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Abstract. Despite the potential impact of ocean acidifica-
tion on ecosystems such as coral reefs, surprisingly, there is
very limited field data on the relationships between calcifi-
cation and seawater carbonate chemistry. In this study, con-
temporaneous in situ datasets of seawater carbonate chem-
istry and calcification rates from the high-latitude coral reef
of Bermuda over annual timescales provide a framework for
investigating the present and future potential impact of ris-
ing carbon dioxide (CO2) levels and ocean acidification on
coral reef ecosystems in their natural environment. A strong
correlation was found between the in situ rates of calcifica-
tion for the major framework building coral speciesDiploria
labyrinthiformisand the seasonal variability of [CO2−

3 ] and
aragonite saturation state�aragonite, rather than other envi-
ronmental factors such as light and temperature. These field
observations provide sufficient data to hypothesize that there
is a seasonal “Carbonate Chemistry Coral Reef Ecosystem
Feedback” (CREF hypothesis) between the primary compo-
nents of the reef ecosystem (i.e., scleractinian hard corals and
macroalgae) and seawater carbonate chemistry. In early sum-
mer, strong net autotrophy from benthic components of the
reef system enhance [CO2−

3 ] and �aragoniteconditions, and
rates of coral calcification due to the photosynthetic uptake
of CO2. In late summer, rates of coral calcification are sup-
pressed by release of CO2 from reef metabolism during a pe-
riod of strong net heterotrophy. It is likely that this seasonal
CREF mechanism is present in other tropical reefs although
attenuated compared to high-latitude reefs such as Bermuda.

Correspondence to:N. R. Bates
(nick.bates@bios.edu)

Due to lower annual mean surface seawater [CO2−

3 ] and
�aragonitein Bermuda compared to tropical regions, we antic-
ipate that Bermuda corals will experience seasonal periods of
zero net calcification within the next decade at [CO2−

3 ] and
�aragonitethresholds of∼184 µmoles kg−1 and 2.65. How-
ever, net autotrophy of the reef during winter and spring (as
part of the CREF hypothesis) may delay the onset of zero
NEC or decalcification going forward by enhancing [CO2−

3 ]
and�aragonite. The Bermuda coral reef is one of the first re-
sponders to the negative impacts of ocean acidification, and
we estimate that calcification rates forD. labyrinthiformis
have declined by>50% compared to pre-industrial times.

1 Introduction

Coral reefs are highly productive and biologically diverse
ecosystems showing signs of deterioration or undergoing
community structure changes due to a host of anthropogenic
and natural factors such as bleaching, resource depletion,
changing sedimentation rates and turbidity, eutrophication,
cyclone damage, and natural climate variability such as El
Niño Southern Oscillation (e.g., Hughes, 1994; Smith and
Buddemeier, 1992; Wilkinson, 2000; Buddemeier et al.,
2004; Edmunds, 2007; Edmunds and Elahi, 2007). In ad-
dition to these environmental pressures, the ability of coral
reefs to calcify, produce calcium carbonate (CaCO3) and pro-
vide framework structures as habitat may also be adversely
affected by the oceanic uptake of anthropogenic CO2 (Sabine
et al., 2004) and gradual ocean acidification (Broecker et al.,
1971; Bacastow and Keeling, 1973; Kleypas et al., 1999a;
Royal Society, 2005; Orr et al., 2005; Kleypas et al., 2006;
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Doney, 2006; Doney et al., 2009; Kleypas and Yates, 2009).
For example, over the last few decades, seawater dissolved
inorganic carbon (DIC) and partial pressure of CO2 (pCO2)

have increased while pH has decreased (Bates et al., 1996a;
Winn et al., 1998; Bates, 2007; Bates and Peters, 2007;
Santana-Casiano et al., 2007; Dore et al., 2009). Given pre-
dicted atmospheric CO2 stabilization scenarios of∼750 ppm
or higher (IPCC, 1996, 2001, 2007; Clarke et al., 2007), sur-
face ocean pH is expected to decrease by 0.3–0.5 during this
century and beyond (Caldeira and Wickett, 2003, 2005), with
concomitant reduction in ocean carbonate ion ([CO2−

