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Abstract. We propose to use machine learning (ML) algo-
rithms to design a simplified denitrification model. Boosted
regression trees (BRT) and artificial neural networks (ANN)
were used to analyse the relationships and the relative in-
fluences of different input variables towards total denitrifica-
tion, and an ANN was designed as a simplified model to sim-
ulate total nitrogen emissions from the denitrification pro-
cess. To calibrate the BRT and ANN models and test this
method, we used a database obtained collating datasets from
the literature. We used bootstrapping to compute confidence
intervals for the calibration and validation process. Both ML
algorithms clearly outperformed a commonly used simpli-
fied model of nitrogen emissions, NEMIS, which is based
on denitrification potential, temperature, soil water content
and nitrate concentration. The ML models used soil organic
matter % in place of a denitrification potential and pH as a
fifth input variable. The BRT analysis reaffirms the impor-
tance of temperature, soil water content and nitrate concen-
tration. Generalization, although limited to the data space of
the database used to build the ML models, could be improved
if pH is used to differentiate between soil types. Further im-
provements in model performance and generalization could
be achieved by adding more data.

1 Introduction

The increase of agricultural nitrogen (N) inputs favors the
emission of nitrous oxide (N2O) through nitrification and
denitrification. N2O is a well-known greenhouse gas (IPCC,
2006) involved in the ozone layer destruction (Cicerone,
1987) and soils are the main source of atmospheric N2O
(Mosier and Kroeze, 2000). Indirect emissions of N gasses
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(i.e., occurring after the applied nitrogen has been trans-
formed or transferred out of the field) are still a major source
of uncertainty despite their role on climate change (Crutzen
et al., 2007; Mosier and Kroeze, 2000; Nevison, 2000).

Heterotrophic denitrification is the biological reduction of
nitrate (NO−

3 ) or nitrite (NO−

2 ) into N2O and di-nitrogen (N2)
in absence of oxygen (O2). The process is influenced by
many factors, is highly variable over space and time, and
is thus difficult to assess at the catchment level. The dif-
ference between annual nitrogen flow measured at the catch-
ment outlet and the nitrogen surplus do not provide a reliable
estimate of the denitrification at the catchment scale, because
of temporary storage processes of nitrogen in the soil, va-
dose zone or groundwater (Basset-Mens et al., 2006; Mole-
nat and Gascuel-Odoux, 2002; Ruiz et al., 2002). Further-
more, losses by gaseous emission through denitrification are
not evenly distributed over the catchment area since they are
particularly higher in the riparian zone (Fisher and Acreman,
2004; Haag and Kaupenjohann, 2001; Martin et al., 1999;
Oehler et al., 2007; Sebilo et al., 2003). As a result, it is still
problematic to up-scale measured emissions to a larger, land-
scape scale which is the most relevant to assess the impact of
agriculture practices and their management.

Models can be used to take into account these processes
and the spatial and temporal variability of the driving factors.
Many models integrate a more or less complex denitrifica-
tion module (e.g. GLEAMS (Knisel, 1993), DNDC (Li et al.,
1992), SWAT (Arnold and Fohrer, 2005), TNT2 (Beaujouan
et al., 2001)) to simulate NO−3 fluxes at the agricultural field
or catchment scale. These models are often coupled to socio-
economic models to provide an integrated N management
tool (Leip et al., 2008; Turpin et al., 2005). Different ap-
proaches have been developed for denitrification modelling.
These approaches range from (1) simplified process models
(e.g. NEMIS,Henault and Germon, 2000), (2) to soil struc-
tural models (e.g.Vinten et al., 1996), and (3) to microbial
growth models (e.g. DNDC).
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The accuracy of measurement techniques still needs to be
improved especially to assess long term emissions, and this
is particularly the case for upland terrestrial areas (Groffman
et al., 2006). Our long term goal is developing a model of
denitrification at the catchment scale that also addresses the
significant emissions from upland areas (Oehler et al., 2007).
To achieve this aim, we turned towards simplified modelling
approaches also because (1) mechanistic models are devel-
oped and validated for homogeneous and simple medium,
which is not necessarily appropriate at the catchment scale
(Beven, 1993), (2) either the accuracy of measured emissions
is poor and/or sampling is too scarce (Groffman et al., 2006),
(3) simplified models need inputs that can be obtained either
from relatively simple field measurements or directly from
simulation models.

Simplified models have already been used in many studies
and, for example,Heinen (2006b) found as many as 59
simplified models in the literature. He also analyzed the
performance of the simplified model NEMIS on an extended
data set (Heinen, 2006a). Following the same procedure
asHeinen(2006a), NEMIS was also calibrated on another
large data set (Oehler et al., 2009). Because of either
measurements or modelling shortcomings, results were not
fully satisfactory for a generalized use at the catchment scale.
Moreover, there is a need to simulate also N2O emissions
from denitrification at the catchment scale, especially as
stakeholders are looking toward the use of wetlands as
nitrogen attenuation tools. Finally, it is worth reminding that
in simplified approaches the global N emissions are a key
parameter to estimate N2O (using the N2O/N2 ratio,Henault
et al., 2005; Lehuger et al., 2009) and so their estimate needs
to be more robust and accurate.

Simplified models can be developed using a data-driven
approach and so using a broad family of algorithms loosely
defined in the literature as “machine learning” (ML). The
core objective of a Machine Learning algorithm is to
generalize from its experience, i.e. to provide a model that
captures the overall characteristics and interactions of the
dataset it has been trained on (Alpaydin, 2004). These
by-design generalized models are however limited in their
application by the extent of the gradients present in the
dataset used to construct them. The degree of generalization,
also called “generalization error” or “performance” is often
evaluated using a cross or independent validation process
(Bousquet and Elisseeff, 2002; Elith et al., 2008; Hagan et al.,
1996). These techniques provide an assessment of how well
the generalized models behave on unseen data inside the
range of the training dataset.

Since the “universal approximator demonstration” at the
end of the 1980’s (Cybenko, 1989; Hornik et al., 1989;
Irie and Miyake, 1988), artificial neural networks (ANN)
have probably become the most typical machine learning
algorithm and have been used in many different fields like
physics, chemistry, medicine, ecology and hydrology (Cote
et al., 1995; Faraggi and Simon, 1995; Kralisch et al., 2003;

Lek et al., 1999; Lischeid, 2001; Smits et al., 1992; Suen
and Eheart, 2003; Telszewski et al., 2009). Artificial Neural
Networks have been widely used to model complex non-
linear relationships, particularly when the functional form of
the relations between the variables involved is unknown.

Boosted Regression Trees (BRT) is a relatively new
ML algorithm (partly originating fromSchapire, 2003)
characterized by strong predictive performance and that
can give powerful insights of the variable relationships
(Elith et al., 2008). However BRT are complex models in
their representation (from a few hundred to few thousands
of trees), and can be difficult to export from the ML
environment to a separate and independent model. BRT do
not entirely fit into the “simplified models”, but they can
efficiently describe the relationship between input variables
and a system response.

We used the BRT approach to specifiquely study the
variable relative influences and relationship and to help
selecting the most relevant variables. Then an ANN was
provided, taking advantage of its relative simplicity and
portability with a (hopefully) small tradeoff in performance.

In order to test this method of designing a simplified
model based on ANN to simulate N emissions from the
denitrification process at the field scale, we:

– assembled a database from literature datasets;

– analysed the variable relationships and the relative
influences of input variables toward total denitrification.

– carefully assessed the generalization error of the ML
approaches and compared them with NEMIS;

– explored the sensitivity of simulated denitrification rates
to input factor variations.

