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Abstract. Soil carbon sequestration is a complex processl Introduction
influenced by agricultural practices, climate and soil con-

ditions. This paper reports a study of long-term fertiliza- 5oj| organic carbon (SOC) is an important index of soil fer-
tion impacts on soil organic carbon (SOC) dynamic from tjlity hecause of its relationship to crop productivity (Vinther
six long-term experiments. The experiment sites are locateg al., 2004; Pan et al., 2009). For instance, declining SOC
from warm-temperate zone with a double-cropping systemeyels often leads to decreased crop productivity (Dominy et
of corn Zea mayd..) — wheat {Iriticum AestiviuL.) rota- g 2002; Lal, 2006). Thus, maintaining SOC level is essen-
tion, to mild-temperate zones with mono-cropping systemsiia| for agricultural sustainability. The concept of sustainable
of continuous com, or a three-year rotation of corn-wheat-agricultural production emphasizes the importance of SOC
wheat. Mineral fertilizer applications result in an increasing management for food security and environment protection
trend in SOC except in the arid and semi-arid areas with thQBuyanovsky and Wagner, 1998; Pan et al., 2009). Because
mono-cropping systems. Additional manure application iSof the potential of agro-ecosystems to absorb a large amount
important to maintain SOC level in the arid and semi-arid ar- of atmospheric carbon dioxide through soil carbon sequestra-
eas. Carbon conversion rate is significant lower in the warm+jon sOC management is recognized as a “win-win strategy”
temperate zone with double cropping system (6.8%—7.7%)smith et al., 1999; Lal, 2002), and has been put forward as
than that in the mild-temperate areas with mono-croppingpne of the mitigating options for global climate change (Post
systems (15.8%-31.0%). The conversion rate is significantlyet 5. 2004). Particularly, it is estimated that, in China, the
correlated with annual precipitation and active accumulativepotentia| of soil carbon sequestration may offset more than
temperature, i.e., higher conversion rate under lower precip1go, of the annual fossil fuel emissions (Lal, 2004).

itation and/or temperature conditions. Moreover, soil highin o . . o0 0o cteation is a complex process that is in-
clay content has higher conversion rate than soils low in Clayflu q e p

. ) enced by many factors, such as agricultural practice, and
content. Soil carbon sequesitration rate ranges from 0.07 t(():Iimatic and soil conditions. A number of studies indicate
1.461thalyear!in the upland of northern China. There is '

S X . . that SOC levels increase under practices of balanced fertil-
significantly linear correlation between soil carbon seques-

: : . S ization, organic amendments, cropping rotations, conserva-
tration and carbon input at most sites, indicating that these[ive tillage%e.g. no-till), and reducggfa?low (Su et al., 2006;

soils are not carbon-saturated thus have potential to migrat%hattacharyya et al., 2007: Purakayastha et al., 2008; Gong
more CQ from atmosphere. et al., 2009; Tong et al., 2009). Particularly, there is ev-
idence of improved soil fertility and increased carbon se-
guestration in Chinese croplands due to extensive applica-
tions of balanced fertilization over the past 20 years, espe-

Correspondence ta¥l. G. Xu cially with additional organic materials and/or incorporation
BY (mgxu@caas.ac.cn) of crop residue (Huang and Sun, 2006).
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Fig. 1. Locations of the long-term experiment sites. GZL: Gongzhuling; UC: Urumgi, ZY: Zhangye; CP: Changping; XZ: Xuzhou; ZZ:
Zhengzhou.

While carbon input may be one of the means to increasehe total SOC pool of arable soils in the world (Schlesinger,
SOC content in agro-ecosystems, relationships between SOC999). The long history of agricultural cultivation particu-
level and carbon input are complicated. On the one hand, #arly on arable land of China has not only supported Chi-
few studies demonstrate that SOC level shows a linear innese food productivity, but also greatly influenced soil car-
crease in response to carbon input (Kundu et al., 2001, 200/hon sequestration. For instance, it is estimated that arable
Kong et al., 2005; Campbell et al., 2007). On the other hand)and in China has sequestered about 472 Tg SOC during the
some studies (Six et al., 2002; Gulde et al., 2008; Stewart elast 20 years, but meantime there have been 20 Tg SOC lost
al., 2009) show that the SOC content does not increase mucim the Heilongjiang Province in northeastern China (Xie et
even after a large amount of organic material is incorporatedil., 2007).
into the soil, suggesting that these soils may be saturated with There have been numerous studies addressing SOC dy-
organic carbon. namics in Chinese agricultural ecosystems located at differ-