3 ]) con-
centration and saturation states (�) with respect to carbonate
minerals such as calcite (�calcite), and aragonite (�aragonite).
In addition, experimental, field and model studies suggest
that the dissolution of carbonate sediments and structures
will increase as� values decline in the future (Wollast et al.,
1980; Andersson et al., 2003; Morse et al., 2006; Andersson
et al., 2006, 2007, 2009).

Experimental studies have shown that the ability and the
rate at which coral reefs calcify decrease as a result of ocean
acidification, decreasing seawater [CO2−

3 ] and� (e.g., Gat-
tuso et al., 1999; Marubini and Atkinson, 1999; Marubini
and Thake, 1999; Langdon et al., 2000; Langdon, 2001;
Langdon and Atkinson, 2005; Marubini et al., 2008). Obser-
vations from coral colonies and coral reef community meso-
cosms exposed and equilibrated with high levels of atmo-
spheric CO2 (∼500–700 ppm) and lowered [CO2−

3 ] concen-
tration (with lower values of�aragonite) have generally shown
reduction in the rates of coral calcification. However, a sin-
gular, predictable response of corals to changes in seawa-
ter CO2 chemistry has not emerged from these experimental
studies. Instead, a wide range in the reduction of coral calcifi-
cation rates in response to elevated CO2 conditions (i.e., typ-
ically doubling seawaterpCO2 from present-day conditions
to 700±100 µatm) has been observed in experiments study-
ing “community” mesocosms (e.g.,−19 to−58%; Leclercq
et al., 2000; Langdon, 2001; Leclercq et al., 2002; Langdon
et al., 2003; Langdon and Atkinson, 2005; Jokiel et al., 2008)
and individual coral species (e.g., Amat, 2002; Marubini et
al., 2001, 2003; Renegear and Riegel, 2005; Schneider and
Erez, 2006; Fine and Tchenov, 2007; Marubini et al., 2008;
Guinotte and Fabry, 2008).

The widely ranging experimental response of sclerac-
tinian corals to elevated CO2 conditions, decreasing seawater
[CO2−

3 ] and�aragonite, likely reflects the complex interaction
of factors that influence calcification such as light, temper-
ature, coral host-endosymbiotic zooxanthellae interactions,
species specific responses, life history, experimental design,
and seawater carbonate chemistry. The influence of environ-
mental factors on coral calcification is not clearly demon-
strated and somewhat contradictory. In early studies, Goreau
(1959) suggested that zooxanthellae photosynthesis would
lower internalpCO2, enhancing CaCO3 saturation and pre-
cipitation of CaCO3 at internal sites of coral calcification.
Field studies have subsequently indicated that rates of cal-

cification are 3–5 times greater in the light than in the dark
(Gattuso et al., 1999), with a coupling of photosynthesis and
calcification.

Field studies of the seawater carbonate chemistry of coral
reef ecosystems have focused mainly on CO2 variability and
air-sea CO2 gas exchange (e.g., Broecker and Takahashi,
1966; Gattuso et al., 1993, 1995, 1996, 1997; Kayanne et
al., 1995, 1996, 2005; Kawahata et al., 1997, 2000; Bates
et al., 2001; Bates, 2002), rather than relationships between
coral calcification, [CO2−

3 ], �aragoniteand other environmen-
tal factors. In a few studies, decreased rates of calcifica-
tion have been observed on coral reef ecosystems associated
with decreases in seawater [CO2−