2 Methods

2.1 Database and input factors

To calibrate (train) the BRT and ANN models and test the
method, a large enough database is needed. The dasabase
was built with datasets easily extractable from the literature
(Cosandey et al., 2003; Henault and Germon, 2000; Luo
et al., 1999; Oehler et al., 2007; Ryden, 1983; Zaman
and Nguyen, 2010). Denitrification rate (Da) rates were
measured using the acetylene (C2H2) blockage technique
(Ryden et al., 1987; Yoshinari et al., 1977). The soil
denitrifying potential was either a long term (days, termed
Denitrification Potential (LDP) as inHenault and Germon,
2000) or a short term (hours, termed Denitrifying Enzyme
Activity (DEA) as inCosandey et al., 2003; Luo et al., 1999;
Oehler et al., 2007; Zaman and Nguyen, 2010) measure. The
main differences in measurement techniques are summarized
in Table 1. For the dataset ofLuo et al. (1999), soil
temperature (T ) was estimated from national statistics. All
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Table 1. The different measurement methods ofDa and DEA in the database.

Source Measure Method variant Incubation time
Incubation
temperature

Cosandey et al.(2003) DEA
Smith and Tiedje(1979),
flasks, mixed

4 h 20◦C

Da
Yoshinari and Knowles(1976),
flasks, disturbed soil samples

4 h 20◦C

Henault and Germon(2000) Da
Adaptation ofTiedje et al.(1989),
Soil cores, undisturbed

3 h to days 20◦C

Luo et al.(1999) DEA Luo et al.(1996), flasks, mixed 5 h 20◦C

Da
Ryden et al.(1987),
Soil cores, slightly disturbed

24 h
daily soil
temperature
variation

Oehler et al.(2007) DEA Luo et al.(1996), flasks, mixed 5 h 30 min 20◦C

Da
Adaptation ofJarvis et al.(2001),
Soil cores, undisturbed

24 h
daily soil
temperature
variation

Ryden(1983) Da
Ryden and Dawson(1982), direct
on-site measurement, undisturbed

3.5 h
actual soil
temperature

Zaman and Nguyen(2010) DEA Tiedje(1982), flasks, mixed 7 h 20◦C

Da
Adaptation ofTiedje et al.(1989),
Soil cores, undisturbed

24 h
daily soil
temperature
variation

the studies were carried out in temperate regions (France,
Switzerland, south-east of England and New Zealand) and
34% of the measurements were in riparian or wetland areas.
Our final database has 536 records: 58 fromCosandey et al.
(2003); 39 from Henault and Germon(2000); 99 from Luo
et al.(1999); 253 fromOehler et al.(2007); 46 fromRyden
(1983) and 41 fromZaman and Nguyen(2010). Soil types
included: cultivated and uncultivated silt loam and silty clay
loam soils with OM 4–7% and pH 5–6.5; cultivated silt loam
with OM 1% and pH 7.1; grazed riparian grasslands on silty
clay and silty sand soils with OM 2.4–12.2% and pH 6.8–8;
and pasture on silt loam with OM 6% and pH 6. All theDa

measurements were done using a static chamber technique.
The main denitrification measurements issues with the C2H2
blockage technique are:

– the diffusion of C2H2 into the soil;

– C2H2 can be used as a carbon source by micro-organism
after a long time;

– C2H2 inhibits also the mineralisation, hence limiting its
applicability to moderate to high [NO−3 ];

– the diffusion of O2 into the soil samples if they are
disturbed;

– low gas emission dynamic compared to the sensor
sensitivity, compensated by the length of incubation
time;

– soils are heterogeneous substrates.

All of this can lead to a large measurement variability,
especially for low-drainage soils (Groffman et al., 2006).
Henault and Germon(2000) and Cosandey et al.(2003)
measurements may be the less variable (i.e. all the
measurements at 20◦C). The DEA measurement methods
are similar in their adding of substrate quantities, mixing
procedures and incubation time.

Figure1 shows the distribution of the response (Da rates)
and independent variables (NO−

3 , T , WFPS, OM,Db, SD
and pH).Da and NO−

3 show distributions with very long
upper tails. Table2 shows the univariate linear correlations
(Pearsonr) between variables. The r values (noticer2 will
be even smaller) show that we are not in a simple case with
one or two dominant factors and linear relationships.Da is
weakly correlated with WFPS,T , pH and OM, butDa is
not correlated with NO−3 . This does not mean that NO−3 is
not involved in the denitrification process. First, NO−

3 may
have been present (mostly) in excess so that it did not limit
Da. Also, NO−

3 soil concentration may have been a poor
indicator of the rate of supply of NO−3 (e.g., by advection,
diffusion or nitrification, if its inhibition by C2H2 was not
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Fig. 1. Distribution of the variables in the database (536 records).

total) to denitrification micro sites, which is what determines
Da. Second, the measurements from this collated dataset
are far from genuinely and equally representing the different
studied systems: there is a mixture of field (uncontrolled)
and laboratory (some of the parameters are controlled
or manipulated, likeT or [NO−

3 ]) measurements, with
different sampling strategies and measurement technique
variants (disturbed or undisturbed soil cores). There are
also correlations between the input variables. Notably OM
and NO−

3 are weakly correlated (r = 0.26) as a result of a
small number of high NO−3 /low OM points inHenault and
Germon(2000) and low NO−

3 /high OM points inCosandey
et al. (2003). Db is weakly correlated with OM (r =

−0.43), pH (r = 0.60) and SD (r = 0.60), and pH is weakly

correlated withT (r = 0.39). This might be again the
result of a sampling bias (e.g., the highestDb and pH soils
were measured at 20◦C in Henault and Germon(2000) and
Cosandey et al.(2003), and the soils with highestDb were
also those with the highest pH). Besides conjectures, at this
stage we can only suggest that the variation ofDa is due
to more than one factor and probably in a non-linear way.
Because this is a multi-variable non-linear problem, r values,
a measure of the strength of a linear relationship between two
variables, can only be used to deduce that the dataset might
be unbalanced (r values between known factors not close to
zero), and therefore that some variable-space regions might
not be equally represented.

A clustering (partitioning) of the dataset (without the
DEA) has been done with the PAM k-medoid method
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Table 2. Pearsonr correlation coefficient. Statistical significance indicated by∗ (p < 0.05).

Pearsonr Da DEA NO−

3 WFPS T pH OM Db SD

Da – 0.07 0.19∗ 0.29∗ 0.36∗ 0.29∗ −0.26∗ 0.15∗ −0.09
DEA – −0.23∗ 0.16∗ 0.07 0.21∗ 0.60∗ −0.41∗ −0.44∗

NO−

3 – −0.16∗ 0.14∗ 0.12∗ −0.26∗ 0.25∗ 0.06
WFPS – 0.03 0.20∗ 0.10 0.21∗ 0.10∗

T – 0.39∗ 0.03 0.28∗ 0.22∗

pH – 0.03 0.55∗ 0.18∗

OM – −0.43∗ −0.15∗

Db – 0.60∗

SD –

(Kaufman and Rousseeuw, 2005). We used the cluster
R package 1.13.1 (Maechler et al., 2005) and the optimal
number of classes was chosen with the silhouette method
(Rousseeuw, 1987). The best silhouette score was obtained
with 3 clusters (score of 0.32), quickly dropping for more
clusters (0.19 for 4 clusters). Table3 shows the counts of
records in each cluster per source, as well as the medoids
(i.e. the “central” point of each cluster). Overall, the dataset
cannot be very well clustered, and only a small fraction
(21%) of the records seems to be differentiated. The
dataset fromCosandey et al.(2003) is different (cluster 2)
because of the temperature and ph values (Table3) while the
data fromOehler et al.(2007) constitutes another separate
cluster characterized by high to very high NO−

3 in cluster
3 (Table3). These results indicate that the dataset is not
strongly heterogeneous (optimal number of clusters is low,
equal to 3) but it also indicates that, for example, predictions
of records with high NO−3 are supported by only a specific
portion of the overall training dataset.

