out, the measurement ofEC is
very precise (having a coefficient of variation<5%), but the
estimate ofCBIO is less certain because of variation ofKEC
between different soils.

To derive a probability density function ofCBIO that can
be used as an informative prior forcBIO, we used theKEC
values presented inJoergensen(1996) for arable soils. A
normal distribution with mean 0.42 and standard deviation
0.08 was shown to describe this data set well. This probabil-
ity distribution was then used in conjunction with Eq. (8) to
obtain the pdf ofCBIO. It is noteworthy that this pdf exhib-
ited significant skew to the left. That is, even if the measure-
ment ofEC and the mean ofKEC were unbiased, the mode
of the probability distribution ofCBIO did not exactly match
its true value. We did not impose a measurement error onEC
because its magnitude was considered negligible compared
to the uncertainty that stems from the natural variability of
KEC.

3 Results and discussion

3.1 Non-informative priors

Figure4 displays marginal probability density distributions
of the initial pool sizes using measured mineralization rates
from 300, 600 and 900 days of incubation. To quantify
the information content of the individual experiments, the
Kullback-Leibler divergence is reported for each experiment
and active carbon pool. Incubation experiments of 300 days
provided insufficient information to warrant the inverse esti-
mation of all carbon pools in the ROTHC model. OnlycDPM
andcRPM were well defined by calibration against measured
mineralization data. The other carbon pools could not be
constrained with posterior distributions extending over the
entire prior defined ranges. Incubation experiments of 600
and 900 days improved the identifiability of thecBIO, cHUM
andcIOM pools. The posterior pdfs of these pools became
increasingly well identified with increasing length of the in-
cubation experiment. Unfortunately, even after processing
all mineralization data some residual uncertainty remained in
the estimates of the initial carbon pools. Also, the estimates
of the carbon pools deviated somewhat from their actual val-
ues used to generate the synthetic mineralization data. This
is because of measurement error and the limited size of the
data set.
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Fig. 4. Marginal posterior distributions of initial carbon pool sizes in the ROTHC model:(a) 300 days of incubation,(b) 600 days of
incubation, and(c) 900 days of incubation. Only the sizes of the four active pools (cDPM, cRPM, cBIO andcHUM ) were estimated from
synthetic mineralization data. The size of the inert pool (cIOM ) was calculated by difference from total SOC. To illustrate differences in
information content of the data, we report the Kullback-Leibler divergence (DKL ) for each length of incubation.

The posterior pdf of the IOM pool closely followed that of
the HUM pool. This is not surprising since HUM makes up
the largest part of total SOC. Note that the IOM pool was not
estimated from the mineralization data but calculated from
the difference between total SOC and carbon stored in the
four active pools. Any uncertainty in the estimate ofcHUM is
therefore directly propagated into the estimate ofcIOM . This
finding highlights the need for an accurate estimate of the
HUM pool.

To better understand the previous results consider Table2
that reports the Pearson correlation coefficients of the poste-
rior samples using 900 days of incubation. In general, strong
correlation between individual carbon pools impairs their
identifiability because a change in one pool can be compen-
sated for by a change in another pool. A perfect (linear) cor-
relation was found betweencHUM andcIOM , which reflects
how IOM is calculated. Most active carbon pools exhib-
ited considerable correlation with Pearson coefficients up to
−0.94. The only carbon pool that was relatively uncorrelated
with the others wascDPM. This explains why this particu-
lar pool was best identified in all our synthetic experiments.
The correlation structure induced in the posterior samples is
determined by the pathways of carbon flow within ROTHC
(Fig. 1) and the kinetic properties of the various pools (Ta-
ble1).

In Fig.5a we plotted the evolution of the Kullback-Leibler
divergence with increasing length of incubation. Obviously,
there was only little improvement in the estimate ofcDPM

after about 200 days of incubation. At this time, DPM was
almost completely mineralized (with less than 1% of the ini-
tial amount remaining). On the contrary, the first 200 days
contained very little information aboutcHUM . Extending the
incubation experiment beyond 900 days only marginally re-
duced the uncertainty of the various carbon pools. This raises
the question when to stop an incubation experiment because
the gain from more experimental data would be marginal.
Whereas traditional inverse modeling endeavors start when
data collection has terminated, arguably there is significant
advantage of simultaneous data collection and inverse mod-
eling in this case. Such an approach continuously updates
the posterior distributions of the various carbon pools when
new mineralization data become available. A description of
such sequential MCMC methods can be found, for example,
in Del Moral et al.(2006). The Kullback-Leibler divergence
can be especially helpful in this context to judge when to stop
the incubation experiment.