3 ] conditions (e.g., diurnal
timescales, Suzuki et al., 1995; Yates and Halley, 2003, 2006;
seasonal timescales, Silverman et al., 2007; Manzello, 2008).
Under scenarios of future ocean acidification, it has been
proposed that the combination of reduced rates of calcifica-
tion and increased rates of CaCO3 dissolution could result
in coral reefs transitioning from net accumulation to a net
loss in CaCO3 material (“decalcification”) during this cen-
tury (e.g., Andersson et al., 2005, 2006, 2007, 2009; Hoegh-
Guldberg et al., 2007; Manzello et al., 2008; Kleypas and
Yates, 2009; Silverman et al., 2009). The balance of CaCO3
production and dissolution can be defined as net ecosystem
calcification (NEC). It is generally considered that CaCO3
production occurs at saturation state values>1, while disso-
lution of a particular carbonate mineral phase occurs when�

with respect to this phase is<1. The transition from positive
to negative net ecosystem calcification (NEC = calcification-
dissolution) occurs at “critical threshold values” (Kleypas et
al., 2001; Yates and Halley, 2006) of seawaterpCO2, [CO2−

3 ]
and�aragonitewhen NEC = 0. The transition is complicated
due to the fact that individual coral species and other reef
calcifiers may have different “critical threshold values” com-
pared to the entire coral reef ecosystem that is influenced by
a spectrum of hard coral and other marine calcifier responses
as well as bioerosion and sediment dissolution.

As stated earlier, there is very limited field data on the
relationships between calcification and seawater carbonate
chemistry (Suzuki et al., 1995; Ohde and van Woesik, 1999),
particularly over seasonal to annual timescales (Silverman et
al., 2007; Manzello, 2008) and relevant reef spatial scales.
The geographic distribution of coral reefs is generally dic-
tated by light availability, sea surface temperature and by
[CO2−

3 ] and�aragonite, with the high-latitude Bermuda coral
reef at the geographic limit of this ecosystem (Kleypas et al.,
1999a, b, 2001; Fig. 1). In this paper, we demonstrate sea-
sonal relationships between in situ rates of coral calcification,
seawater carbonate chemistry (i.e., [CO2−

3 ] and �aragonite)

and other environmental parameters at Hog Reef, a previ-
ously studied coral reef site within the Bermuda coral reef
ecosystem (Bates et al., 2001; Bates, 2002). Furthermore,
offshore data collected at the Bermuda Atlantic Time-series
Study (BATS) site,∼80 km SE of Bermuda (Steinberg et al.,
2001; Bates, 2007; Fig. 1) are used to constrain our estimates

Biogeosciences, 7, 2509–2530, 2010 www.biogeosciences.net/7/2509/2010/



N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef 2511

North LagoonCrescent 2
Crescent 1

N

Hog Reef

Twin Breakers

North Rock

Bermuda

64¡50'W

32¡15'N

5 km

S

BIOS

a

Hydrostation S 
(~25 km SE of Bermuda)

BATS and BTM sites 
(~80 km SE of Bermuda)

note: position of Hydrostation S, BATS and BTM not to scale

36.0

36.2

36.4

36.6

36.8

37.0

sa
li

n
it

y

18

20

22

24

26

28

30

te
m

p

decimal

north Channel

0

0. 2

0. 4

0. 6

0. 8

n
it

ra
te

decimal

north Channel

b

c

North Channel

S
alinity

Te
m

pe
ra

tu
re

 (¡
C

)
N

itr
at

e+
ni

tri
te

 (µ
m

ol
es

/L
)

