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2Laboratoire Evolution et Diversité Biologique, UMR 5174 (CNRS/Universite Paul Sabatier Toulouse 3),
31062 Toulouse, France
3Environmental Change Institute, School of Geography and the Environment, Oxford University,
South Parks Road, Oxford, UK
4Centre d’Etudes Spatiales de la Biosphère, UMR 5126 (CNRS/CNES/IRD/UPS), Toulouse, France
* now at: Universit́e Paris Diderot-Paris 7, Paris, France

Received: 7 April 2010 – Published in Biogeosciences Discuss.: 29 April 2010
Revised: 31 August 2010 – Accepted: 17 September 2010 – Published: 6 October 2010

Abstract. Dynamic Vegetation Models (DVMs) simulate en-
ergy, water and carbon fluxes between the ecosystem and
the atmosphere, between the vegetation and the soil, and
between plant organs. They also estimate the potential
biomass of a forest in equilibrium having grown under a
given climate and atmospheric CO2 level. In this study,
we evaluate the Above Ground Woody Biomass (AGWB)
and the above ground woody Net Primary Productivity
(NPPAGW) simulated by the DVM ORCHIDEE across Ama-
zonian forests, by comparing the simulation results to a large
set of ground measurements (220 sites for biomass, 104 sites
for NPPAGW). We found that the NPPAGW is on average
overestimated by 63%. We also found that the fraction of
biomass that is lost through mortality is 85% too high. These
model biases nearly compensate each other to give an aver-
age simulated AGWB close to the ground measurement aver-
age. Nevertheless, the simulated AGWB spatial distribution
differs significantly from the observations. Then, we analyse
the discrepancies in biomass with regards to discrepancies in
NPPAGW and those in the rate of mortality. When we cor-
rect for the error in NPPAGW, the errors on the spatial varia-
tions in AGWB are exacerbated, showing clearly that a large
part of the misrepresentation of biomass comes from a wrong
modelling of mortality processes.
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(nicolas.delbart@lsce.ipsl.fr)

Previous studies showed that Amazonian forests with high
productivity have a higher mortality rate than forests with
lower productivity. We introduce this relationship, which re-
sults in strongly improved modelling of biomass and of its
spatial variations. We discuss the possibility of modifying
the mortality modelling in ORCHIDEE, and the opportunity
to improve forest productivity modelling through the inte-
gration of biomass measurements, in particular from remote
sensing.

1 Introduction

Tropical rainforests play a crucial but poorly known role in
the global carbon cycle (Malhi and Grace, 2000). Deforesta-
tion and forest degradation contribute significantly to CO2
emissions to the atmosphere and are equivalent to about 15–
25% of fossil fuel emissions (IPCC, 2007; Le Quéŕe et al.,
2009). There is also strong evidence that undisturbed Ama-
zonian and African tropical forests are currently a sink of
carbon as they are accumulating more biomass (Stephens et
al., 2007; Lewis et al., 2009a; Phillips et al., 2004; Lewis et
al., 2009b; but see Jacobson, 2007). The mechanisms behind
this carbon sink are subject to debate (Lewis et al., 2009;
Körner, 2009): the carbon sink could be due to photosynthe-
sis stimulation by increasing atmospheric CO2 rate (Phillips
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et al., 2008; Gloor et al., 2009; Ciais et al., 2007) or to regen-
eration from earlier disturbance (Chave et al., 2008).

Diagnosing the carbon balance of tropical forests should
rely on robust and repeated biomass estimations at large scale
(Houghton, 2005; DeFries et al., 2001), but until recently
maps of biomass stock in Amazonia retrieved from remote
sensing, ground measurements or modelling showed striking
differences (Houghton et al., 2001). Recently, advances com-
bining field data, remote sensing techniques and innovative
statistical methods have provided new insights on the distri-
bution of Above Ground Woody Biomass (AGWB) in Ama-
zonia (Malhi et al., 2006; Saatchi et al., 2007). In the future,
dedicated remote sensing mission such as the BIOMASS
mission (ESA, 2008; Le Toan et al., 2010) will provide con-
sistent, global, and gridded AGWB dataset at spatial resolu-
tion of 100 m, and will allow monitoring forest biomass lost
due to disturbances and ensuing biomass increment. Con-
sistency among recent maps suggests that the important re-
gional variation in AGWB across Amazonia is not an arte-
fact of measurement methods. Biomass distribution results
from variations both in the tree allometry (Chave et al., 2005)
and in wood density (Baker et al., 2004). It was also found
that wood density, stem turnover, and productivity co-vary:
the species with higher productivity have lower wood den-
sity and higher turnover rate. As a result, highest biomass
stores are found for sites with lower turnover rates (Malhi et
al., 2006).