3.2 Informative prior for the BIO pool

The results in the previous section have shown that relatively
long incubation times were required to appropriately con-
strain all carbon pools in the ROTHC model. Such long ex-
periments are not only impractical, but also downplay the
utility of inverse modelling for assessing SOC dynamics.
This limitation inspires thinking into alternative measure-
ments to improve the identifiability of the various carbon
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pools. Let us assume that microbial biomass carbon was
measured separately at the beginning of the incubation ex-
periment using the fumigation-extraction method. Let us also
assume that this measurement was relatively unbiased. Fig-
ure6 shows probability distributions of the individual carbon
pools when explicitly using prior information oncBIO in our
analysis with DREAM. Each of the three horizontal panels
again consider a different length of incubation. Compared
to the previous results with a non-informative prior forcBIO
(Fig. 4), the identifiability of the various carbon pools had
clearly improved. The various pools were better defined by
calibration against measured mineralization rates with poste-
rior pdfs that are considerably tighter around their true val-
ues used to generate the synthetic data. This is not surpris-
ing. Explicit prior information about microbial carbon re-
duces the acceptable range ofcBIO, which in turn reduces
the uncertainty of the other carbon pools due to their correla-
tion structure (Table2). It is interesting to observe that when
an informative prior forcBIO was used, measured mineral-

Table 2. Pearson correlation coefficients of the posterior samples
of the ROTHC pool sizes using a non-informative prior for the BIO
pool and 900 days of incubation. Only the sizes of the four active
pools (cDPM, cRPM, cBIO and cHUM ) were estimated from syn-
thetic mineralization data. The size of the inert pool (cIOM ) was
calculated by difference from total SOC.

cDPM cRPM cBIO cHUM cIOM

cDPM 1.00
cRPM 0.26 1.00
cBIO −0.41 −0.94 1.00
cHUM −0.15 −0.91 0.76 1.00
cIOM 0.14 0.89 −0.74 −1.00 1.00

ization data could not further reduce the uncertainty of this
pool. The posterior distribution was virtually identical to the
prior distribution for all lengths of incubation.

Figure 5b shows the corresponding evolution of the
Kullback-Leibler divergence criteria with increasing length
of the incubation experiment. This diagnostic measure
showed thatcRPM benefited the most from the use of an in-
formative prior forcBIO. This improvement was most pro-
nounced at shorter incubation times. Altogether, these results
demonstrate that an informative prior for the BIO pool im-
proved the identifiability of the various carbon pools, thereby
reducing the required length of incubation to about 600 days.

In many practical applications, however the measurement
of CBIO might be biased due to an erroneous estimate ofKCE,
the extractable part of microbial biomass carbon after fumi-
gation. Here we examined the effect of a biased prior of the
BIO pool on the inference of the ROTHC carbon pools. As
illustration, we assume that the true value ofKCE was over-
estimated by one standard deviation, which results in an un-
derestimation ofCBIO (see Eq.8). Figure7 shows the result-
ing marginal posterior probability distributions. Indeed, the
biased prior had a dominating effect on the posterior distri-
bution of the various pools. Its influence slightly decreased
with increasing length of incubation. This is the effect of the
increasing number of mineralization data points, and hence,
information becoming available. In general, underestima-
tion of cBIO resulted in an overestimation ofcRPM and an
underestimation ofcHUM . This is consistent with the corre-
lation structure between these various carbon pools as found
in the posterior samples. Notwithstanding, the estimates are
still reasonable, with their true values lying within the 95%
confidence intervals of the respective posterior distributions.
Similar results were obtained when the prior of the BIO pool
overestimated the actual value ofcBIO (not shown).