J   F   M   A   M   J   J   A   S   O   N   D

J   F   M   A   M   J   J   A   S   O   N   D

rim reef

rim reef

terrace
 reef

terrace
 reef

patch reefs, seagrass 
and sand habitats

Fig. 1. Location of rim and terrace reefs of Bermuda, the North Lagoon and island of Bermuda, and seasonal changes in temperature, salinity
and nitrate+nitrite.(a) Two reef sites, Hog Reef (red symbol) and Twin Breakers (orange symbol), were chosen as representative of the
broad rim reefs that enclose lagoonal waters of the North Lagoon. The North Lagoon contains patch coral reefs and extensive sand area,
with two sites (Crescent 1 and 2; green symbol) representative of patch reefs. The track of weekly underway, shipboard sampling from the
R/V Atlantic Explorer(green dashed line) and M/VOleander(blue dashed line) are shown. The offshore Hydrostation S (blue symbol),
Bermuda Atlantic Time-series Study (BATS; purple symbol) and Bermuda Testbed Mooring (BTM) sites are also shown (Bates, 2007). The
CARIOCA pCO2 buoy was deployed at Hog Reef from 2002 to 2003;(b) seasonal changes in temperature (◦C; open squares) and salinity
(grey diamond) at the North Channel site in the North Lagoon from 2001 to 2006, and;(c) seasonal changes in nitrate+nitrite (µmoles kg−1)

at the North Channel site in the North Lagoon from 2001 to 2006. North Channel WQMP data courtesy of Drs Richard Owen and Ross
Jones (MEP, 2006;http://www.bios-mep.info/; executive summary).

of net ecosystem calcification (NEC) and net ecosystem pro-
duction (NEP) in an improved method compared to previ-
ous studies (Bates, 2002). These contemporaneous datasets
provide a framework for investigating the present and future
potential impact of risingpCO2 and ocean acidification on
coral reef ecosystems in their natural environment. Further-
more, we evaluate the critical threshold values of [CO2−

3 ]
and�aragoniteat which chemical conditions may no longer
be favourable for calcification on the Bermuda coral reef and
the timing of these thresholds in response to future acidifica-
tion of the oceans. In addition, we describe the evidence for
a “Carbonate Chemistry Coral Reef Ecosystem Feedback”
(CREF hypothesis), a case where there is a seasonal feed-
back between the primary components of the reef ecosystem
(i.e., scleractinian hard corals and macroalgae) and CaCO3
saturation states that enhance and suppress calcification rates
at different times of the year. Diurnal enhancement and sup-
pression of [CO2−

3 ] and coral calcification by photosynthe-
sis and respiration, respectively, have been modelled for the
Shiraho Reef in the Ryukyu Islands by Suzuki et al., 1995
using short-term in situ observations (i.e., one daytime and
one nightime collection of data).

2 Methods and materials

2.1 Physiographic setting of the Bermuda coral reef

Bermuda has a geographically isolated subtropical coral reef
ecosystem (∼1000 km2), with a shallow central lagoon (i.e.,
North Lagoon) containing patch reefs, partly surrounded
with a flank of outer rim and terrace reefs (Dodge and Vais-
nys, 1977; Morris et al., 1977; Dodge et al., 1984, 1985;
Logan et al., 1994) and the island of Bermuda (55 km2) to
the south (Fig. 1). The marine ecology of Bermuda is domi-
nated by calcifying organisms, while the island’s seamount is
capped by Quaternary limestones and marine carbonate sed-
iments.

Waters of the Bermuda coral reef continuously exchange
with offshore waters of the North Atlantic Ocean surround-
ing Bermuda (Bates et al., 2001; Bates 2002). The typical
residence time of water on the rim reef is approximately 1–
4 days (Morris et al., 1977), while water residence times are
longer in the North Lagoon (∼5–10 days) (R. J. Johnson, tide
and wind mixing model, D. Kadko, unpublished7Be tracer
data).
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Hard coral cover on the Bermuda rim and terrace regions
of the reef system typically ranges between 15 and 70%
(Fig. 1; CARICOMP, 1997a, b, 2000) including the areally
dominant calcareous sand and seagrass ecosystems of the
North Lagoon. Over the last couple of decades, Bermuda’s
rim reefs have maintained long-term average of 21% coral
cover varying between 18–23% year to year (MEP, 2006;
R. J. Jones, unpublished data,http://www.bios-mep.info/
NEW%20site/SubProgram2c.htm) with macroalgae vary-
ing between 5 and 15%. The dominant coral reef taxa are
Diploria labyrinthiformis andD. strigosa,with Montastrea
franksii, M. cavernosa, Porites astreoides, andMillepora al-
cicornisbeing significant components of the reef ecosystem.
D. labyrinthiformisandstrigosaare arguably the dominant
species and constitutes 25–35% of the reef hard coral cover.