Previous modelling has identified the most important
factors influencing denitrification rate (Da) to be: T , water
filled pore space (WFPS), nitrate concentration ([NO−

3 ]),
and the soil denitrifying potential. The last factor can be
either a long term (days, like LDP) or a short term (hours,
like DEA) measurement. The short term denitrification
potential metrics (DEA) are most commonly used. Although
successfully used as a denitrification indicator (Heinen,
2006a), DEA techniques are varied and have an imprecise
relationship toDa (Oehler et al., 2007; Simek et al., 2000).

In addition to the controlling factors outlined above
(i.e. Temperature, WFPS, NO−3 and DEA), we tested the
following factors:

– organic matter % (OM): OM could be a useful
surrogate for soil LDP which is correlated to soil
physical characteristics more than DEA is (Simek et al.,
2000). Some models use OM to compute a LDP
(Hansen et al., 1991; Johnsson et al., 1987) which has
been suggested to be more appropriate than DEA for
modelling purposes (Henault and Germon, 2000).

Table 3. Contingency table of the counts of records per data source
and cluster (k-medoid cluster), and the mean silhouette width per
cluster (can be between[−1,1], a score close to 1 meaning good
clustering)

k-medoid clusters 1 2 3

Source
Cosandey et al.(2003) 3 52 0

Henault and Germon(2000) 18 19 2
Luo et al.(1999) 99 0 0

Oehler et al.(2007) 209 0 44
Ryden(1983) 46 0 0

Zaman and Nguyen(2010) 41 0 0

Medoids
Da 0.05 0.05 0.54
OM 4.18 1 2.91
SD 0.1 0.1 0.3
pH 6.3 7.1 6.7

WFPS 63.6 87.3 53.7
T 10.9 20 13.1

NO−

3 27 32 322.91
Db 1.1 1.5 1.57

% of the records 78% 13% 9%
Silhouette score 0.33 0.20 0.40

– bulk density (Db): Petersen et al.(2008) argued
that gas diffusivity is affected byDb and influences
O2 concentration. This in turn strongly influences
denitrification rates. Hence, it may be a better estimator
of O2 concentration than WFPS.Moldrup et al.(2005)
modelled gas diffusivity using soil porosity and pore
size distribution which are correlated withDb, WFPS
and OM.

– pH: soil pH is non-neutral toward denitrification with
multiple direct and indirect effects (Simek and Cooper,
2002). Because of the use of the acetylene blockage
technique for measuring denitrification, the influence of
pH on nitrification rate and hence the supply of NO−

3
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(Cheng et al., 2004; Hwang and Hanaki, 2000) is not
taken into account.

– soil depth (SD): soil depth affects connectivity to the
surface and hence influences aeration, O2 concentration
and ultimately denitrification rate.

Three records fromCosandey et al.(2003) were discarded
because they unbalanced the validation process, and strongly
influenced the NEMIS model calibration.

2.2 Boosted regression trees

BRT are (afterElith et al., 2008) “an ensemble method
for fitting statistical models that differs fundamentally from
conventional techniques that aim to fit a single parsimonious
model. Boosted regression trees combine the strengths
of two algorithms: regression trees (models that relate
a response to their predictors by recursive binary splits)
and boosting (Schapire, 2003). The final BRT model can
be understood as an additive regression model in which
individual terms are simple trees, fitted in a forward, stage-
wise fashion”. A k-fold cross-validation (CV) is used to
avoid the effect of over fitting (over training) and assess the
prediction performance. The training process is stochastic: it
includes a random or probabilistic component (for example,
sub-samples for CV are chosen randomly). This means
that, unless a random seed is set initially, final models will
be subtly different each time they are calibrated. BRT
models can be fitted to a variety of response types (Gaussian,
Poisson, binomial, etc.). The method is insensitive to
outliers, and can accommodate missing data in predictor
variables by using surrogates (Breiman et al., 1984). The
final number of trees is controlled by two important factors:
the learning rate (or shrinkage parameter) and the tree
complexity.

One of the interesting features of BRT is the assessment
of variable relative influences, based on the number of times
a variable is selected for splitting, weighted by the squared
improvement to the model as a result of each split, and
averaged over all trees (Friedman and Meulman, 2003). The
relative influence (or contribution) of each variable is scaled
so that the sum adds to 100, with higher numbers indicating
stronger influence on the response. For a detailed example,
see the working guide fromElith et al.(2008).

2.3 Artificial neural networks

The first mathematical representation of a neuron was
introduced by McCulloch and Pitts (1943) with the
perceptron. Each neuron receives input vectors (X),
performs a weighted sum (α), and through an activation (also
called transfer) function (G) (which may be linear or non-
linear) produces a result (Y ) in the form:

Y = G(WX+b) (1)

whereW = (wi,1,wi,2,...,wi,n) are the neurons weights,X =

(x1,x2,...,xN ) are the vector inputs of neuroni, b is the
neuron bias.α = (WX+b) is the input weighted sum (also
called potential of neuroni) andG is the activation function.
The classic non-linear activation function used is the sigmoid
function:

G(α) = (1+e−α)−1 (2)

One or more neurons form a layer. In our study we used
the common feed-forward ANN structure deriving from the
perceptron, also called “multi-layer perceptron”. The first
neurons are forming the input layer, the lasts are forming
the output layer, the others are forming one or more hidden
layers (Hagan et al., 1996). The standard notation used
throughout this work is [3:4:1], meaning 3 input nodes, 4
hidden and 1 output nodes (5 neurons). The number of
input variables necessary for predicting the desired output
variable determines the number of input nodes. The optimum
number of hidden nodes and hidden layers is dependent
on the complexity of the modelling problem. During
training, patterns of input and corresponding output pairs are
presented to the ANN, and the learning algorithm iteratively
adjusts the values of connection weights within the ANN
structure. It is desirable to attain the required level of
accuracy with the simplest possible ANN structure (i.e.,
the fewest nodes) because this minimises training time,
improves network generalization and lessens over-fitting
effects (Hagan et al., 1996).

Potentially, different techniques could be used to “open”
the ANN and try to understand the variable relationships
(Gevrey et al., 2003). As suggested in the review from
Gevrey et al.(2003), we chose the partial derivative method
(Pad) (Dimopoulos et al., 1999) to assess the variable relative
contribution to the output of the ANN.

2.4 NEMIS model

The NEMIS model uses a common formalism (Heinen,
2006b; Johnsson et al., 1987, 1991; Sogbedi et al., 2001):

Da = Dp ·fN ·fS ·fT (3)

with

fS =
N

K +N
(4)

fN =

(
S −St

Sm −St

)w

(5)

fT = Q
T −T r

10
10 (6)

Da is the denitrification rate (mg N kg−1 soil d−1) andDp

is the potential denitrification (mg N kg−1 soil d−1). The
denitrification potential can be either a LDP or a DEA.
fN is a nitrate dimensionless function, whereN is the
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actual nitrate soil content (mg N kg−1 soil) and K is the
nitrate soil content (mg N kg−1 soil) whenfN = 0.5·fS is a
dimensionless function of water saturation, whereS is the
WFPS,St the WFPS threshold below which denitrification
does not occur andSm the maximal WFPS (in our caseSm =

1). fT is a dimensionless function of the soil temperature
T (◦C), T r is the reference temperature when the potential
denitrificationDp was determined, andQ10 is the increase
factor for a temperature increase of 10◦C. This function has
a specific form in NEMIS, where two differentQ10 are used
for two ranges of temperature:

fT = f T ref×Q
T −T r

10
10 (7)

if T ≥ 10, Q10 = 2, T r = 20, f T ref=1 otherwiseQ10 = 50,
T r = 10,f T ref=0.5. Temperatures are in◦C.