Hypotheses about future carbon balance of Amazonian
forests may be formulated using ecosystem models. One
General Circulation Model coupled with a Dynamic Vege-
tation Models (DVM) predicted massive biomass loss dur-
ing the 21st century induced by reduced precipitation (Cox
et al., 2001; Huntingford et al., 2008), in line with results
from ecosystem manipulation experiments (Nepstad et al.,
2007), although most climate models showed a more mod-
erate intensification of seasonal drought (Malhi et al., 2009).
DVMs compute energy, water and carbon fluxes between the
ecosystem and the atmosphere, between the vegetation and
the soil, and among plant organs. Most DVMs employ the
concept of an “average plant” (but see e.g. Sato et al., 2007).
For each average plant organ, a DVM simulates the carbon
input (primary production allocated to the organ, transloca-
tion from another organ) and output (mortality or senescence,
translocation to another organ). Under a constant climate and
atmospheric CO2 level, a DVM reaches a steady-state equi-
librium at which carbon inputs and outputs for each compart-
ment balance each other on the long term. Depending on the
study ecosystem, this equilibrium may be reached after sev-
eral decades or centuries of simulation. Thus, DVMs simu-
late the potential climax biomass of a mature forests having
grown under a given climate and atmospheric CO2 level.

By construction, any increase in primary productivity
driven by climatic gradients or temporal changes (nitrogen
deposition or CO2 increase) should result in an increase in
biomass stock in a DVM. In a recent synthesis of ground

based measurements of above ground biomass and net pri-
mary productivity allocated to the above ground parts of the
plants, Keeling and Phillips (2007) showed that this premise
is unrealistic. Specifically, they found that biomass stock
is not linearly related to the productivity of tropical forests.
Considering a range of sites, above-ground biomass shows a
hump-shaped variation with productivity, as sites with high
productivity (high carbon input) also have high turnover
(high carbon output). To faithfully depict future trends in
tropical forest biomass stocks, a DVM should correctly sim-
ulate both woody productivity and mortality fluxes. Some
DVMs (e.g. Moorcroft et al., 2001) simulate temporal vari-
ations in mortality with forest regeneration (pioneer species
have a high turnover rate) or drought that increases mortal-
ity. Still, such DVMs are unable to reproduce the regional
variation of biomass in Amazonia, the highest biomass levels
being obtained in North West Amazonia (Huntingford et al.,
2008) whereas ground measurements show higher biomass
level in central Amazonia or Guyana (Malhi et al., 2006).
Thus, the initial conditions of the simulations predicting for-
est dieback with lower precipitation do not match the obser-
vations.

In this study, we evaluate the spatial variations in
the biomass across the Amazon simulated by the OR-
CHIDEE DVM (Krinner et al., 2005). In ORCHIDEE, con-
trarily to other DVM (Sato et al., 2007), individuals are not
represented and forests are considered as one average tree.
Photosynthesised carbon remaining after plant maintenance
and growth respiration computation is distributed to leaf,
above ground wood, below ground wood, fine roots, fruits
and reserves. Primary production and allocation of carbon
are ruled by process-oriented schemes (Friedlingstein et al.,
1999; Krinner et al., 2005). However, the loss of biomass
through mortality is modelled very simply: every year a fixed
fraction of the total carbon in wood is lost to litter. The mor-
tality rate is defined as the inverse of the time of residence
of carbon in wood, which is constant and prescribed. As
there is no spatially explicit individual-based representation
and as there is one carbon reservoir for trunks and branches,
the time of residence of carbon in wood is equivalent to the
average tree lifespan within this model framework.

Our first objective is to explore why DVMs fail to provide
spatial gradients in AGWB under the current climatic con-
ditions. Using a large set of AGWB observations, we show
that the DVM ORCHIDEE outputs do not match empirical
observations of regional variation in biomass over Amazo-
nian forests. We analyse the discrepancies between model
outputs and data with regard to discrepancies in carbon input
to above ground wood and in the rate of mortality. We then
test the idea of relating mortality to productivity as it is sug-
gested by empirical evidence from the field data (Malhi et
al., 2004). We discuss the consequences of this modification
in predicting the spatial distribution of Amazonian biomass
stores, and discuss possible improvements in the mortality
module of DVMs.
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Our second objective is to explore the opportunity to im-
prove forest productivity modelling through the integration
of more accurate and spatially explicit observations on forest
biomass stocks from satellite remote sensing. Here we dis-
cuss the use of future BIOMASS satellite data to constrain
the carbon fluxes simulated by a DVM for mature forests.