2.2 Seawater carbonate chemistry considerations

The complete seawater carbonic acid system (i.e., CO2,
H2CO3, HCO−

3 , CO2−

3 , H+) can be calculated from a combi-
nation of two carbonate system parameters, DIC, TA,pCO2
and pH, along with temperature and salinity. Here,pCO2
is the partial pressure of CO2 in equilibrium with seawater,
while pH is expressed on the total seawater scale. DIC is
defined as (Zeebe and Wolf-Gladrow, 2001; Dickson et al.,
2007):

DIC = [CO∗

2]+[HCO−

3 ]+[CO2−

3 ] (1)

where [CO∗

2] represents the concentration of all unionized
carbon dioxide, whether present as H2CO3 or as CO2. The
total alkalinity of seawater (TA) is defined as:

TA = [HCO−

3 ]+2[CO2−

3 ]+[B(OH)−4 ]+[OH−
]+ (2)

[HPO2
4−]+2[PO3−

4 ]+[SiO(OH)−3 ]+[HS−
]+[NH3]+ ...

−[H+
]−[HSO−

4 ]−[HF]−[H3PO4]− ...

where [HCO−

3 ] + 2[CO2−

3 ] + B(OH)−4 are the principal com-
ponents of seawater TA.

Calcium carbonate (CaCO3) mineral production and dis-
solution is governed by the following chemical reaction:

CaCO3 = Ca2+
+CO2−

3 (3)

CaCO3 production and dissolution rates vary as a function
of saturation state (�). For corals and other calcifying ma-
rine organisms whose carbonate mineralogy is aragonite, the
seawater saturation state with respect to this mineral phase is
defined as the ion concentration product of calcium and car-
bonate ions divided by the stoichiometric solubility product,
Ksp

∗
(aragonite), which is a function of temperature, salinity

and pressure (Mucci, 1983), thus:

�aragonite= [Ca2+
][CO2−

3 ]/Ksp
∗
(aragonite) (4)

2.3 Seawater DIC, TA andpCO2 observations

During 2002 and 2003, seawater samples were collected reg-
ularly at Hog Reef (∼2 m deep). Samples for DIC and TA
were drawn from a Niskin sampler into clean 0.5 dm3 size
Pyrex glass reagent bottles, using established gas sampling
protocols (Bates et al., 1996a). A headspace of<1% of the
bottle volume was left to allow for water expansion and all
samples were poisoned with 100 µl of saturated HgCl2 solu-
tion to prevent biological alteration. Bottles were sealed with
ground-glass stoppers and Apiezon silicon vacuum grease.
Rubber bands were placed around the lip of the bottle and
stopper to provide positive closure. Samples were returned
to BIOS for analysis.

DIC was measured by a gas extraction/coulometric tech-
nique (see Bates et al., 1996a, b for details), using a SOMMA
(Single-Operator Multi-Metabolic Analyzer) to control the
pipetting and extraction of seawater samples and a UIC CO2
coulometer detector. The precision of DIC analyses of this
system is typically better than 0.025% (∼0.4 µmoles kg−1)

based on duplicate and triplicate analyses of>2000 seawa-
ter samples analyzed at BIOS from 1992 to present. Seawa-
ter certified reference materials (CRM’s; prepared by A.G.
Dickson, Scripps Institution of Oceanography) were ana-
lyzed to ensure that the accuracy of DIC was within 0.03%
(∼0.5 µmoles kg−1). Salinity was determined analytically
using a SeaBird SBE-9 conductivity sensor and calibrated
against salinity collected at the ocean time-series BATS
(Steinberg et al., 2001). In situ temperature was measured
with a platinum thermistor (±0.05◦C) and temperature log-
ger. TA was determined by potentiometric titration with HCl
(see Bates et al., 1996a, b for details). CRM samples were
also analyzed for TA and these values were within 0.15%
(∼2–3 µmoles kg−1) of certified TA values reported by A.G.
Dickson (http://andrew.ucsd.edu/co2qc/index.html).