It is important to realize that the use of an informative prior
of the BIO pool does not simply fix the value of initialcBIO
to measured microbial biomass carbon. The use of an infor-
mative prior is advantageous for two reasons. First, the infor-
mative prior appropriately treats the uncertainty in measured
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Fig. 6. Marginal posterior distributions of initial carbon pool sizes in the ROTHC model using an unbiased informative prior for the BIO
pool: (a) 300 days of incubation,(b) 600 days of incubation, and(c) 900 days of incubation. Only the sizes of the four active pools (cDPM,
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Fig. 7. Marginal posterior distributions of initial carbon pool sizes in the ROTHC model using a biased informative prior for the BIO pool:
(a) 300 days of incubation,(b) 600 days of incubation, and(c) 900 days of incubation. Only the sizes of the four active pools (cDPM, cRPM,
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CBIO, which is then propagated into the posterior pdfs of the
remaining carbon pools. This preserves the correlation struc-
ture of the carbon pools and should therefore result in more
realistic estimates of uncertainty. Second, if theCBIO mea-
surement is biased, the additional information contained in
the time series of mineralization data may partially correct
for this bias. In the present study, however, this mitigating
effect was relatively weak. To ensure that the measurement
of CBIO is unbiased, we therefore recommend using direct
calibration methods such as in situ labelling of microorgan-
isms (Bremer and van Kessel, 1990; Dictor et al., 1998). This
is important because the bias in the prior ofcBIO was not fully
compensated for by the information contained in the time se-
ries of observed mineralization rates. To further improve our
results, replicate in situ labelling measurements can be used
to calculate the standard deviation of the sample distribution
of KCE (Dictor et al., 1998). This information can be used to
formulate an informative prior ofcBIO that is – based on the
data given inDictor et al.(1998) – more accurate than the
prior we used in the present study. Future work should also
focus on evaluating ROTHC against a time series of observed
microbial biomass carbon. This will help establish whether
ROTHC can describe the decline in microbial biomass that
is commonly observed during long-term incubation experi-
ments (e.g.Nicolardot et al., 1994; Follett et al., 2007).

One possible way forward to reduce uncertainty in the ini-
tial states of the various carbon pools would be to make use of
explicit prior information about the SOC light fraction. This
respective fraction (also termed particulate organic carbon) is
conceptually equivalent to the sum ofcDPM andcRPM in the
ROTHC model.Zimmermann et al.(2007) used density frac-
tionation to isolate particulate organic carbon (<1.8 g cm3)
and found good agreement between their measurements and
modelledcDPM + cRPM. Shirato and Yokozawa(2006) pro-
posed to use acid hydrolysis to partition plant material into
the decomposable and resistant pools considered in ROTHC.
The combination of both methods seems particularly promis-
ing to derive informative priors for these two different pools.
Our previous results suggest that prior information oncRPM
could greatly improve the estimate ofcHUM (and conse-
quentlycIOM). This would further reduce the required length
of incubation. Moreover, we think that the Bayesian ap-
proach utilized herein could prove useful to independently
test the proposed fractionation methods in a reliable and
comparatively quick manner.

3.3 Informative prior of the BIO pool and model
parameter uncertainty

In the previous two sections, we focused on estimating the
uncertainty in the initial carbon pool sizes of the ROTHC
model using measurements of mineralization rate data col-
lected during incubation experiments. This approach, how-
ever, neglects uncertainty in the model parameters. In this
section, we explore how uncertainty in the model parameters

affects the final posterior distributions of the various carbon
pools. To this end, we considered the decomposition rate
constants to be unknown and added these parameters to our
inverse estimation with DREAM. We used informative priors
for all decomposition rate constants,k, and jointly estimated
these model parameters and the various carbon pools,c. The
priors of the decomposition rate constants followed a normal
distribution with mean corresponding to the standard values
of k used in ROTHC and standard deviation equal to a co-
efficient of variation of 25%. These informative priors thus
reflected our belief that the true values of the decomposition
rate constants remain in close vicinity of their standard val-
ues used in ROTHC. The bounds of the feasible parameter
space were set to± three times the standard deviation of the
prior pdfs (Table1).

Figure8 shows the corresponding marginal posterior pdfs
of initial pool sizes, again using an (unbiased) informative
prior for the BIO pool. Obviously, the uncertainty in thek
estimates has propagated into that ofc. The estimates of
initial pool sizes now showed substantial more uncertainty
compared to the case where model parameter uncertainty was
ignored (Fig.6). This is especially true forcHUM (and conse-
quentlycIOM). Even after 900 days of incubation the identi-
fiability of these two pools was rather poor. Also, the uncer-
tainty of the RPM pool had clearly increased, now requiring
at least 600 days of incubation to reasonably constrain this
pool. The posterior ofcBIO closely followed its prior distri-
bution, demonstrating that measured mineralization rates did
not contain any additional information about this pool. The
DPM pool required only 300 days of incubation to be well
defined. The evolution of the Kullback-Leibler divergence
for the different initial pool sizes is depicted in Fig.5c.