2 Material and methods

2.1 ORCHIDEE

ORCHIDEE (Krinner et al., 2005) is a dynamic vegetation
model. It is the result of the coupling of the SECHIBA land-
surface scheme (Ducoudré et al., 1993), which is dedicated to
surface energy and water balances, and the carbon and veg-
etation model STOMATE that calculates the carbon fluxes
between the atmosphere, the vegetation and the soil. A third
component is the vegetation dynamics module that calculates
the spatial distribution of vegetation types, but it is not acti-
vated in our simulations as we prescribe the evergreen tropi-
cal vegetation type.

In this study we concentrate on the carbon dynamics
sub-model STOMATE. In this model, Net Primary Produc-
tion (NPP) is modelled as Gross Primary Production (GPP
the amount of atmospheric carbon assimilated by photo-
synthesis) minus autrotrophic respiration (Ra). Both her-
bivore grazing of NPP (Keeling and Phillips, 2007), and
Volatile Organic Compounds emission of C to the atmo-
sphere (Kesselmeier et al., 1999) are ignored. NPP is allo-
cated to several vegetation organs or compartments: above
ground wood (AGW), below ground wood (BGW), fine
roots, leaves, fruits and non structural reserve carbon stores.
Organs lose carbon through mortality or senescence. The
amount of biomass allocated to each organ is calculated from
the following equation:

NPPorgan = falloc−organ × NPP (1)

with NPPorgan and NPP expressed in tonsC/ha/year, and
falloc−organ being a dimensionless fraction ranging from 0
to 1.

At yearn, AGWB is given (in tonsC/ha) by:

AGWB (n) = AGWB (n − 1) (2)

+ NPPAGW (n − 1) − mortality (n − 1)

where mortality (in tonsC/ha/year) equals

mortality (n − 1) =
AGWB (n − 1)

tresidence
, (3)

with tresidence(in years) being the time of residence of carbon
in wood. Note that the inverse oftresidenceis equal to the
rate of mortality, i.e. the fraction of AGWB lost annually via
mortality.

Then,

AGWB (n) = AGWB (n − 1) ×

(
1 −

1

tresidence

)
(4)

+ NPPAGW (n − 1).

Further details about the calculation of GPP,Ra and
falloc−organ are provided in Krinner et al. (2005). The value
of tresidenceis prescribed and constant, set equal to 30 years
for the tropical forest biome.

Our objective is to test these assumptions for undisturbed
tropical forests. Thus we fixed the length of the simulations
(Nyears) to 206 years (from 1801 to 2006), after checking
that biomass stores equilibrate after 100 years.

2.2 Field data

Locations of ground observations are shown in Fig. 1.

2.2.1 Biomass

Ground-based above ground woody biomass measurements
across 220 Amazonian forest sites were taken from Malhi et
al. (2006). Some of these values were directly derived from
individual tree diameter data using the allometric relation-
ship of Baker et al. (2004) that incorporates wood density
information. At other sites where only plot-level basal area
information was available, AGWB estimates were derived
from an allometric model that relates AGWB to basal area
measurements and correcting for variations in wood density.

2.2.2 Woody NPP and residence time

Net primary production allocated to aboveground wood
(NPPAGW) was estimated for 104 Amazonian forest sites by
Malhi et al. (2004), based on dendrometric measurements
conducted at the same site during two or more censuses.
Only trees that reached the minimal census size of 10 cm dbh
were considered. Specifically, NPPAGW is the sum of two
components: 1/ the individual tree biomass increment mea-
sured during the interval (inferred from the increment in
basal area), plus 2/the mass of trees recruited during the inter-
val. A census-interval correction was introduced to account
for trees that recruited, grew and died between censuses.
The conversion from the basal area increment to biomass in-
crement incorporates wood density estimates (Baker et al.,
2004). As all sites did not have all necessary information,
the correction due to wood density was determined empiri-
cally and applied to the available data (see details in Malhi et
al., 2004). Malhi et al. (2004) also provided estimates of the
residence time of carbon in tree woody biomass, defined by
the ratio of AGWB to NPPAGW.

2.2.3 Leaf and fruit allocation

Assuming that the forest canopy biomass is in equilib-
rium, NPP allocation to leaf and fruit was inferred from the
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Fig. 1. Locations of ground observations. Black triangles: above ground woody biomass (Malhi et al., 2006). Green dots: above ground
woody NPP (Malhi et al., 2004). Red diamonds: allocation fractions (Aragão et al., 2009). Blue squares: leaf and fruit allocation (Chave et
al., 2010).

corresponding litterfall for 62 (leaf) and 51 (fruit) sites from
Chave et al. (2010).