The complex relationship between SOC and carbon inpuent climate areas (e.g., Yang et al., 2003; Fan et al., 2005; Cai
may be related to climatic conditions and soil properties. Cli-and Qin, 2006; Su et al., 2006; Gong et al., 2009). However,
matic conditions, especially temperature and precipitationthere is little systematic analysis of climate effects on SOC
may be responsible for the spatial variations in soil carbonvariations under long-term fertilization. Moreover, litter in-
sequestration (Paustian et al., 1998; Freibauer et al., 2004jormation is available for multi-site comparisons of SOC dy-
Favorite temperature and soil moisture can cause high rateamics with different cropping systems and under various
of SOC decomposition thus low rate of SOC accumulationsoil conditions. The objective of this study is to conduct a
(Katterer et al., 1998; Reichstein et al., 2002). Soil texturemulti-site analysis to (i) assess the impacts of long-term fer-
or clay content may also affect SOC accumulation and setilization practices on SOC dynamics in northern China, and
questration rate (McLauchlan, 2006). For instance, there igii) examine the relationship between soil carbon sequestra-
evidence of positive relationship between soil silt plus clay tion and carbon input under various climatic and soils condi-
content and SOC sequestration (Gami et al., 2009). In situions.
and laboratory studies also show that SOC decomposition
rate decreases with increasing clay content (Hassink, 1997;

Kong et al., 2009). 2 Materials and methods

Currently, China has approximately 137.5 million hectares
of arable land with various climatic conditions (NSSO, 2.1 Site descriptions
1998), from tropical zone in the south to frigid-temperate
zone in the north. These arable soils contain approximatelyT his study includes six long-term experiment sites in arable
13PgSOC (Xie et al., 2007), accounting for 7%-12% ofland of the northern China (Fig. 1), with arid mild-
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Table 1. Climatic conditions and cropping system at the long-term experiment sites.

Sites Climat Altitude AMT®? Annual® AnnualE9  Cropping
(m) (°C) (mm) (mm) systen§

Gongzhuling  MT, SH 220 4.5 525 1400 MC-CCC
Urumaqi MT, SA 600 7.7 310 2570 MC-CWW
Zhangye MT, A 1511 7.0 127 2345 MC-CWW
Changping WT, SH 20 11 600 2301 DC-CW
Zhengzhou WT, SH 59 14.3 632 1450 DC-CW
Xuzhou WT, H 20 145 832 2200 DC-CW

& MT, mild-temperate; WT, warm-temperate; A, arid; SA, semi-arid; SH: semi-humid; H, humid

b AMT: annual mean temperature.

€ P: precipitation.

dE: evaporation.

€ MC: mono-cropping; DC: double-cropping; CCC: corn-corn-corn; CWW: corn-wheat-wheat; CW: corn-wheat.

Table 2. Initial soil physical and chemical properties at the long-term experiment sites.

Sites Gongzhuling  Urumgqi Zhangye Changping  Zhengzhou  Xuzhou

China soil Black soil Grey Irrigated Brown Fluvo-aquic  Yellow

classification desert soil  desert soil fluvo-aquic  soll fluvo-aquic

soll soll

FAO soil classification Luvic Haplic Anthrosol  Haplic Calcaric Calcaric
Phaeozems Calcisol Luvisol Cambisol Cambisol

Soil organic carbon 13.0 8.8 115 7.1 6.7 6.5

(9kg™)

Total N (gkg1) 1.42 0.91 0.86 0.80 0.67 0.66

C/N ratio 9.2 104 13.4 8.9 10.0 9.8

Total P (gkg ™) 1.53 0.67 0.82 1.60 0.64 0.74

Total K (gkg™1) 24.6 23.0 nd 17.3 16.9 22.7

Available N (mgkg™1) 131.5 55.2 28.1 49.7 51.3 nd

Olsen-P (mgkg?l) 23.3 3.4 21.7 12.0 6.5 12.0

Available K (mgkg 1) 160 288 99 88 74 63

pH 7.2 8.1 nd 8.7 8.3 8.2

Clay content £0.002 mm) (%) 32.1 20.9 nd 10.2 134 6.0

Bulk density (g cn3) 1.19 1.25 1.20 1.58 1.24 1.25

nd: no data.

temperate to humid warm-temperate climate conditions (Tature over 10C during the whole year, ranged from 31D

ble 1). Annual average temperature varied from°€&mt  to 4590°C (data from China meteorological sharing service
the Gongzhuling site to 14°%% at the Xuzhou site. An- systemhttp://cdc.cma.gov.ci/

nual precipitation was generally low, ranging from 127 mm  Soils at the Changping, Zhengzhou, and Xuzhou sites,
at the Zhangye site in the arid area to 832 mm at the Xuzhothad the same soil parents (i.e., loess), which had been used
site in humid area. However, annual evaporation was muchor agriculture for a long time before the experiments. For
higher relative to precipitation, varying from 1400 mm to the Urumgi and Zhangye sites (in the arid and semi-arid ar-
2570 mm. The highest evaporation was found at the Urumqgieas), soils were cultivated with irrigation for a few years be-
site, whereas the highest annual precipitation was at thdore the experiments. Soil classifications by the FAO (FAO-
Xuzhou site. In general, 50%-70% of the annual precipi-UNESCO, 1988) and Chinese system, and basic site descrip
tation occurred in the non-growing season. Thus, irrigationtions are presented in Table 2.

was usually applied during the growing season, especially at The initial SOC content was considerably higher at the
the two dry sites (i.e., Urumgi and Zhangye). The annual ac-Gongzhuling, Urumgqi, and Zhangye sites with the mono-
tive accumulative temperature, the sum of the daily temperaeropping systems than the other three sites with the double-
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Table 3. Experiment design for the long-term experiments.