2.5 Performance, confidence intervals and model
developments

To assess the prediction performance and confidence interval
of both BRT and ANN, we used the bootstrap approach
(Efron, 1987). Averages presented in the following sections
could be seen as bagged predictors (Breiman, 1996), using
the mean as a simple aggregator (i.e. the mean of the reponses
of all the BRTS or ANNs corresponding to the boostrap
replicates). These average (bagged) responses were only
used here for presenting the reponse of the models and its
accuracy. When presenting an non-averaged reponse of a
model (e.g. for the performance graphs and the ANN model
described in Appendix B), that model will be an individual
BRT or ANN matching as close as possible the bagged
response.

The BRT, ANN and NEMIS models were calibrated on
the same subsets. The performance assessment and the
validation of the model was done using the same approach:

– the modelling performance was evaluated using the
conservative independent validation: the dataset was
randomly subsampled into a calibration and a test
subset.

– we used a resampling technique (bootstrap: the random
subsampling and calibration is repeated many times) to
estimate the distribution of the performance criterion
and its mean. These estimated distributions have been
used to compare different models/approaches.

The BRT training was done using the methodology and
the R code fromElith et al. (2008). A number of different
BRT models have been developed. We always retained three
base variables: temperature, WFPS and NO−

3 which previous
studies have shown to be important. The nomenclature used
is BRTn(X,Y ) where n is the number of input variables
(n ≥ 3) andX, Y are the independent variables included in
addition to the 3 base variables. The suffixG denotes that
the model was trained on the whole (global) dataset. Thus

BRT5(OM,pH)G denotes a model using the 3 base input
variables plus 2 others (OM and pH) which was trained on
the whole dataset. The BRT was specifically used to analyse
the variable relationships. Different combination of input
variables were tested, starting from a model using all the
available variables, and then discarding the variables of lower
importance until model performance significantly decreased.

The feed-forward ANN calibration was done using a
classic method (using a training and a validation subset to
control overfitting). To select the simplest ANN structure
(with the fewest hidden nodes), we started with the number
of nodes in the hidden layer equal to twice the number of
input variables. We then decreased the number of nodes
until there was a significant decrease in model performance
(independent validation). The nomenclature used is the same
as for BRT.

The NEMIS model (using DEA as the denitrification
potential Dp) was calibrated following a methodology
adapted fromOehler et al.(2009) and Heinen (2006a).
NEMIS was calibrated on the whole dataset (denoted
NEMIS4G) without theHenault and Germon(2000) and
Ryden (1983) datasets, because they contain no DEA
measurements. NEMIS was also calibrated separately on
each of theZaman and Nguyen(2010), Oehler et al.(2007),
Cosandey et al.(2003) and Luo et al. (1999) datasets
(denoted NEMIS4Z, NEMIS4O, NEMIS4C and NEMIS4L).

More details about the calibration steps are available in
Appendix A.

2.6 Partial dependence and high dimensional plotting

Graphical representation of the BRT or ANN response as a
function of their arguments could provide a comprehensive
summary of its dependence on the joint values of the input
variables. Unfortunately, such visualization is limited to low
dimensional arguments (reasonably up to three dimensions).
For higher dimensions, an alternative is looking at a
collection of plots, each one showing the partial dependence
of the model response to different input variables.

As defined in Friedman (2001) and Friedman and
Meulman (2003), the partial dependence function aims at
representing (summarizing) the effect of a single variable
across the entire variable space. Given the entire data space, a
mean response to the considered input variable is computed.
For example, to compute the partial dependence for OM,
responses to OM variation are computed for the different
combinations ofT , WFPS, [NO−

3 ] and pH existing in the
dataset, and are averaged. Hence, the partial dependence
functions are built using all the data points. Although
computationally intense, this can be also done for two
input variables, leading to 3-D or contour plots. The
magnitude of the partial dependence is somehow related to
the relative influence: influent variables will tend to present
high magnitudes.
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2.7 Statistics

The model performance criterion (or generalization error)
used in this study was the Normalized Root Mean Square
Error (NRMSE) defined as:

RMSE=

√∑ (s −o)2

n
(8)

NRMSE=
RMSE

ō
(9)

wheres are simulated values,o the observed values,̄o the
average of observed values andn the size of the sample. We
used the normalized criterion to enable comparisons between
different sites and studies. For mean comparisons we used
the parametric z-test. We also used the commonly used
Pearsonr2. All the data processing, model developments
and statistics were performed using the software “R” version
2.10 (2008).

3 Results

3.1 Relative influences of input variables as revealed by
BRT and ANN

The BRT was constructed using a number of trees varying
from 1000 to 1500, a learning rate of 0.01 and a tree
complexity of 5. More complex structures were not found
to increase prediction performance. The best ANN topology
was always [N :6:1], N being the number of input factors (N

varied from 4 to 7) Using a large number of hidden nodes
tended to give a better fit to the training dataset, but without
gains for the test dataset (i.e. independent validation).

The BRT8(OM,pH,Db,DEA,SD)G mean model
performance (NRMSE, independent validation) was
1.10. Figure2 shows the relative influence of the different
variables on the response. The variables are sorted from
the most influencing: OM, WFPS,T , NO−

3 , pH, Db,
DEA, SD. Scores forT and WFPS were not significantly
different (z-test,p > 0.05). Simplification of the model
down to 5 variables was done without significant loss of
performance. Figure3 shows the hierarchy of the variables
for the BRT5(OM,pH)G model, which did not differ from
BRT8(OM,pH,Db,DEA,SD)G. The relative influence of
DEA did not change with or withoutHenault and Germon
(2000) and Ryden (1983) records. Db, DEA and SD
accounted for less than 10% of the influence, less than the
influence of pH (12.2%). Reducing the BRT topology to
5 inputs did not shift the influence carried by the three
discarded variables to a particular one. Discarding pH from
the model did not increase the influence ofDb, DEA and
SD. Apparently, the effects ofDb and pH are independent,
or at least treated as such in the BRT approach. Also, the

●
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Relative influence, %
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pH

NO3
−
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OM

Fig. 2. Boxplots (description of quartiles with maximum at 1.5
interquartile range) of relative influences of the 8 tested input
variables, as revealed by the BRT8(OM,pH,Db,DEA,SD)G model.
Circles are outlier candidates.

importance of NO−3 is evident. As envisaged, the BRT
approach successfully lessened dataset autocorrelation
effects.

The ANN7(OM,pH,Db,SD)G mean model performance
(NRMSE, independent validation) was 1.21. Figure4
shows the relative influence of the different variables on the
response. The variables are sorted from the most influencing:
NO−

3 , T , WFPS, OM, SD, pH,Db. Scores forDb, pH and
SD were not significantly different, as well asT and OM
(p > 0.05). Results of the ANN8(OM,pH,Db,DEA,SD)G
(so without Henault and Germon(2000) and Ryden
(1983)records) shown very variable results, with a slightly
higher contribution of DEA compared to OM (average of
9% versus 7%,p > 0.05). Removing variables down to 5
changed the order of the variable contributions, with always
a high value for NO−3 , and all the other being equal or
less than 11%. Simplification of the model down to five
variables was done without significant loss of performance,
whatever the fourth and fith variable was. ANN4(OM)G and
ANN4(DEA)G (without Henault and Germon(2000) and
Ryden (1983)records) shown the same performance (p >

0.05). Figure5 shows the hierarchy of the variables for
the ANN5(OM,pH)G model. WFPS and OM influences
were not significantly different (p > 0.05). As for the BRT
approach, the importance of NO−

3 is evident. The influence
of the other variable is less clear. Overall the ANN results
seemed to be quite sensitive to subsampling, and produced an
unstable (highly variable) assessment of relative influences.