2.2.4 Complete allocation pattern

For ten sites ranging across lowland Amazonia, Aragão et
al. (2009) estimated the total NPP and its partitioning among
organs, including coarse and fine roots.

2.3 Climatic data

The climate dataset CRU-NCEP used for driving OR-
CHIDEE in this study is a combination of two existing
datasets: the CRU TS.2.1 0.5◦

× 0.5◦, (Mitchell and Jones,
2005) monthly climatology covering the period 1901 to 2002
and the NCEP reanalysis 2.5◦

× 2.5◦ 6 h time step begin-
ning in 1948 and available in near real time (Kalnay et al.,
1996). The processing (see appendix A) of CRU-NCEP aims
at building a climatic dataset at 0.5◦

× 0.5◦ spatial resolution,
which keeps the diurnal and daily variability of NCEP and
the monthly averages from CRU and which covers the pe-
riod from 1901 until now. We used the climate data from
years 1901–1950 repeatedly to simulate the forest growth
over 1801–1900.

2.4 Statistical analysis of ORCHIDEE results

We ran ORCHIDEE at each site where ground measure-
ments were available. We averaged the model outputs over
the last 50 years of the simulations. We tested a shorter
period (10 years) and showed that this had no impact on
the interpretation of results. We analyzed the model output

variables AGWB, NPP, NPPorgansseparately in order to eval-
uate their mean values, their range and their spatial distri-
bution. We used the statistical indicators as formulated in
Willmott (1982).

2.5 Impact of correcting NPPAGW while keeping a
prescribed t residence

AGWB reaches equilibrium when NPPAGW and mortality
compensate each other on average over several years. Equi-
librium AGWBmax is thus defined as :

AGWBmax = NPPAGW × tresidence (5)

Here the objective is to determine the potential impact on
the equilibrium AGWBmax of improving the modelling of
NPPAGW while preserving a prescribed mortality rate. For
this purpose, we apply a multiplicative correction ontresidence
to make it equal to the average value from the ground
measurements and we report this correction on AGWBmax
through Eq. (5). Then we test two types of correction on
NPPAGW, and evaluate their impact similarly through Eq. (5).

– First, we test the effect on AGWBmax of removing the
average bias on NPPAGW that was found from the sta-
tistical analysis. This allows testing of what would be
the simulated AGWBmax by adjusting the model param-
eters while keeping the same formulations.

– Second, we correct the site specific bias on NPPAGW.
This allows testing what would be the modelled
AGWBmax if NPPAGW and therefore all processes

Biogeosciences, 7, 3027–3039, 2010 www.biogeosciences.net/7/3027/2010/
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Fig. 2. Comparison of ORCHIDEE outputs with ground measurements.(a) Above ground woody biomass (AGWB);(b) Net Primary Pro-
duction allocated to above ground wood (NPPAGW). (c) AGWB against NPPAGW from ORCHIDEE and ground measurements.(d) AGWB
against longitude for latitude between 2◦ north and 10◦ south, from ORCHIDEE and ground measurements. Ground measurements are from
Malhi et al. (2004, 2006). For each x-axis class: the vertical box represents the 25 and 75 percentiles; median in represented by a light line;
average is represented by a bold line; whiskers extremities show the minimum and maximum values. In (c) and (d), red is for ORCHIDEE
outputs and black for the ground measurements. The width of the box is reduced by half if less than 5 sites belong to a specific x-axis class.

involved in photosynthesis, respiration and alloca-
tion were perfectly modelled. Remaining errors on
AGWBmax come from the mortality only, which in this
case is defined from a constanttresidence.

2.6 Introducing a new mortality model

tresidenceis given by Eq. (5) where AGWBmax is the equi-
librium AGWB. Across Amazonia, AGWBmax may change
with variations in species distribution, climate and soil prop-
erties. Consequently, AGWBmax could also spatially vary
with ecosystem productivity such that:

AGWBmax = K × NPPα
AGW (6)

Then tresidenceis obtained combining Eqs. (5) and (6) such
that:

tresidence= K × NPPα
AGW × NPP−1

AGW (7)

α is the parameter that quantifies the variations in AGWBmax
with NPPAGW. If AGWBmax were not related to NPPAGW,

α would be equal to 0. If AGWBmax were proportional to
NPPAGW, the residence time would be fixed andα would
be equal to 1 as in current ORCHIDEE parameterisation. If
AGWBmax decreased with NPPAGW, α would be negative.