Sites/treatment  Gongzhuling Urumgi Zhangye Changping Zhengzhou Xuzhou

Plot size (") 400 468 33.3 200 400 33.3
Replicates 1 1 3 1 1 4
Control + + + + + +

N + + + + + +

NP + + + + + +
NPK + + + + + +
NPM — - + - — +
NPKM + + + + + +
hNPKM + + - + + -
NPKS + + — + + -

+: the treatment is included;: the treatment is not included.

cropping systems. The initial total and available soil nutri- dried at 70°C to a uniform moisture level, and then weighted
ents and clay content at the Gongzhuling site were the highseparately.

est, suggesting that soil fertility at this site was relatively

higher than other sites. While the C/N ratio was around 102.3 Fertilization treatments

for most sites, the Zhangye site had a value of 13.4, suggest-

ing that soil organic matter might be difficult to decompose There were five common treatments at all sites: non-

at this site. Soil pH had a range of 7.2-8.7. fertilization (control), mineral nitrogen (N), mineral nitro-
gen and phosphorus combination (NP), mineral nitrogen,
2.2 Cropping practices phosphorus and potassium combination (NPK), and NPK

combinations with livestock or farmyard manure (NPKM)

The long-term experiment had a mono-cropping system atTable 3). For the Gongzhuling, Urumgi, Changping, and
the Gongzhuling, Urumgi, and Zhangye sites, and a doubleZhengzhou sites, there were two additional fertilization treat-
cropping system at the Changping, Zhengzhou, and Xuzhounents: higher application rate of NPKM (hNPKM), and min-
sites (Table 1). The main crops were codeé maysd..) eral NPK combined with crop residue (NPKS). There was
and wheat Triticum AestiviumL.). The double cropping an additional treatment at the Zhangye and Xuzhou sites:
system had a rotation of summer corn (seeded in late Aprimineral NP combined with manure (NPM). The Gongzhul-
to early May) and winter wheat (seeded in October). Theing, Urumgi, Zhengzhou, and Changping sites had large ex-
mono-cropping systems had a continuous corn cropping aperiment plots (200—468%#1 without replicate, whereas the
the Gongzhuling site, but a rotation of corn-wheat-wheatZhangye and Xuzhou sites had small plots (33%p mith
(i.e., corn cropping for one year and wheat cropping for3 and 4 replicates. These plots were isolated by 100-cm-
next two years) at the Zhangye and Urumgji sites. Corn wasement baffle plates.
seeded during late April to early May for the mono-cropping  The mineral nitrogen, phosphorus and potassium fertiliz-
system. Wheat was seeded in March (spring wheat) at thers were urea, calcium superphosphate, and potassium chlo-
Zhangye site. For the Urumgi site, spring wheat was seede@de, respectively. At the Gongzhuling, Urumgi, and Chang-
in mid-April and winter wheat in late September in the same ping sites, the total nitrogen applied (i.e., mineral plus or-
year. Prior to the experiment, the field had been under thgjanic) was equal (i.e., nitrogen balanced) for the N, NP,
same rotation for 2-3 years at each site. NPK, and NPKM treatments (Table 4). The Zhangye and

The seeding rate for wheat (spring and winter wheat)Xuzhou sites had the same application rates of mineral ni-
ranged from 300-390 kg h& for the Urumgi and Zhangy trogen for all the treatments thus the total nitrogen applied
sites, 165-225kg hd for the Changping, Zhengzhou and in the NPKM treatment was higher than the other treatments
Xuzhou sites. The seeding space for corn was approximatelythus these sites were nitrogen unbalanced). For the NPKM
65cm by 30cm at all sites. The number of corn seedlingtreatment at the nitrogen balanced sites, 30% of total nitrogen
was about 63 000-75 000 per hectare. Seeds were planted lyas mineral, and the rest organic (Table 5). The application
seeding-machine to 3-5 cm below the soil surface. rates of mineral and organic fertilizers for the hNPKM treat-

Wheat straw and corn stover were cut to ground after thanent were 1.5 times of those for the NPKM treatments at
grain harvest. Thus, only roots and litters were left in thethe Gongzhuling, Changping, and Zhengzhou sites. For the
soil. All above-ground materials were removed from the Urumqi site, the rates of mineral (organic) fertilizers were
fields. Crop grain and residue were air-dried, threshed, oventwo-third (2 times) of those for the NPKM. The source of

Biogeosciences, 7, 40925 2010 www.biogeosciences.net/7/409/2010/
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Table 4. Application rates (kg Hal) of mineral nitrogen for each growing season under various fertilization treatments.