One of the main results is the possible replacement of
DEA in favour of OM. Looking at the BRT analysis, OM
appears to be a better candidate, more strongly than the
small advantage for DEA in the ANN analysis. As already
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Fig. 3. Boxplot (description of quartiles with maximum at 1.5
interquartile range) of relative influences of the 5 input variables,
as revealed by the BRT5(OM,pH)G model. Circles are outlier
candidates.
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Fig. 4. Boxplots (description of quartiles with maximum at 1.5
interquartile range) of relative influences of the 7 tested input
variables, as revealed by the ANN7(OM,pH,Db,SD)G model.
Circles are outlier candidates.

stated, the three supplement variablesDb, pH and SD
are correlated (Table2), and adding one of these to the
model improves significantly the predictive performance of
the model. Adding another one seems to add unnecessary
complexity to the model, without performance gains. In our
“final” model we decided to add pH to the base factors and
OM. We rejected SD because the mechanism by which soil
depth influences denitrification is unclear, and this variable
has clearly a low influence. On the other hand, pH helped
explaining variability more thanDb.

●●●●

●● ●●

0 20 40 60 80

Relative influence, %

T

WFPS

OM

pH

NO3
−

Fig. 5. Boxplot (description of quartiles with maximum at 1.5
interquartile range) of relative influences of the 5 input variables,
as revealed by the ANN5(OM,pH)G model. Circles are outlier
candidates.

3.2 The BRT5(OM,pH)G, ANN5(OM,pH)G and
NEMIS model performances

Figure 6 shows the performances (independent validation
with the test subset) of the BRT5(OM, pH)G model,
the ANN5(OM, pH)G model and the NEMIS4G model.
RemovingHenault and Germon(2000) and Ryden(1983)
records does not change the mean performance of the BRT
and ANN models. The mean tests NRMSE are respectively
1.12, 1.20 and 2.07, andr2 are 0.78, 0.79 and 0.28 clearly
indicating that the BRT5(OM, pH)G and the ANN5(OM,
pH)G models result in better predictions (w-test,p < 0.05,
computed usingOehler et al.(2007), Cosandey et al.(2003),
Luo et al.(1999) andZaman and Nguyen(2010) but without
Henault and Germon(2000) and Ryden (1983) records
because they do not include DEA which is a required input in
NEMIS). Heinen(2006a) already pointed out that NEMIS-
like models can perform quite well when calibrated for
a specific site, but that they do not perform well when
applied over a range of different soil types with the same
parameter set. The site-specific calibrated NEMIS on the
Oehler et al.(2007), Cosandey et al.(2003), Luo et al.
(1999) andZaman and Nguyen(2010) datasets (NEMIS4O,
NEMIS4C, NEMIS4L, and NEMIS4Z) showed that model
coefficients (notably those relating denitrification rate to
WFPS) varied significantly among datasets. Consequently,
when NEMIS was calibrated using all 4 datasets (NEMIS4G)
it did not perform particularly well. There is only a
slight difference in prediction performance (z-test,p < 0.05)
between the BRT5(OM, pH)G and the ANN5(OM, pH)G
models. Looking at the range of the Test NRMSE (roughly
between 0.5 and 1.7 for BRT, 0.8 and 2.6 for ANN, and 0.7
and 3.5 for NEMIS), there seems to be a rather high influence
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Fig. 6. Boxplot (description of quartiles with maximum at
1.5 interquartile range) of prediction performance (independent
validation) of ANN5(OM, pH)G, BRT5(OM, pH)G and NEMIS4G
(without Henault and Germon(2000) andRyden(1983) records).
Circles are outlier candidates.

of the sub-sampling process on the independent validation.
This can be due to the lack of data (67 records for the Test
dataset) coupled to the presence of few extremeDa values
that can have a relatively large impact on the independent
validation process. In contrast, the Training NRMSE min
and max values are relatively low for both BRT and ANN
(between 0.70 and 1.00 for a mean of around 0.80). The BRT
shows more stable results, maybe thanks to the ensemble
technique.

Figure 7 presents the performance of the chosen
BRT5(OM, pH)G, ANN5(OM, pH)G and NEMIS4G. ANN
NRMSE for each dataset fromOehler et al. (2007),
Henault and Germon(2000), Luo et al. (1999), Cosandey
et al. (2003), Ryden (1983) and Zaman and Nguyen
(2010) are respectively 1.36, 0.63, 0.73, 0.46, 1.21 and
0.85. ANN5(OM, pH)G and BRT5(OM, pH)G display a
comparable behaviour. Figure7 highlights the meaning of
the differences in performance (from NRMSE of 2.07 to
1.20) between the NEMIS4G model and the ANN5(OM,
pH)G model. The ANN model clearly outperforms the
NEMIS model. Site specific calibration of NEMIS gives
average NRMSE (computed on the whole dataset, not
independent ones) forOehler et al.(2007), Luo et al.(1999)
Cosandey et al.(2003) and Zaman and Nguyen(2010)
of 1.55, 0.66, 1.03 and 1.07, to be compared with 1.36,
0.73, 0.46 and 0.87 for ANN5(OM, Db)G. Overall, the
ANN5(OM, pH)G model seems to be at least as good as
(z-test,p > 0.05 for Luo et al., 1999), if not better (w-test,
p < 0.05 for Oehler et al., 2007, Cosandey et al., 2003) and
Zaman and Nguyen(2010), than the site specific NEMIS
models.

3.3 The BRT5(OM,pH)G and ANN5(OM,pH)G model
response shapes

In Figs. 8 and 9 we show the univariate and bivariate
partial dependence plots for the BRT5(OM,pH)G and
ANN5(OM,pH)G models.

The 95% confidence intervals are displayed in Fig.8.
These reflect both the stability of the results and somehow
the density of the datapoints. Dataset boundaries are shown
in Fig. 8 using rug ticks and in Fig.9 using convex hulls. As
guidelines to evaluate data point distribution, scatter plots of
the combinations ofDa, NO−

3 , WFPS, OM, pH andT are
available in the Appendix D.

Overall, BRT and ANN shown the same trends (Fig.8).
Although not smooth (due to the piecewise constant
approximation), BRT gave more stable results than ANN
(tighter confidence intervals). This may be thanks to the
ensemble approach of the BRT.

3.3.1 Influences ofT and WFPS

The response shapes of WFPS andT (Fig. 8a and 8c)
are similar to the description proposed by NEMIS types of
models. In details, the BRT predicts a small peak around
10◦C. Whatever the values of other variables, there are clear
threshold values: below 10◦C and a WFPS of 50%, predicted
Da rate is very low, and nearly null for WFPS<30%. On
average, at around a WFPS of 80%, 50% of the maximalDa

rate is achieved. The ANN response toT below 5◦C is quite
unstable (high confidence intervals). This may show some
of the limits of the datasets which included no records with
very low or nullT . WFPS andT are always limiting factors
(Fig. 9).

3.3.2 Effects of the substrates NO−3 and OM

Da response to [NO−3 ] variation (Fig.8b) is (also) similar
to NEMIS. BRT and ANN shapes are similar, but the
ANN predicts a higher response, on average. The ANN
partial dependence is also quite unstable (high confidence
intervals). Very low NO−3 concentrations still induce a
relatively high Da. Also, above a [NO−3 ] of 200, and
up to 800 mg N kg−1 soil, the response is not a straight
plateau line, but quickly decreases. Again, this shows
some of the limits of the dataset which included no records
with very low or null [NO−

3 ], and data are very scarce
for [NO−

3 ]>200 mg N kg−1 soil (Fig. 1, top middle panel)
especially around 20◦C.