We evaluateK and α by minimizing the average abso-
lute difference between Eq. (7) andtresidencefrom Malhi et
al. (2004) for the NPPAGW values provided. We then apply
Eq. (6) first to retrieve AGWB from ground measurements of
NPPAGW, second to retrieve NPPAGW from ground measure-
ments of AGWB.

3 Results

3.1 Evaluation of AGWB and NPPAGW simulated by
ORCHIDEE

Using ORCHIDEE’s original parameters, we compared the
model outputs with ground measurements. On average,

www.biogeosciences.net/7/3027/2010/ Biogeosciences, 7, 3027–3039, 2010
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Table 1. comparison of ORCHIDEE outputs (AGWB in tonsC/ha, NPP and NPPorgansin tons C/ha/year) with ground measurements.

NPP

AGWB NPPAGW NPPLeaf NPPFruit NPPFruit + Leaf NPPAGW NPPBGW NPPFine root Total NPP

Source of Malhi et Malhi et Chave et Chave et Aragão et Arag̃ao et Arag̃ao et Arag̃ao et Arag̃ao et
ground data al., 2006 al., 2004 al., 2010 al., 2010 al., 2009 al., 2009 al., 2009 al., 2009 al., 2009

N 220 100 62 51 10 10 10 10 10
Obs Mean 146.62 3.04 2.72 0.31 4.33 3.71 0.61 4.07 12.83
Model Mean 138.83 4.96 1.79 1.00 2.71 5.05 1.28 0.64 9.68
RMSEs 29.87 2.01 1.25 0.72 1.96 1.51 0.70 3.83 3.98
RMSEu 16.71 0.6 0.18 0.12 0.28 0.52 0.13 0.17 1.02
RMSE 34.23 2.1 1.26 0.73 1.98 1.60 0.71 3.84 4.11
Slope 0.07 0.25 −0.01 −0.01 −0.01 0.10 0 0.04 0.01
Intercept 129.14 4.21 1.81 1.01 2.75 4.68 1.28 0.46 9.54
R 0.12 0.32 −0.04 −0.01 −0.04 0.14 0 0.42 0.03

the simulated AGWB was close to the ground measure-
ment (Fig. 2a), but the simulated NPPAGW was too high
(Fig. 2b, Table 1). We found that to set the AGWB to real-
istic values, the overestimation of NPPAGW was balanced by
an overestimation of the mortality rate (3.33% year−1 given
tresidence= 30 years). This rate assumed in ORCHIDEE was
higher than observed on average at the ground measurement
sites (1.8% year−1 as averagetresidence= 55 years).

Despite overestimation of NPPAGW (Fig. 2, Table 1), total
NPP (above and below ground) was found to be underesti-
mated by 25% (Fig. 3a). This is explained by the fact that
the allocation fraction to above ground wood was overesti-
mated (Fig. 3b, Table 1) in the model compared to empirical
data (Arag̃ao et al., 2009; Chave et al., 2010). Allocation
to below ground wood and to fruits was also overestimated
(Fig. 3b–c, Table 1). By contrast, allocation to leaves was un-
derestimated by 34%, and allocation to fine roots by 84% in
ORCHIDEE. For none of the tested parameters was there ei-
ther a significant correlation or a linear regression slope that
is close to 1 (Table 1), showing the model cannot reproduce
the observed spatial patterns. The simulated NPPleaf + fruit
is equal to 0.54 NPPAGW, whereas the ground measurements
indicate that NPPleaf + fruit = 1.67 NPPAGW on average.

The spatial distribution of AGWB across the Amazon for-
est, as modelled by ORCHIDEE’s default parameters, dif-
fered from empirical observations, with a peak in AGWB
in western Amazonia while ground measurements showed
maximum AGWB in central Amazonia (Fig. 2d). Simulated
AGWB increased with NPPAGW in contrast to direct obser-
vations (Fig. 2c). In the following we explore how much of
this is explained by the fact thattresidenceis constant in OR-
CHIDEE, whereas the ground measurements data show that
it decreases with increasing NPPAGW.

3.2 Impact on AGWB of correcting NPPAGW while
keeping a constant mortality rate

First, we corrected the model outputs by de-biasing NPPAGW
and fixing tresidenceas the average of the ground measure-
ments. This correction corresponds to what could be imple-
mented in ORCHIDEE by only adjusting model parameters
while keeping the logic of a constant rate of mortality. The
average AGWB was still close to the average of ground mea-
surements. However, as the mortality was assumed to be con-
stant, there was no improvement in the spatial distribution of
AGWB compared to results in Fig. 2.