Sites Periods Crops N/NP/NPK  NPM/NPKM hNPKM NPKS
Gongzhuling  1990-2005 Corn 165 50 74 165
Urumgi 1990-1994 Corn/wheat 99 30 60 89
1995-1998 Corn/wheat 242 85 152 217
1999 Cotton 242 85 152 217
2000-2005 Corn/wheat 242 85 152 217
Zhangye 1982-1990 Corn 240 240 - -
Wheat 120 120 - -
1991-2002 Corn 300 300 - -
Wheat 150 150 - -
2000 Corn 450 450 - -
2003 Corn 360 360 - -
Changping 1990-2005 Corn 150 50 225 150
Wheat 150 50 225 150
Zhengzhou 1990-2005 Corn 188 188 282 188
Wheat 165 49.5 74.2 49.5
Xuzhou 1981-2001 Corn 150 150 - -
Wheat 150 150 - -

413

Table 5. Manure properties and annual carbon input due to application of manure/straw for relevant fertilization treatments.

Sites Period Crops Manure properties Carbon input{tha
Sourcet Carbon (gkg) CIN ratio NPM NPKM hNPKM NPKS
Gongzhuling 1990-2005 Corn HM 36.0 20 - 3.86 5.79 0.93
Urumgi 1990-2005 Corn/wheat/cotton GM 33.6 17 - 2.82 5.64 1.47
Zhangye 1982-1990, Corn/wheat FYM-soil 135 11 0.55 055 - -
2002-2003
1991-2001  Corn/wheat FYM- soil 13.5 11 0.68 0.68 - -
Changping 1990-2005 Corn - - - - 0 0 0
Wheat FYM-S 17.4 20 - 3.15 4.72 1.00
Zhengzhou 1990-2005 Corn - - - - 0 0 0
wheat HM 36.0 20 - 4.89 7.33 1.32
Xuzhou 1981-1984  Corn HM 36.0 20 480 4.80 - -
Wheat HM 36.0 20 480 4.80 - -
1985-2001 Corn CM 36.8 23 240 240 - -
Wheat CM 36.8 23 240 240 - -

T HM: horse manure; GM: goat manure; CM: cow manure; FYM-soil: farmyard manure mixed with soil;
FYM-S: farmyard manure mixed with crop residue.

organic manure includes farmyard manure and pure manure The annual application rate of nitrogen was 195-
from household livestock such as horse, goat, and cattle (Ta242kgha® for the mono-cropping systems and 300-
ble 5). At the Zhangye and Changping sites, farmyard ma-353 kg ha' for the double-cropping system (Table 4). One-
nure was mixed with soil and/or crop residue. Manure wasthird of nitrogen fertilizer was applied as base fertilizer be-
applied before seeding once a year for all sites. For the doufore seeding and the rest as topdressing at the jointing stage
ble cropping system, manure was applied before wheat seed@t the Gongzhuling site. For the Urumgqi, Changping and
ing. For the NPKS treatment, crop straw was incorporated inZzhengzhou sites, 60% of nitrogen fertilizer was applied as
situ annually. The entire yield of corn or wheat straw was in- base fertilizer before seeding and 40% as topdressing at the
corporated at the Urumgi and Gongzhuling sites. All of the jointing stage. At the Xuzhou sites, 50% of nitrogen fer-
amount of corn straw yield under the NPKS treatment wastilizer was applied as base fertilizer and the other 50% as
incorporated at the Zhengzhou site, while corn straw was intopdressing for wheat and corn. This application rate was
corporated at a rate of 2.25 thhfor the Changping site. also used for wheat at the Zhangye site. However, for corn,

www.biogeosciences.net/7/409/2010/ Biogeosciences, 742892010
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approximately 30% of the nitrogen fertilizer was applied be-  Trend in SOC content( g kg~ yr—1) was determined by
fore seeding, 30% for the jointing/elongation, and 40% for a linear change over the duration of experiment. Soil carbon
the 10- to 12-leaf (pretasseling) stages of corn at the Zhangysequestration rate (e tha yr—1) was estimated for the
site, respectively. The application rate of phosphorus fertil-top 20 cm:
izer was 30% of that for nitrogen fertilizer at the Urumgqi 4 xBD xd
site, and 20% of that at the other sites. The application rateCyae=
of potassium fertilizer was 20% of that for nitrogen fertilizer 10
at the Changping and Urumgi sites, 40% for the Gongzhul-where BD (g cn1®) is the initial value of the soil bulk den-
ing, Zhengzhou and Zhangye sites, and 60% of that at theity, andd the soil depth (20 cm). The conversion rate of car-
Xuzhou site. All the phosphorus and potassium fertilizersbon input to SOC was the slope of linear regresiion between
were applied as base fertilizers before seeding at each site. annual SOC sequestered and carbon input (Kong et al., 2005;
Kundu et al., 2007)

@)

2.4 Soil sample analyses o
2.6 Statistical analyses

Soil samples were C_O”eCteG! from the topsoil (0-20 cm) eachrpe ANOVA and least-signifcant-differenc (LSD) methods
year after harvest (i.e., during September—October). Therg . o applied to compare above-ground carbon biomass and

were 5-10 (20-40) cores in 5-cm-diam, randomly sampledsc contents among various fertilization treatments for the
for each plot with (without) replicates. The soil samples of ;. five.year period (i.e., from the 11th to 15th year of fer-
these cores were mixed thoroughly, and air dried for Sevenjjization) in SPSS 11.5.