The marginal posterior pdfs of decomposition rate con-
stants are shown in Fig.9. The posterior pdfs ofkBIO and
kHUM closely followed their prior distributions, indicating
that observed mineralization rates contained very little ad-
ditional information to further constrain the rate constants of
these two pools. The posterior distribution ofkRPM was bet-
ter constrained but time evolution of its pdf showed inconsis-
tent behaviour, underestimating the true decomposition rate
after 300 days of incubation. Most likely, this was due to the
particular realization of the measurement error in this early
phase of incubation. The pdf ofkDPM was the only marginal
distribution that showed a distinct reduction in uncertainty
after processing the mineralization rate data with DREAM.
This was true even when using only the first 300 days of in-
cubation.

Note that our approach of estimating decomposition rate
constants,k, is equivalent to estimating actual decomposi-
tion rates,k∗. This is because of the multiplicative formula-
tion used in Eq. (2). This approach implicitly accounts for
the uncertainty in the rate modifiers. We could also explic-
itly account for this model parameter uncertainty, but this re-
quires that soil samples are exposed to varying temperature
and moisture regimes during incubation. This would further
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increase the uncertainty of the estimates of the initial carbon
pool sizes. Treating the partitioning coefficients,p, as addi-
tional variables would have a similar effect.

Another point that deserves special consideration is model
structural uncertainty. Inherent to the inverse approach is the
assumption that the model is a valid description of reality.
This was certainly true for our synthetic case study because
we used the same model to generate the data and to infer the
pool sizes. We should have in mind, however, that “environ-
mental models are inherently imperfect because they abstract
and simplify real patterns and processes that are themselves
imperfectly known and understood” (Brown and Heuvelink,
2005). These imperfections will likely be revealed in sys-
tematic deviations between observed and simulated mineral-
ization rates. In real practice, we may therefore expect that
model structural uncertainty will play a significant role and
further increase the uncertainty in the carbon pool size es-
timates. Our results demonstrate that – even with a perfect
model – the estimation ofcHUM (and consequentlycIOM) is
particularly difficult, when model parameter uncertainty is
explicitly accounted for.

Our results comply with related studies in which MCMC
methods were used to constrain parameters and initial condi-
tions in terrestrial ecosystem models. For instance,Xu et al.
(2006) determined posterior distributions of transfer coeffi-
cients from observations of biomass growth, litterfall, car-
bon content of the litter layer and mineral soil, and soil res-
piration. Only transfer coefficients linked to fast processes
were warranted by calibration against the experimental data.
Contrary to our study, the initial state of the system was as-
sumed to be known.Fox et al.(2009) used real and syn-
thetically generated time series of net ecosystem exchange
of CO2 and leaf area index to simultaneously estimate model
parameters and initial states, but without recourse to estimat-
ing the SOM pool. Also in this work, the parameters de-
scribing fast processes were best identified. Moreover, the
turnover rate of SOM was well constrained by available data.
Fox et al.(2009) attributed this, among others, to the known
initial state of the SOM pool. Both studies clearly illustrated
an inability of current measurement technologies and data
sources to appropriately constrain all important model pa-
rameters and states of the system under study.

4 Summary and conclusions

Results presented in this paper illustrate that, in principle,
all carbon pools considered in the ROTHC model can be es-
timated from mineralization rates observed during incuba-
tion experiments. Yet, about 900 days of incubation were
required to appropriately constrain all pools, especially those
with intermediate and slow turnover. Such long experiments
are required because of significant correlation between the
various carbon pools. The use of prior information on mi-
crobial biomass substantially reduced the uncertainty in the

pool size estimates. This in turn reduced the required in-
cubation time to about 600 days. Care must be taken, how-
ever, that the measurement of microbial biomass carbon is
unbiased because measured mineralization rates did not con-
tain sufficient information to fully compensate for this error.
This led to bias in the estimates of all pool sizes. When part
of model parameter uncertainty was explicitly accounted for,
the uncertainty in all initial carbon pool estimates increased
considerably. This effect was most pronounced for the inter-
mediate and slow pools. Altogether, our results demonstrate
that measured mineralization rates do not warrant the identi-
fication of the HUM and IOM pools, especially in the face of
model parameter uncertainty. Inverse estimation of the ini-
tial states of these two carbon pools might therefore not be
feasible in real practice. Other data sources or measurement
techniques are required to appropriately constrain the various
carbon pools of the ROTHC model.
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