Second, we corrected the model outputs by forcing
NPPAGW with the data while keeping a constanttresidence
(55 years). This test allowed assessment of the error coming
from tresidencealone avoiding all errors on NPPAGW coming
from the modelling of GPP, autotrophic respiration, alloca-
tion and uncertainties in the climatic data. The model-data
discrepancies in spatial distribution of AGWB are then exac-
erbated (Fig. 4). This indicates that improving the modelling
of GPP, respiration and allocation would lead to a worse dis-
tribution of AGWB in the absence of improvement in the
mortality model.

3.3 Impact on AGWB of a residence time in wood
governed by NPPAGW

We found that the best empirical fit for the relationship
betweentresidenceand NPPAGW gave anα value of −0.32
(Figs. 5 and 6). This indicates a slight decrease in AGWBmax
with increasing NPPAGW. This differs significantly from the
valueα = 1 that corresponds to the fixed mortality rate im-
plemented in ORCHIDEE.

We then derived AGWB from Eq. (6) applied to the ob-
servations of NPPAGW. The regional distribution of AGWB
matched better to the observations than with a fixed mortality
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Fig. 3. Comparison of ORCHIDEE allocation with ground mea-
surements.(a) Total Net Primary production;(b) Fraction of allo-
cation of total NPP between organs (falloc−organs): Above Ground
Wood (AGW), Leaf and fruit, Coarse Roots, Fine Roots(c) NPP
allocated to leaf and fruit. Ground measurements for (a) and (b)
are for 10 sites (Arag̃ao et al., 2009). Ground measurements for (c)
are based on litterfall measurements made for 62 sites (Chave et al.,
2010). For each x-axis class: the vertical box represents the 25 and
75 percentiles; median in represented by a light line; average is rep-
resented by a bold line; whiskers extremities show the minimum
and maximum values. In (b) and (c), red is for ORCHIDEE outputs
and black for the ground measurements.

rate (Fig. 7a and c). Hence, inferringtresidencefrom NPPAGW
resulted in a clear improvement for most of the sites in our
dataset compared to the results presented in Fig. 4. Then,
we derived NPPAGW from Eq. (6) applied to ground obser-
vations of AGWB. The retrieved NPPAGW given AGWB be-
came close to the observations (Fig. 7b and d). This shows
that direct observations of AGWB may be used to constrain
both NPPAGW and mortality in a DVM.

4 Discussion and outlook

Here we have demonstrated that the predictions of a DVM
over the Amazon were incorrect in two major respects: the
spatial distribution of AGWB did not match empirical ob-
servations, and the model assumed a too high turnover (both
NPPAGW and mortality). One major finding is that mortality
rate is as important as net primary productivity and allocation
in determining spatial gradients of above ground biomass,
and that calculating the mortality as a constant fraction of the
standing biomass prevents correct simulation of the spatial
variations in above ground biomass. We then proposed an al-
ternative strategy to account for these biases, which consists
in relating mortality to NPPAGW on the basis of empirical
evidence. This was effective to explain and reproduce partly
the variations in AGWB of our dataset. We acknowledge this
strategy should be tested over an independent dataset in the
future, for example in central Africa.

Here, we calculated the mortality rate from a long term
averaged NPPAGW. This approach is probably only valid for
the near-equilibrium context of mature, old growth forests.
Two examples of where this equilibrium validity breaks
down are given below. First, immediately after disturbance
pioneer species with high turnover rate are favoured over
late-successional ones. Thus,tresidenceshould be smaller dur-
ing the first years of simulation (Moorcroft et al., 2001). We
expect that this should not affect steady-state biomass in a
big leaf model such as ORCHIDEE but any forest that is cur-
rently recovering from a recent disturbance would not match
perfectly with ORCHIDEE’s predictions. Second, mortal-
ity increases as a consequence to drought stress (Nepstad et
al., 2007). ORCHIDEE would simulate realistically the de-
crease in primary productivity in case of drought, but then
Eq. (7) would lead to a decrease of the mortality rate, which
is at odds with observations during the 2005 drought in the
Amazon (Phillips et al., 2009). Then, the background mor-
tality rate as modelled by Eq. (7), which appears from our re-
sults necessary to reproduced regional variations in AGWB,
should be modulated by short term variations where mortal-
ity increases in case of adverse climate conditions in order
to simulate temporal variations in AGWB. However, mod-
erate and progressive decrease in precipitation may favour
slow-growing species, with a low turnover rate and a high
biomass. This point was ignored in previous Amazonian for-
est dieback simulations (Cox et al., 2004; Huntingford et al.,
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Fig. 4. Impact of forcing NPPAGW while keeping a constant mortality rate. Same legend than Fig. 2 except that we use the only 72 sites for
which we have both ground measurements of NPPAGW and AGWB.