A time-series of seawaterpCO2 was collected at Hog Reef
using an autonomous CARIOCA (CARbon Interface OCean
Atmosphere) buoy (Merlivat and Brault, 1998; Bates et al.,
2000, 2001). The CARIOCA buoy was deployed twice dur-
ing the 2002–2003 period. Initially, the CARIOCA buoy was
deployed on the 16 October 2002 (day 287 of the year) and
recovered on the 20 January 2003 (day 20 of the year) af-
ter breaking its mooring line. Instrument repair and calibra-
tion delayed the subsequent deployment and the CARIOCA
buoy was deployed on the 26 April 2003 (day 116 of the
year). In anticipation of the passage of Hurricane Fabian over
Bermuda (5 September 2003; day 247), the CARIOCA buoy
was moved from Hog Reef to a protected inshore site (Ferry
Reach) off BIOS’s dock on the 28 August 2003 (day 239).

The CARIOCA buoy collected hourly measurements of
seawater temperature,pCO2 and fluorescence from an in-
take at 2 m depth. Seawater temperature data was mea-
sured using two Betatherm thermistors with an accuracy
of 0.05◦C. Tri-butyl tin (TBT) tubing was used internally
and a copper plate was mounted at the seawater intake of
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the CARIOCA buoy; both were used to reduce the possi-
bility of biofouling affecting thepCO2 sensor. Seawater
pCO2 measurements were conducted using an automated
spectrophotometric technique (Hood et al., 1999; Bates et al.,
2001;http:/www.lodyc.jussieu.fr/carioca/). CARIOCA buoy
pCO2 measurements were calibrated in the laboratory prior
to deployment using a Licor infrared CO2 analyzer (Model
6262) and CO2-in-air gas standards. Seawater was pumped
in parallel through an equilibrator-Licor analyzer system and
the CARIOCA exchanger cell. Linear regression curves of
the spectrophotometric and LicorpCO2 data were calculated
and subsequently used to determinepCO2 from spectropho-
tometric absorbance and temperature data.

In this study,pCO2, [CO2−

3 ] and �aragonitewere calcu-
lated from in situ DIC and TA data sampled from Hog Reef.
The carbonic acid dissociation constants of Mehrbach et
al. (1973), as refit by Dickson and Millero (1997), were used
to determine seawaterpCO2 and other carbonate parameters,
using the equations of Zeebe and Wolf-Gladrow (2001). In
addition, the CO2 solubility equations of Weiss (1974), and
dissociation constants for borate (Dickson, 1990), and phos-
phate (DOE, 1994) were used. DIC and TA data was also
recalculated as salinity normalized DIC (i.e., nDIC) and al-
kalinity (i.e., nTA) using a salinity of 36.6. This correction
accounts for the DIC changes imparted by local precipitation
and evaporation (Bates et al., 1996a).