The response to OM is nearly linear for ANN withDa rate
increasing with OM % (Fig.8d). The BRT presents a stepper
result, with a jump around 7.4%. Looking at Fig.9c, NO−

3
and OM effects seem rather independent and additive. The
behaviour of the model near values of 0 may seem odd. As
we are modelling a non-dynamicDa rate, beside an artefact
effect due to a lack of data (particularly true for low OM),
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Fig. 7. Comparison of BRT5(OM, pH)G, ANN5(OM, pH)G and NEMIS4G (whole dataset withoutHenault and Germon(2000) andRyden
(1983) records)Da prediction performance (independent validation).

the model simply predicts that denitrification starts at very
low levels of [NO−

3 ] and OM. Also some low NO−3 supply
from nitrification process might have also occured, even
if measurements were performed using the C2H2 blockage
technique which in principle should inhibit nitrification. In
practice, when included in a dynamic model the overall
denitrified N will be very low in such conditions, with NO−3
being quickly depleted.

3.3.3 Influence of pH

The partial dependence shapes and location (i.e. the mean
response) for pH are quite different between BRT and
ANN. Though, they display the same trends, and both
show a maximum for a pH of around 7.2 (Fig.8e). The
decrease after this maximum value toward alkaline condition
is supported by few records, and the BRT, and especially the
ANN results are very unstable in this area. For the same

reasons, no strong conclusions can be drawn for ph< 6 (e.g.
an horizontal line from pH 6 to the smallest value can be
drawn inside the 95% confidence intervals). Figure9d and9j
shows the partial dependence of pH with NO−

3 and OM, with
again a maximum around a pH of 7.1. This value is coherent
with what has been found in the literature (seeSimek and
Cooper, 2002). However, looking at the details in Fig.9d,
9g, 9i and9j, this maximum can depend on the conditions, in
particular pH impact seems to be a function ofT (or rather
the other way round, as it is unlikely to see fast variations of
pH in soils), with maximum values going down fromT /pH of
20◦C/7.2 to 10◦C/6.6. These results are also present in the
BRT5(OM,pH)G model. As pH represents different types
of soils, this might be the expression of different micro-
organism populations, or as suggest bySimek and Cooper
(2002), the pH influences many facets of the denitrification
process.
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and so few lines appear in the rug plot of subplot E).

4 Discussion

Our work was first motivated by concerns on the predictive
performances of widely used simplified model such as
NEMIS. The use of ML methods not only provided a more
performant denitrification model, but may have also shed
new light on denitrification processes, especially with respect
to the relative influence of factors and how they interact.

The BRT method has very good predictive performance,
results are relatively stable, easier to interpret and the training
is faster. But we can see some issues for efficient uses as
a predictive model: the model response is not smooth, and
because of portability and mainly computing time issues,
it cannot be easily and efficiently implemented in field or
larger scale models. The ANN calibration method aimed at
reducing the effect of initial conditions by repeating training
and sub-sampling, and by carefully assessing the prediction
performance using bootstrapping. This is relatively time-
consuming but is essential.

Analysing the variable relative influence using ANN with
the PaD approach gave quite variable results with only
one clear influence (NO−3 ). With this technique, using
the ANN alone would have been of little help on this

“noisy” dataset (high denitrification measurement errors).
This may be explained by one of the weakness of ANNs:
they are particularly unstable predictors. Small changes
in the training data set may produce very different models
(Breiman, 1996; Cunningham et al., 2000) and consequently
different performance on unseen data.Breiman (1996)
suggests that these different models may result from the
training of the ANN getting caught in different local minima
in the error surface. This lack of stability is unknown a priori
(it depends on the training dataset) and tends to limit the
generalisation capability or performance of ML (Bousquet
and Elisseeff, 2002). Overall, the usefulness of ANN to
analyse variable influences is limited in certain cases (Olden
et al., 2004).

When applied to Regression Trees or ANNs, ensemble
techniques can produce significant improvements in
generalization capability and, consequently, of the overall
performance (e.g.Pasti et al., 2010; Perrone and Cooper,
1993; Friedman, 2001). There are many different ensemble
techniques, the most popular include bagging (Breiman,
1996) and/or boosting (Schapire, 2003; Freund and
Schapire, 1995). Bagging (for “bootstrap aggregation”) uses
the bootstrap statistical re-sampling technique (Efron, 1987),
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Fig. 9. Mean bivariate partial dependence of ANN5(OM,pH)G models, in mg N kg−1 soil d−1. Dashed lines delineate the presence of data
points, using a generalisation of the convex hull (Gagolewski, 2009).
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to generate multiple training sets and ML sub-models (e.g.
a single regression tree or ANN) for an ensemble. Bagging
has a number of key advantages, one of the most important
is the ease with which confidence intervals can be computed
(Carney and Cunningham, 1999; Tibshirani, 1996). Boosting
is based on an adaptive method to combine many simple
“weak” models to give improved predictive performance
(e.g. AdaBoost,Freund and Schapire, 1995). BRT is an
ensemble version of single regression trees, constructed
using the boosting technique. As such they often provide
a more stable prediction and a more accurate performance
assement than single ANNs. That could explain the clearer
outlook of the results obtain with BRT.

The two ML models perform better than NEMIS on our
extended database (which includes data from uplands and
wetlands in intensive and less intensive agrosystems but with
relatively uniform (loamy) soil types). This is also true for
BRT4(DEA)G and ANN4(DEA)G models (NRMSE of 1.31
and 1.36, z-test,p < 0.05) which use the same inputs as
NEMIS, or even for BRT3G and ANN3G models (using
only the base variables [NO−3 ], WFPS andT , NRMSE of
1.52 and 1.63, z-test,p < 0.05), this later models exhibiting
overall the same trends. To be fair with the NEMIS model,
it is to be noted that NEMIS was originally designed to
use a LDP, which is obviously quite a different method to
evaluate denitrification potential than DEA. However, the
model has been successfully used with DEA measurements
(see Heinen references for more details).To check that the
conjugate gradient method used for NEMIS optimisation
was not underperforming, we also tried other techniques
such as differential evolution, but results did not improve
significantly.

Overall, though presenting ar2 of around 0.78, the
generalization errors (or performances) are still around
110%. The performance seems to be mainly impaired by
the Oehler et al.(2007) dataset. The main characteristics
differentiating this dataset from the others are the presence of
different soils and that measurements have been obtained in
natural conditions (low temperatures), exhibiting the lowest
Da. There might be a real effect not captured by the ML
algorithms or not contained in the tested input variables. It
is also possible that the relatively high measurement errors
associated with low gas concentrations could be the cause
of discrepancies in the prediction performance or reflect a
limitation of the C2H2 blockage technique, especially on
these low drainage soils.

Using a classic independent validation and the NRMSE
score, the generalization error of the model was only assessed
inside the training dataset space. The model should not be
used outside its validity range (so not for extrapolation), and
the results are limited to this range. Of course this is true
for any model, but particularly for ML models which are
strongly nonlinear and often display unrealistic behaviours
outside their domain of validity. Intuitively, the level of
generalization of the model is related to the data density

in each part of the data space. Denser data points are
needed to represent fast gradient change area. Without
external knowledge, we cannot know if the gradients are well
represented: indeed, they are built with the data (training). If
the proposed ANN5(OM, pH)G was to be used, the limits of
its applicability (i.e. the limits of the database) are provided
on Fig. 1, Fig. 8, Fig. 9 and in the Appendix Fig.D1.
The extreme limits (minimum and maximum of each input
variables) are coded into the ANN formula (i.e. the scaled
input values of the input vector should not be outside [0–1]).