2008) and could be modelled through Eq. (7). Nevertheless,
as indicated by the observations of current biome spatial dis-
tribution (Malhi et al., 2009b), forest might be replaced by
savannah if a large decrease in precipitation is experienced
in the future in the Amazonian region.

Soil type is an important factor influencing NPPAGW and
tresidence, as shown in Fig. 8. For example, forests with low
NPPAGW and long tresidenceare favoured on older oxisol,
whereas forests with high NPPAGW and shorttresidenceare
favoured on entisol. Based on ground measurements, Que-
sada et al. (2009) analysed the impact of soil properties on
the mortality rate and on NPPAGW. The mortality rate was
found essentially influenced by the soil physical properties
(topography, soil depth, structure), whereas NPPAGW was
found primarily driven by fertility parameters, essentially
phosphorus availability. The authors proposed that AGWB
gradients can be explained by the ecosystem dynamics that
is essentially driven by these soil properties. In Western
Amazonia, poor soil physical properties (steep slope, shal-
low soils) favour high mortality rate, which favours early-
successional species with low wood density, whereas the
high phosphorus availability induces higher NPPAGW. In
contrast, in central Amazonia, ecosystems are less dynamic,

with better soil physical properties and lower fertility induc-
ing respectively a lower mortality rate and a lower NPPAGW.
These two factors favour high wood density late-successional
species, which ends up in higher AGWB. Equation (7) is
in line with this explanation, as long as physical properties
and fertility properties co-vary, which appears to be the case
from the soil properties measurements reported in Quesada
et al. (2010).

This strong influence of soil properties could be a key issue
when modelling the future evolution of Amazonian forests
under a climate change scenario, as soil type may limit
the floristic composition change that we suggest to model
through Eq. (7). However, this may also allow deriving maps
of averagetresidence, NPPAGW and thus AGWB from a soil
type map.

A negativeα value is consistent with the observation that
slow growing forests as in central Amazonia have higher
biomass than the fast growing forest as in Western Amazonia.
However we cannot exclude that this apparent trend is af-
fected by AGWB or NPPAGW measurement errors. Ifα were
equal to zero, observed spatial variations of biomass would
be independent of NPPAGW. Then, this would mean that a
DVM that would perfectly simulate carbon fluxes could at
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best give an AGWB that is spatially constant. In this case,
biomass observations such as those from remote sensing
could be used to estimate the K value (that would vary spa-
tially independently from productivity) from Eq. (6) and then
establish the relationship between mortality and NPPAGW
from Eq. (7).

Our results show clearly that anα value of 1, which is
equivalent to the mortality calculation as it is done in OR-
CHIDEE, cannot explain the patterns in the data for the
Amazonian forests. However, we found that keepingα equal
to 1 does not prevent from reproducing spatial variations in
AGWB for temperate and boreal forests biomes (not shown).
In fact, as AGWB displays a hump-shaped variation with
productivity when analysed over a range of biome types
(Keeling and Phillips, 2007), it is unlikely that Eq. (7) ap-
plies to many other biomes, if any.

Implementing the new mortality computation requires that
NPPAGW was modelled correctly. In ORCHIDEE, the pri-
ority in order to improve NPPAGW is to reduce the fraction
of allocation to wood and distribute more carbon to leaves
and fine roots. At high leaf area values, the DVM tends to
allocate more carbon to wood in order to simulate the com-
petition for light. However, under the current formulation of
the allocation pattern, limitation by water or nutrients can-
not be larger than the limitation by light for high leaf area
index forests. Thus excessive carbon is allocated to wood
for our evergreen tropical forest simulations. Model parame-
ters should be adjusted to make the modelled allocation frac-
tions to the different organs fall within the intervals given
by the ground measurements. Non-linear effects in all fluxes
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Fig. 6. Average absolute difference (years) between the computed
tresidence(from Eq. 7) and the ground measurements (Malhi et al.,
2004) in a systematic exploration of the values ofα and K.

must be expected as reallocating carbon to leaf and fine roots
would stimulate photosynthesis and increasing water con-
sumption by plants.