Meteorological data were collected each hour from the is-
land of Bermuda by the Bermuda Weather Service. Wind
speed data were corrected to 10 m using the equations of
Smith (1988). Observations of net shortwave downward ra-
diation were also used (Dutton, 2007). Net shortwave radia-
tion, Qsw, was determined from observations of cloud cover,
Cf , and theoretical extraterrestrial solar radiation,Et, using a
model of Beriland (1960) and Dobson and Smith (1980):

Qsw= TrEt(aCf) (5)

whereTr is the transmission coefficient anda is the cloud
correction factor. The values forTr anda have been mea-
sured at 0.89 and 0.67 in the Sargasso Sea surrounding
Bermuda (Johnson, 2003). The theoretical extraterrestrial
solar radiation,Et, was determined using standard astro-
nomical formulae for the solar constant, solar elevation and
ephemera to account for seasonality and diurnality (equa-
tions from Payne, 1972; Partridge, 1976; Watt Engineering
Ltd, 1978, Duffie and Beckman, 1991). Photosynthetically
available radiation (PAR) at the ocean surface is∼45% of
estimated total insolation orQsw (Baker and Frouin, 1987).

2.4 In situ coral colony calcification or skeletal growth
rates

The buoyant weight technique (e.g., Jokiel et al., 1978,
Davies 1989, 1990), a non-destructive method commonly
used to determine calcification and growth of hermatypic
corals (e.g., Dodge et al., 1984, 1985; Marubini et al., 2001,

2003; Abramovich-Gottlib et al., 2003), was used to deter-
mine in situ skeletal growth ofD. labyrinthiformisat sev-
eral sites across the Bermuda reef including Hog Reef, Twin
Breakers and Crescent Reef (Fig. 1). At each site, coral
colonies (n = 8) of D. labyrinthiformiswere transplanted on
racks and secured to the reef sites in a block design. Ap-
proximately every three months, colonies were transported to
BIOS and weighed in water using the buoyant weight tech-
nique. The dry weight of the coral specimen in air is

Wa= Ww/(1−(ρw/ρs)) (6)

whereWa andWw are the dry and wet (or buoyant) weights
respectively, andρw andρs are the densities of seawater and
specimen respectively (Jokiel, 1978; Langdon et al., 2010).
With this method, the skeletal weight of the coral colony
can be estimated from its buoyant weight in seawater whose
density has been accurately determined, thereby providing
a simple, non-destructive method for recording integrated
coral skeletal growth (or calcification rate) over seasonal
timescales. The calcification rate (G) or skeletal growth for
D. labyrinthiformisis given by:

Gdiploria= 1Wa/1t (7)

where1Wa is the change in dry skeletal weight and1t is the
number of days between weighings. Thus, skeletal growth
is expressed as weight increase per g weight (CaCO3 plus
very minor contributions from tissue) for each coral colony
and expressed as mg CaCO3 g−1 d−1 (Table 1). Skeletal
growth rate per unit area was also calculated from weight
changes and determination of individual coral colony surface
area (determined at the end of deployment) expressed as mg
CaCO3 cm−2 d−1 (Table 1).

3 Results

The coral reefs of Bermuda experience large seasonal
changes in physical conditions, such as light and temper-
ature, seawater carbonate chemistry and calcification rates
(Fig. 2). At the summer solstice, day and night length was
∼14 and∼10 h, respectively, and reversed at the winter sol-
stice (CARICOMP, 1997a, b, 2000). Net shortwave radiation
(Qsw) and sea surface temperature showed distinct seasonal-
ity as observed previously (Bates, 2002). Light conditions
were highly variable seasonally (Fig. 2a). For example,Qsw
had a seasonal minima of∼2000–3000 W m−2 in the De-
cember 2002 and January 2003 period, and a seasonal max-
ima of∼6000–8000 W m−2 in the June–August 2003 period
(Fig. 2a). The period of highestQsw occurred around the
June solstice period (Julian Day, JD∼150–165).

Surface temperatures at Hog Reef decreased from mid-
summer maxima of∼27◦C in 2002 to a winter minima of
∼20◦C in the January to March 2003 period (Fig. 2a). These
seasonal changes are similar to those typically observed on
the Bermuda reef (Fig. 1b). Subsequently, a mid-summer
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Table 1. Natural seawater [CO2−

3 ] variability observed at coral reef sites. Diurnal and seasonal [CO2−

3 ] values were calculated using average
alkalinity and pH observed on the Eilat coral reef by Silverman et al., 2007.