The paucity of denitrification measurements (N2 + N2O)
in terrestrial environemnts, and especially in riparian zones,
has been often highlighted (e.g. seeSeitzinger et al., 2006;
Hofstra and Bouwman, 2005; Groffman et al., 1998, 2006;
Haag and Kaupenjohann, 2001; Machefert et al., 2002;
Fisher and Acreman, 2004; Basset-Mens et al., 2006). Our
database was built with measurements using the C2H2
blockage technique, mainly because of the availability of
the data comprising the full set of variables we wanted to
test (e.g. with WFPS, DEA, pH. . . ), in wetland, riparian
and upland terrestrial area. We chose to not mix measures
obtained with different techniques (i.e. the isotope ones).
Consequently this choice excluded notably soils with very
low [NO−

3 ], like forest’s, where denitrification can not be
correctly assessed with the C2H2 technique (Groffman et al.,
2006). Nonetheless, the method we propose can be used with
datasets using the isotope techniques. These measurement
methods are becoming more and more affordable and
widespread (Groffman et al., 2006), and hopefully we will
be able to build better models using these data which have
the potential to span broader environmental conditions with
reduced measurement errors (Bollmann and Conrad, 1997;
Groffman et al., 2006).

At first glance, the BRT and ANN results agree with the
mathematical representation of NEMIS like models, which
were already capturing the main effects (beside pH). In
details, contrary to ML models, NEMIS does not take into
account non-linear variable interactions, such as temperature
impact on each factor, which are more subtle than a linear
effect. This is needed to efficiently simulate denitrification
in real world conditions, where input variables are not at
the higher end of their range (e.g. 20◦C, 100% WFPS,
200 mg N kg−1 soil, 10% OM, pH 7) as often explored in
laboratory-controlled experiments (e.g. the ones used to
build NEMIS). Measurements tend to be less precise as we
measure lowDa rates, and measurement biases and errors
tend to be more impacting (e.g. limit of the sensor sensitivity,
leaks or contaminations becoming more important, impact of
nitrification inhibition if low [NO−

3 ]). ML are less sensitive
to data noise, and this might also explain why they perform
better on the lowDa range.

Overall, we think the main significance of this contribution
is methodological: with ML approaches (or other modelling
approaches like the generalized linear models or the
additive linear models) different experimental design (other
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than controlled laboratory experiments) could be used
to understand processes, especially at larger scales (e.g.
catchment). The better representation of smallDa rates
may also have an impact on our understanding of theN

cycle dynamic at the catchment scale, mainly because the
unsaturated areas can represent the vast majority of the
total surface. As the problem is non-linear and spatial
interactions are crucial, this would have to be thoroughly
tested combining ML with spatially distributed models.

ML approaches are interesting tools to study single
variable effects, and, if enough data is available, they may not
need measurements from experiment specifically designed to
study the impact of separate factors. They are particularly
useful to analyze and design models with data from surveys
based on stratified experiment approaches (i.e. gradients
sampling). As such, when using ML as an analysis tool the
main objective when collecting data is to capture gradients,
the most possible variability in all the variable spaces. To
develop a NEMIS like model, a classic laboratory controlled
experiment where all the variables are fixed but one was
used. Generally, more measurements are needed for a ML
analysis. However data can be obtained from surveys and
not only from manipulative experiments, and may be more
representative of the studied process in his “non-disturbed”
environment. Moreover, interactions are more likely to
be captured. After a ML based analysis, if the process
and variable relationships are better understood, a simpler
mathematical representation can be formuled.

The BRT analysis reaffirms the importance of temperature,
WFPS and NO−3 , and highlights the importance of OM and
pH. Our results and other works (Cosandey et al., 2003;
Simek et al., 2000, 2002) indicate that the relationship
between DEA andDa is unclear. We successfully used
OM instead of DEA without performance loss. This is
consistent with the findings ofCosandey et al.(2003), who
suggested that the proximal factors, available OM, O2 and
NO−

3 , exert a stronger control on denitrification rates than
the size of the denitrifying enzyme pool. As we used the
Cosandey et al.(2003) dataset, we checked separately its
impact on BRT results. It appears that without theCosandey
et al. (2003) data, OM and DEA have the same relative
influences. TheCosandey et al.(2003) dataset shows the
widest OM range and the highest OM values in our database.
As the sampling of the gradients is not uniform across the
datasets, this particular dataset might have biased the results
while representing only 11% of the records. Also DEA
measurements may be less precise than OM measurements.
This might have led the BRT analysis to favour OM, even if it
is relatively resistant to data noise. HoweverCosandey et al.
(2003) dataset presents a larger range of values and there is
no clear trend in favour of DEA without this dataset. More
recently, apart from theCosandey et al.(2003) conclusions,
Miller et al. (2008) suggested thatDa is decoupled from
the denitrifier community abundance. Overall, DEA does
not seem to be a better indicator ofDa rate than OM,

especially in agrosystems where supply of NO−

3 is frequent
and denitrifier communities are already adapted to their
environment. An interesting implication is the integration of
a feedback loop from soil organic carbon long term dynamic.

Another relevant result is related to the effect of pH. This
factor may be the one which has to be taken into account to
differentiate soils. The cause-effect relationship between pH
and denitrification remains unclear, even though a through
review (Simek and Cooper, 2002) has clearly shown that
such an effect is indeed present and should be accounted
for. pH might also be important when estimating N2O
emissions because pH affects the N2/N2O ratio (Firestone
et al., 1980).This would have to be confirmed with a larger
dataset, as the separation of pH andDb may not be sufficient.
We will need to widen the database to other more contrasted
type of soils (with more clay notably) and more records
to fill gaps in the gradients and lessen dataset effects.
This will improve prediction accuracy and increase model
generalization.

BRT and ANN might be promising approaches for
N2O/(N2+N2O) modelling as well (soil N2O emission
modelling with ANN has already been successfully
performed, but not specifically from denitrification;Ryan
et al., 2004). The next obvious step will be coupling the ANN
model to a catchment scale model.

Appendix A

Detailed calibration routines

A1 BRT calibration

The BRT training was done using the R code fromElith et al.
(2008), which uses the package gbm (Ridgeway, 2007). The
methodology used is outlined in the following steps:

1. scaling of input and output variables using the same
procedure as for the ANN calibration.

2. randomly sub-sampling the dataset to give 2 subsets:
Training and Testing (in the proportion 7/8 and 1/8 of
samples). The Training subset is used for the training
(calibration) phase, and the Testing subset is used for
independent validation.

3. training/validation of a BRT using a Gaussian response.

4. steps 2 to 3 were repeated 800 times. This resampling
method enabled us to estimate the distribution of the
performance criterion, provided confidence intervals for
the calibration and prediction process and allowed for
statistical model comparisons (Bootstrapping).

5. as a representative BRT, we selected the one closest to
the mean (bagged) model (distance evaluated using the
RMSE).
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The outputs are used after being transformed back and scaled
back to the original data space (the performance is evaluated
in the original data space).

A2 ANN calibration

The ANN training was done using the package AMORE
(Perńıa-Espinoza et al., 2005). The methodology used is
outlined in the following steps:

1. scaling the input variable:

xi,scaled=
xi −minx

maxx −minx

(A1)

Scaling is not mandatory for the input variables, but can
ease further analysis of the trained ANN weights and
biases.