days. Air-dried soil was sieved through 2 mm screen to de-

termine pH (1:1 w/v water) and other soil properties. Repre-

sentative sub-samples were crashed to 0.25 mm for measur8- Results

ments of SOC, total nitrogen (TN), total phosphorus (TP),

and total potassium (TK). 3.1 Above-ground carbon biomass and carbon input
Soil organic carbon content was determined by vitriol

acid-potassium dichromate oxidation (Walkley and Black,

1934). Total nitrogen was determined by the method de

scribed by Black (1965), TP by Murphy and Riley (1962),

and TK by Kundsen et al. (1982). Available nitrogen

was measured following the method of Lu (2000). Avail-

able phosphorus (Olsen-P) was determined by the Olsen

Figure 2 shows annual changes in the above-ground carbon
biomass under various fertilizations. Clearly, the control has
the lowest carbon biomass-4tC hal) with a decreasing
trend at all sites. Most fertilization treatments show a pro-
nounced increase-60%) in carbon biomass during the 15—
_83 years of experiment. The exception is that the N treat-

method (Olsen et al., 1954), and available potassium by Soif tt?gtcﬂgf] "efg':'to't‘;eeféehcéi Ori‘nthzncj‘r;ﬁgnbfhrgﬁs;'tesshos"r‘]’;gﬁ
Science Society of China (Soil Science Society of China,. 9 gping g ’

) . .__'increases at the Urumgi and Zhangye sites and moderate in-
2000). Three replicates were carried out for each analysis. . .
creases at the Gongzhuling and Xuzhou sites. Overall, the

NPKM and/or hNPKM treatments lead to the highest car-
- ‘ bon biomass. There are large inter-annual fluctuations with
tion and conversion rate extremely low carbon biomass-¢tC ha 1) for some years
at the Zhangye site with a desert soil, where crop produc-
Carbon input into topsoil included organic materials from the tion is more sensitively to precipitation. Interestingly, the
root system, and addition of organic manure or crop residueuzhou site has the highest carbon biomas$ZtC ha'l)

return. The annual rates of carbon input by roots in cornduring the initial few years of fertilization despite of the low-
and wheat were estimated as 30% of the above-ground caest initial SOC and total N contents. Mineral fertilizer and

bon biomass (Chander et al., 1997; Kuzyahov and Domenskimanure combinations result in more than 100% increase in
2000; Kundu et al., 2007). carbon biomass at the Xuzhou site. However, there is a clear
For the Zhangye and Xuzhou sites where only grain yielddecreasing trend under the control and mineral applications
data were available, above-ground biomass were estimateduring the last ten years.
using a grain to straw ratio of 1:1.1 for wheat and 1:1.2 for There is evidence that N application can increase grain
corn (NCATS, 1994). For all the treatments, organic car-yields and biomass (He et al., 2006). In this study, the N ap-
bon contents were taken as national averaged values, i.eplication shows a significant effect on carbon biomass during
39.9gkg?! and 44.4gkg? (at oven-dried base) for wheat the third five-year period (i.e., from the 11th to 15th years of
and corn, respectively (NCATS, 1994). For the NPKS treat-fertilization in Fig. 2) at the Gongzhuling and Xuzhou sites
ment, organic carbon contents in corn and wheat straw incor{Table 6). All other fertilization treatments significantly in-
porated in situ were taken as 12.4 and 27.8gket fresh  crease carbon biomass except on the grey desert soil (e.g.,
base), respectively. the Urumgi site under the highest annual evaporation) where

2.5 Estimations of carbon input, soil carbon sequestra-

Biogeosciences, 7, 40925 2010 www.biogeosciences.net/7/409/2010/
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Fig. 2. Annual total above-ground carbon biomass under various long-term fertilizaM@ontrol,D N, O NP, A NPK, [ | NPM, %
NPKM, A hNPKM, @ NPKS.

only the hNPKM treatment results in a significant increase ofments except for the Xuzhou site, indicating that manure ap-
biomass. In general, carbon biomass in the double-croppinglication has no significant effect on the above-ground car-
system is approximately two times of those in the mono-bon biomass at most sites.

cropping systems except for the Gongzhuling site where soll . -
has the highest values of initial SOC, total and available N, The averaged annual total carbon input shows a significant

P and K. There are no significant differences in the carbor]'¢€a5¢€ under the N treatment except for the Changping site

biomass among the NPK, NPKM, hNPKM, and NPKS treat- (Fig. 3). The amount of carbon input under the control and
N application ranges from 0.81 to 2.18 tHeat all sites. The

www.biogeosciences.net/7/409/2010/ Biogeosciences, 742892010
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2r OControl @N ®BNP BNPK ®BNPM ®BNPKM ®&hNPKM @NPKS

Annual Carbon input (t ha™®)

Gongzhuling Urumgi Zhangye Changping Zhengzhou Xuzhou

Fig. 3. Annual carbon input£S.E.) averaged over the entire experiment periods under various fertilizations.