Thanks to the new formulation of mortality and because
α was found different from zero, observations of AGWB can
constrain NPPAGW andtresidence. While the retrievedtresidence
could be directly ingested by the model, correcting a DVM
in order to reach the NPPAGW value retrieved from AGWB
would not be trivial. It may involve a combination of possi-
ble corrections on parameterisation of photosynthesis, respi-
ration and allocation. Then, adjusting the model should re-
spect some constraints. First, Carbon Use Efficiency (CUE,
which is the ratio of NPP to GPP) should remain close to the
0.30–0.35 values derived from carbon cycling studies made
in Amazonian mature forests (Malhi et al., 2009) as it is the
case in current ORCHIDEE simulation (CUE = 0.36). Sec-
ond, carbon allocation should fall in the intervals given by
the ground measurements. Then, because photosynthesis
increases with nutrient availability (Davidson et al., 2004;
Quesada et al., 2009), and because allocation does not seem
to vary with it (Arag̃ao et al., 2009), model photosynthesis
parameters could be adjusted to reach the NPPAGW value
derived from AGWB and Eq. (7). Forcing the model with
biomass observations may thus help accounting implicitly
for phosphorus limitation and other NPP controlling factors
in a model like ORCHIDEE, or constrain the modelling of
the nitrogen cycle in DVMs (Zaelhe et al., 2010). The use
of biomass data to constraint the processes modelled in OR-
CHIDEE remains speculative, but the constraint on NPPAGW
looks robust from our results (Fig. 7b and d). It is ex-
pected that biomass increments estimated by satellites such
as the proposed BIOMASS mission (Le Toan et al., 2010)
at several year interval could be used to infer NPPAGW for
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regenerating forests. Our results suggest that remote sens-
ing biomass maps would allow rescaling of NPPAGW and
mortality simulated by a DVM for forests for which there
is no visible biomass increment, i.e. for mature undisturbed
Amazonian forests, if the accuracy is good enough to dis-
criminate biomass within the 120–180 tC/ha range. As it will
have a spatial resolution of 100 m, satellite biomass measure-
ment may help in inferring intra grid-cell variability in car-
bon fluxes. Finally, it will allow forcing the initial conditions
of DVM simulations under future climatic scenarios.

Appendix A

Details on the climate dataset

The two source datasets (CRU and NCEP) overlap between
1948 and 2002, thus the data is processed differently for three
periods:

– Between 1948 and 2002 our dataset is based on CRU
climatology, and NCEP is then used only to generate
the diurnal and daily variability. The NCEP is first
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interpolated to 0.5◦ × 0.5◦ resolution of CRU. CRU pro-
vides a cloudiness that is converted to incoming solar ra-
diation based on calculation of clear sky incoming solar
radiation as a function of date and latitude of each pixel.
Likewise the relative humidity is converted to specific
humidity as a function of temperature and surface pres-
sure.

– For years after 2002, we calculate the difference be-
tweenMx−M2002whereMx is the mean monthly value
for NCEP for yearX andM2002the mean monthly value
for NCEP for year 2002. Then we add these monthly
differences to the CRU 2002 monthly temperature be-
fore performing exactly as for the 1948–2002 period.

– For years before 1948, the procedure is the same as for
1948–2002 except that for variability we use data from
year 1948 and then the same variability is applied every
year.

From CRU data only rainfall, cloudiness, relative humidity
and temperature are available. For the others fields (pressure,
longwave incoming radiation, windspeed) we directly used
the information coming from NCEP re-interpolated on the
0.5◦

× 0.5◦ grid. Before 1948 we took the value from 1948
(hence there is no interannual variability for these fields).

For a complete description of the dataset seehttp://dods.
extra.cea.fr/data/p529viov/cruncep/readme.htm.
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Meir, P., Monteagudo, A., Patiño, S., Pẽnuela, M. C., Prieto, A.,
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Yamakura, T.: Tree allometry and improved estimation of car-
bon stocks and balance in tropical forests, Oecologia, 145, 87–
99, 2005.

Ciais, P., Janssens, I., Shvidenko, A., Wirth, C., Malhi, Y., Grace, J.,
Schulze, E.-D., Heiman, M., Phillips, O., and Dolman, H.: The
potential for rising CO2 to account for the observed uptake of
carbon by tropical, temperate, and boreal forest biomes, Chap-
ter 7, in: The Carbon Balance of Forest Biomes, edited by: Grif-
fiths, H. and Jarvis, B. W., Garland Science/BIOS Scientific Pub-
lishers, 109–149 2004.

Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford,
C., and Jones, C. D.: Amazonian forest die-back under climate-
carbon cycle projections for the, 21st century, Theor. Appl. Cli-
matol., 78, 137–156, 2004.
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