2. scaling the output variable: a simple linear scaling
(between 0 and 1), a log transformation and an arcsine
transformation of the response variable were tested and
all resulted in similar prediction performance. The
arcsine transformation was finally chosen because it
exhibited a more normal distribution of the residuals
and was not over fitted on the highest values.
Specifically, the arcsine transformation implies:

xi,transformed= arcsine

(√
xi −minx

maxx −minx

)

×
360

2π ×100
(A2)

The principal characteristic of the arcsine
transformation is to stretch the low and high values,
and condense the medium range values. The scaling
between 0 and 1 for the response variable is mandatory
for ANN, as the output of the ANN is between these
values (sigmoid function).

3. randomly sub-sampling the dataset to give 3 subsets:
Training, Validation, Testing (in the proportion 6/8, 1/8,
1/8 of samples). The Training and Validation subsets are
used for the training (calibration) phase, and the Testing
subset is used for independent validation.

4. training/Validation of a feed-forward ANN. The
learning algorithm used was the adaptive gradient
descend with momentum, using the robust Least Mean
Log Square criterion (Liano, 1996). The ANN was
initialized with random weights and bias. Over-training
was controlled by the validation subset.

5. step 4 was repeated 22 times with different initial
conditions of weights and biases. This is necessary
because the initial conditions of the ANN weights and

biases are not neutral and can affect the prediction
accuracy of the algorithm. Specifically, assuming an a
priori normal distribution, we have used the following
approach: (a) we want to be in the 10% best cases (P )
(b) we want to be in that case with a confidence of 90%
(Pconf) That gives n such as:

(1−P)n ≤ PconfH⇒ n ≥ 22 (A3)

Only the best combination of validation and training
NRMSE was retained.

6. steps 3 to 5 were repeated 800 times. The number
of times a step was repeated results from a trade off
between statistical significance and computing time.
This resampling method enabled us to estimate the
distribution of the performance criterion, provided
confidence intervals for the calibration and prediction
process and allowed for statistical model comparisons
(Bootstrapping).

7. as a representative ANN, we selected the one closest to
the mean (bagged) model (distance evaluated using the
RMSE).

The outputs are used after being transformed back and scaled
back to the original data space (the performance is evaluated
in the original data space).

A3 NEMIS calibration

The NEMIS model (using DEA as the denitrification
potential Dp) was calibrated following a methodology
adapted fromOehler et al.(2009) andHeinen(2006a):

1. randomly sub-sampling the dataset to give 2 subsets:
Calibration and Testing (in the proportion 7/8 and 1/8
of samples). The Calibration subset is used for the
calibration phase, and the Testing subset is used for
independent validation.

2. calibration of a NEMIS model (minimising the RMSE
with a gradient descent algorithm).

3. steps 1 to 2 were repeated 800 times. This resampling
method enabled us to estimate the distribution of the
performance criterion, provided confidence intervals for
the calibration and prediction process and allowed for
statistical model comparisons (Bootstrapping).

4. as a representative NEMIS model, we selected the one
closest to the mean (bagged) model (distance evaluated
using the RMSE).
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Appendix B

ANN model equation

The sygmoid transfer function:

G(α) = (1+e−α)−1 (B1)

The full ANN equation:

Da = sin

(
G(Wo ×G(Wh ×X+bh)+bo)

360
2π×100

)2

×1.20057 (B2)

with the input vector

X =



NO−

3 −0.34
759.66

WFPS−17.985
82.015

Temperature−2.5
19.7

OM−1
11.2

pH−5.1
2.9


(B3)

the weight matrix of the hidden layer

Wh =


−12.5941098 1.3397349−0.3600218−1.6165129 1.3481651

5.743649 −4.432043 1.861159 −7.962878 5.469261
5.0120164−1.2927237 0.1530118−1.1013582 −0.262014
−2.301329 −3.834269 −7.255529 2.646514 6.241783

3.334881 −1.879438 10.067627 −1.289163−11.724987
−5.612255 4.181079 −3.514725 −1.067258 −6.007714

 (B4)

and its bias

bh =


−2.512686
0.1410123

−0.5807459
3.895448

−0.01380899
2.363688

 (B5)

the weight matrix of the output layer

Wo = [−7.2950421−2.5771119−0.1618821−4.295324−3.7707312−2.505269]

(B6)

and its bias

bo =
[
4.826489

]
(B7)

In the above,Da is denitrification rate (mg N kg−1 soil d−1),
NO−

3 is nitrate soil concentration (mg N kg−1 soil),
temperature is in (◦C), OM is in organic matter %
(g OM g−1 soil). FigureB1 represent the topology of this
ANN. Figure B2 shows the partial depence of this ANN
model, compared to the mean (bagged) response.

OM

pH

WFPS

T

NO

Output signal

Hidden
node

Hidden
node

Hidden
node

Hidden
node

Hidden
node

Hidden
node

Output
node

3
-

Fig. B1. ANN5(OM,pH)G model [5:6:1] topology. Solid circles
represent neurons and dashed circles represent the inputs.
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Appendix C

List of the abbreviations

ANN Artificial Neural Network
BRT Boosted Regression Trees
C2H2 acetylene
CV Cross-Validation
Da actual Denitrification
Db Bulk density
DEA Denitrifying Enzyme Activity
LDP long term Denitrification Potential
ML Machine Learning
N Nitrogen
N2 Di-Nitrogen
N2O Nitrous Oxyde
NO−

2 Nitrite
NO−

3 Nitrate
NRMSE Normalized Root Mean Squared Error
O2 Di-oxygen
OM Organic Matter
PaD Partial Derivative
SD Soil Depth
T Temperature
WFPS Water Filled Pore Space

Appendix D

Data point distribution in the 5 chosen factors
and response data space

Figure D1 represents the scatterplots of the combination
of Da, NO−

3 , WFPS, OM, pH andT . These can be
used as guidelines to evaluate the domain of validity of the
ANN5(OM,pH)G model.
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Lowrance, R., Peterson, B., Tobias, C., and Drecht, G. V.:
Denitrification across landscapes and waterscapes: a synthesis,
Ecol. Appl., 16, 2064–2090, doi:10.1890/1051-0761(2006)
016[2064:DALAWA]2.0.CO;2, 2006.

Simek, M. and Cooper, J. E.: The influence of soil pH on
denitrification: progress towards the understanding of this
interaction over the last 50 years, Eur. J. Soil Sci., 53, 345–354,
2002.

Simek, M., Cooper, J. E., Picek, T., and Santruckova, H.:
Denitrification in arable soils in relation to their physico-
chemical properties and fertilization practice, Soil Biol.
Biochem., 32, 101–110, 2000.

Simek, M., Jisova, L., and Hopkins, D. W.: What is the so-called
optimum pH for denitrification in soil?, Soil Biol. Biochem., 34,
1227–1234, 2002.

Smith, M. and Tiedje, J.: Phases of denitrification following oxygen
depletion in soil, Soil Biol. Biochem., 11, 261–167, 1979.

Smits, J. R. M., Breedveld, L. W., Derksen, M. W. J., Kateman,
G., Balfoort, H. W., Snoek, J., and Hofstraat, J. W.: Pattern
classification with artificial neural networks: classification of
algae, based upon flow cytometer data, Anal. Chim. Acta, 258,
11–25, 1992.

Sogbedi, J., van Es, H., and Huton, J.: N fate and transport under
variable cropping history and fertilizer rate on loamy sand and
clay loam soils: I. Calibration of the LEACHM model, Plant
Soil, 229, 57–70, 2001.

Suen, J. P. and Eheart, J. W.: Evaluation of neural networks for
modeling nitrate concentrations in rivers, J. Water Res. Pl.-Asce,
129, 505–510, 2003.

Telszewski, M., Chazottes, A., Schuster, U., Watson, A. J., Moulin,
C., Bakker, D. C. E., Gonźalez-D́avila, M., Johannessen, T.,
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