Table 6. Above-ground carbon biomass (ths averaged for the third five-year period (i.e., from the 11th to 15th years) of fertilization.

Treatments Gongzhuling Urumgi Zhangye Changping Zhengzhou Xuzhou

Control 2.86 a 2.17 a 1.73a 3.24a 473 a 4.12a
N 6.88 b 3.96ab 2.96ab 3.48 a 4.62 a 5.89b
NP 7.90b 5.58ab 5.32bc 7.84b 10.45b 9.34c
NPK 8.40Db 5.77ab 5.85c 9.68 c 11.32 bc 11.02d
NPM - - 6.10c - - 12.17 e
NPKM 9.04 b 596ab 6.35c 10.83 ¢ 10.86 bc 12.59e
hNPKM 9.58b 6.56 b - 11.18 ¢ 11.74 c -

NPKS 9.24b 5.72ab - 9.81c 11.56 bc -

Values followed by the same letter in one column indicate that there is no significant diffeper@@%).

annual rates of carbon input for the NP and NPK treatmentdNPM, NPKM, hNPKM treatments), showing an increasing
are significantly higher than that of the N treatment. Theretrend. Particularly, the Xuzhou site, with the highest carbon
is no significant difference in annual carbon input betweenbiomass 12thal), shows a pronounced increase under
the NP and NPK treatments except for the Xuzhou site. Obthe manure applications over the first ten years, and main-
viously, with the additional carbon from manure and/or croptains at a high stable level over the last ten years of fertil-
residue, the annual carbon inputs in the NPKM and NPKSization. At the end of the studied periods, SOC is nearly two
treatments are much higher than that of the mineral applitimes of the initial value under the NPKM and hNPKM treat-
cations (Fig. 3). Among the mono-cropping systems, thements except for the Zhangye and Changping sites where
annual rate of carbon input under the NPKM treatment arefarmyard manure are applied.

6.4 and 4.6tha' at the Gongzhuling and Urumgi sites, re-  Soil organic carbon content decreases significantly under
spectively, which are approximately 2—-3 times of that at thethe control and N application at the Zhangye site but in-
Zhangye site. For the double cropping systems, the annuarease significantly at the Changping site (Table 7). The
rate of carbon input for the NPKM treatment ranges from 5.9former has the highest initial soil C/N ratio, while the lat-
to 9.7thal. ter has the lowest initial soil C/N ratio. Among the mono-
cropping systems, the NPK application has various effects
3.2 Soil organic carbon and carbon sequestration rate on SOC. The Gongzhuling site, with the highest carbon
biomass (Table 6), maintains the initial SOC level, whereas
Soil organic carbon level remains low for the control and thethe Urumgi site shows a significant decrease in SOC. For
mineral fertilization treatments (i.e. N, NP, and NPK) with a all the double-cropping systems, SOC shows a significantly
decreasing trend except for the Changping site that has thmcreasing trend under the NPK application. The manure ap-
lowest initial C/N ratio (8.9) (Fig. 4). As expected, SOC plications increase SOC significantly at all sites. The SOC
content is relatively high under manure applications (e.g. theincreasing rate for the NPKM treatment is much higher at
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the Gongzhuling and Urumgqi sites (0.36-0.41 gkgr—1) Figure 5 reveals averaged value of soil carbon seques-
than that at the Zhangye site (0.1gRgr—1) where the tration rate over the entire experiment periods. Under the
annual carbon input is the lowest. The annual changecontrol and N treatment, most sites show a loss for SOC.
rate of SOC under manure application varies from 0.16 toThe largest losses are found at the two dry sites (Urmgqi
0.24gkglyr~1 in the double cropping systems. For the and Zhangye) with the mono-cropping system, showing
NPKS treatment, SOC content shows little change in thea rate of 0.23 and 0.30th&yr~! under control, respec-
mono-cropping systems, but a significantly increasing trendively. Balanced mineral fertilizer application (i.e., NPK)
in the double-cropping systems. result in 0.08-0.25thd yr—1 carbon sequestered in soils
with the double-cropping system, but a lose rate of 0.22 and
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Fig. 5. Sail carbon sequestration rate averaged over the entire period of fertilizations.

Table 7. Change rate of topsoil (020 cm) SOC content (gkgr—1) (i.e., slope values of linear relationship of SOC content and fertilization
duration from Fig. 4).

Treatments Gongzhuling  Urumqi Zhangye Changping Zhengzhou Xuzhou

CK 0.006 —0.090* —0.125* 0.094* —0.049* —0.026
N —0.026 —0.050 —0.12%* 0.070* —0.003 0.014
NP 0.019 —0.006 —0.039 0.129** 0.03 0.045*
NPK 0.070 —0.089 —0.060° 0.078 0.063 0.033*
NPM — — 0.10%* — — 0.22%*
NPKM 0.47%* 0.36** 0.10%* 0.17* 0.16%** 0.24**
hNPKM 0.403* 0.59* - 0.26** 0.24* -
NPKS 0.043 —0.014 - 0.15** 0.09** -

Significance is marked with ong £0.05), two (p<0.01), or three f<0.001) asterisks.

0.14thalyr~! at the Urumgi and Zhangye sites, respec- but significant effects on SOC at sites with double cropping
tively. Manure applications (e.g. NPM, NPKM, hNPKM) systems.
result in significant carbon sequestration at all sites, varying There are significantly positive, linear correlations be-
from 0.10 to 1.46thal yr—1 in the mono-cropping system, tween annual SOC sequestered and carbon input at all sites
and 0.22 to 0.81tha yr—1 in the double-cropping system.  (Fig. 6). The conversion rates at sites in the mild-temperate
areas with mono-cropping systems are 2—4 times of those at
Further analyses indicate that, mineral fertilizer applica-he warm-temperate areas with double cropping system. The
tions show no effect on SOC at the Gongzhuling and Urumqinjghest conversion rate (31.0%) is found at the Zhangye site
sites with the mono-cropping systems (Table 8). The N andy;ith arid climate, followed by 26.7% at the Urumgi site and
NPK treatments show no effect on SOC at the Zhangye and 5 8oy, at the Gongzhuling site. For the double-cropping sys-
Changping site, which has the highest and lowest C/N ratiotems, the conversion rate has a range of 6.8%—7.7%.
respectively. Mineral fertilizer applications increase SOC Figure 7 shows that there are significantly negative corre-
significantly by 8.2%-34% at the Zhengzhou and Xuzhou)ations between the conversion rate and annual precipitation
sites. As expected, manure applications show significant efang active accumulative temperature. Although there is no
fects on SOC at all sites. Among the mono-cropping Sys-sjgnificant relationship between the conversion rate and soil
tems, the NPKM treatment results in an increase of SOCay content, the conversion rate is much higher at the sites
content by 40% and 78% at the Gongzhuling and Urumai, 26,79 and 15.8%) with high soil clay content than that at
respectively, which are about 2 and 3.5 times of that at thgne sjtes (6.8%—7.7%) with low soil clay content.
Zhangye site. For the double-cropping systems, manure ap-
plications increase SOC content by 18%-123%. The NPKS
treatment has no effect at sites with mono-cropping system,
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Table 8. Topsoil (0—20 cm) SOC content (gkg) averaged for the third five-year period of fertilizations.

Sites Gongzhuling Urumgi Zhangye Changping Zhengzhou Xuzhou
Control 12.8a 7.7a 9.8 ab 8.2a 6.1a 5.3a

N 126a 8.6a 95a 83a 6.6b 6.5b

NP 13.2a 89a 11.2c¢c 9.0bc 7.3c 6.7 bc
NPK 14.1a 84a 11.0 bc 8.4 ab 74c 71c
NPM - - 12.6d - - 11.8d
NPKM 179b 13.7b 12.0cd 9.7d 9.1e 11.7d
hNPKM 19.2b 16.8¢c - 105e 9.9f -

NPKS 135a 8.7a - 9.3 cd 8.4d -

Values followed by the same letter in one column indicates that there is no significant diffeperic@s).

4 Discussion ence in biomass productivity between corn and wheat dur-
ing rotation (Fan et al., 2008). This result would have great

Fertilization has been an essential practice to maintain soikffects on the amount and stability of annual carbon input,

fertility and enhance crop productivity (Edmeades, 2003;hence the SOC dynamic, especially for the mineral fertilizer

Manna et al., 2007). There have been various fertilizer appli-applications.

cations, including single or combined mineral fertilizations

with/without addition of organic materials. Here, we discuss 4.2 Effect of long-term fertilization on SOC

how different fertilization practices affect SOC dynamicsand o _
soil carbon sequestration under various climate and soil conSoil carbon sequestration is a homeostasis of SOC decom-

ditions. position and carbon input. In general, SOC increases when
carbon input excess the loss of SOC due to decomposi-
4.1 Effect of long-term fertilization on carbon biomass tion in agro-ecosystems (Stewart et al., 2007). Soil organic
carbon usually decreases when the amount of carbon input
Mineral fertilizer applications increase above-ground carboninto soil from roots and manure is not efficient to maintain
biomass, while manure in addition shows no significant ef-SOC level. Mineral applications maintain and/or show a de-
fect on above-ground carbon biomass at most sites. Howereasing trend in SOC in the mono-cropping system. Under
ever, these manure applications sustain the production stabihon-fertilization or unbalanced (i.e., N) fertilization, soil nu-
ity of above-ground biomass, other than the decreasing trenttients availability is generally low under continuous crop-
under the control and mineral applications at most studiedping, which limits crop growth and leads to low productivity
areas. While the nitrogen application rate is the same foSingh et al., 2007; Jagadamma et al., 2008). As a result, car-
both balanced treatment (i.e., NPK and NPKM), the releasebon input from roots is correspondingly low, which affects
of available nitrogen in organic manure is slow, and there isSOC dynamic and equilibrium. The depletion of SOC and
usually competition for available nitrogen between soil mi- its active fractions decomposed to release nutrients for con-
crobial and crops under the NPKM application (Zhang et al.,tinuous cropping also partially contribute to the decreasing
2009). Therefore, mineral and manure combination may notrend in SOC at most sites under the control and N applica-
show significant effects on the crop productivity in a rela- tion (Manna et al., 2005). Likewisely, balanced mineral fer-
tive short-term period (Edmeades, 2003; Zhang et al., 2009)tilization in the mono-cropping system obtain only half the
However, there are exceptions. For instance, manure applicamount of carbon input of that in the double cropping sys-
tion results in a significant increase of above-ground carboriem, hence results in a decreasing trend in SOC in the arid
biomass at the Xuzhou site that has the lowest SOC, soil TNand semi-arid areas. A similar decreasing trend in SOC was
and clay content. There was also evidence from the Rothamalso observed in the semi-arid Brazil (Lessa et al., 1996).
sted classical long-term trials due to the long duration (more Manure applications sustain a significantly increasing
than 100 yrs) and larger inputs of manures (Johnston, 1992}rend in SOC, not only in the humid and semi-humid warm
These results suggest that perhaps very large differences temperate areas with the double cropping system, but also
soil organic matter are required before the additional benn arid and semi-arid areas with the mono-cropping systems,
efit of manure, over and over its nutrient content, on cropwhich is widely documented all over the world (Cuvardic et
yield can be observed. On the other hand, the statisticahl., 2004; Mando et al., 2005; Galantini and Rosell, 2006;
non-difference at the arid and semi-arid areas with mono-Shen et al., 2007). Apparently, manure application is one
cropping may result from the large inter-annual fluctuationsway to offset the depletion of SOC due to soil organic mate-
of the above-ground carbon biomass, due to the big differ+ial decomposition especially for the dry areas. Crop straw
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incorporated into soil may be difficult to be decomposed inal., 2001, 2007; Kong et al., 2005; Campbell et al., 2007).
mild-temperate zone because of the relative low temperatur&@his study shows significantly linear correlations between
(Powlson et al., 2008). Therefore straw incorporation can besoil carbon sequestration and carbon input. The exception is
commendatory agriculture practices to maintain SOC in thethat at the Xuzhou site, soil organic carbon changed rapidly
mild-temperate area and sequester carbon soil in warm tenin the early years and maintained stable in later stage of the

perate area.

study period. Similar results are also found from other long-

Soil organic carbon usually changes with carbon input be-term experiments (Stewart et al., 2008, 2009). Nevertheless,
fore saturation (Stewart et al., 2007). There is evidence othis study indicates that most upland soils in northern China
linear correlation between soil carbon sequestration and cai@re not carbon-saturated, having potential to migrating more
bon input from some long- and/or short-term experimentsCO from atmosphere.

around the world (Rasmussen and Parton, 1994; Kundu et

Biogeosciences, 7, 40925 2010
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4.3 Factors regulating soil carbon sequestration in temperature (Davidson and Janssens, 2006). This is to
say that low temperature might promote SOC accumulation.
Soil carbon sequestration is largely related to environmentalThe extreme dry climate condition at the Zhangye site (an-
conditions such as climate, microbiology, and soil physicalnual precipitation is 127 mm and evaporation is 2345 mm),
and chemical properties (Li et al., 1994; Cihlar, 2007; Gamiresulted in the highest conversion rate of all sites. Previous
et al., 2009). The conversion rate at the Urumgji site (26.7%)studies also clearly show that carbon sequestration efficiency
is a little higher than those results from semi-arid temperaten the arid and semi-arid regions is much higher than that in
(14%—-21%) (Rasmussen and Collins., 1991). The converhumid region (Bolinder et al., 2007; Yan et al., 2007).
sion rate in the warm temperate areas (6.8%—7.7%) is coinci- Although this study shows no significant relationship be-
dent to that of Mediterranean climate (Kong et al., 2005), buttween the conversion rate and soil clay content, the conver-
much lower than that from the humid subtropical area (19%)sion rate is much higher in soils rich in clay content than that
(Kundu et al., 2007). in soil low in clay content. Other studies have also shown that
Our analyses with limited data show significantly relation- the potential of soil carbon sequestration in clay soil is much
ships between the conversion rates and climate conditionghigh than soil rich in sandy and silt (Matus et al., 2008; Shi
The conversion rate decreases significantly with the increaset al., 2009). It is believed that protection of SOC by clay
in annual active accumulative temperature and precipitationparticles has been postulated to occur through at least two
Under normal conditions, SOC accumulation rate tends tcseparate mechanisms. First, as SOC becomes humified, it is
decrease with higher soil temperature and moisture levethemically stabilized and adsorbed onto negatively charged
(Kutsch and Kappen, 1997). It is believed that SOC decom-lay minerals with high surface area (McLauchlan, 2006).
position responses sensitively to temperature and the deconsecond, SOC is physically protected from microbial min-
position rate usually accelerate with increase in temperaturegralization through the formation of soil aggregates (Fran-
whether it is more or less than double in every@ncrease  zluebbers et al., 1996). The relationship between clay and
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