Date Timescale Diurnal [CO2−

3 ] Seasonal [CO2−

3 ] Source
range & amplitude range & amplitude
(µmoles kg−1) (µmoles kg−1)

Okinawa, site 1 (Japan) 1d ∼144–350 (∼200) NA Ohde and Woesik, 1999
Hog Reef (Bermuda) 38d ∼200–270 (∼10–30) NA Bates et al., 2001
Ferry Reach (Bermuda) 1d ∼180–260 (80) ∼200–280 (70) Bates (unpubl. data)
North Lagoon 1994–1998 NA ∼220–280 (60) Bates, 2002
Eilat 2001–2002 ∼320–390 ∼309–364 Silverman et al., 2007

maxima of∼30◦C was observed in August 2003 a couple
of months after the seasonal solar input maxima. For con-
text, winter temperatures on the Bermuda coral reef are typ-
ically 1–2◦C cooler than the surrounding offshore Sargasso
Sea (Bates, 2002, 2007).

Inorganic nutrient concentrations across the Bermuda
coral reef are low. For example, nitrate+nitrite con-
centrations are typically less than 0.1 µmoles kg−1(MEP,
2006; http://www.bios-mep.info/; executive summary only;
Fig. 1c) and similar to oligotrophic conditions observed in
offshore waters at BATS (Steinberg et al., 2001). Freshwa-
ter inputs to the North Lagoon from the island of Bermuda
are negligible and there is an absence of major sources of
pollutants (e.g., anthropogenic nutrients). Bermuda reef sur-
face salinity, typically has a seasonal range of∼36.0 to 36.8,
with slightly fresher conditions occuring during summer-
time (MEP, 2006; Fig. 1b) and similar to offshore conditions
(Steinberg et al., 2001).

Wind speeds experienced by the Bermuda coral reef were
also generally higher during the winter due to the regular pas-
sage of cold fronts originating from North America (Fig. 2b).
Similar seasonal changes in windspeed have been observed
at the BATS site offshore (Bates, 2007). The major event
recorded in the windspeed data were sustained high winds
of ∼120 mph (∼200 kph) during the passage of Hurricane
Fabian over the island of Bermuda on the 5 September 2003
(JD 247; Fig. 2b).

Seawater carbonate chemistry observed at Hog Reef was
also highly variable over seasonal timescales. Since the
source of Bermuda coral reef waters is the surrounding Sar-
gasso Sea, the variability of Hog Reef carbonate chemistry
can be compared with contemporaneous carbonate chemistry
data observed at the offshore BATS site. For the 2002–2003
period, surface seawaterpCO2 ranged from low wintertime
values (∼300–360 µatm) to summertime values exceeding
550 µatm (Fig. 2b). In comparison, seawaterpCO2 values
at the BATS site had a seasonal range of∼300–420 µatm
(Bates, 2007), with the major difference observed during the
summertime, when seawaterpCO2 was significantly higher
on the Bermuda coral reef. The continuous observations

of seawaterpCO2 at Hog Reef also showed considerable
diurnal variability of ∼20–100 µatm. In contrast, diurnal
variability at the BATS site is significantly attenuated (∼5–
25 µatm; Bates et al., 2000, 2001). In other coral reef sys-
tems, diurnal to seasonal seawaterpCO2 ranged from as low
as ∼100 µatm to as high as 1000 µatm, the largest ampli-
tude in seawaterpCO2 typically observed in the shallower
reefs. These previous studies have typically observed sea-
water CO2 and associated variables over a few days only or
with transects across reef systems (e.g., Smith, 1973; Smith
and Key, 1975; Gattuso et al., 1993; Kayanne et al., 1995,
1996; Frankignoulle et al., 1996; Kawahata et al., 1997,
2000; Ohde and van Woesik, 1999; Suzuki and Kawahata,
2003).

Surface DIC at Hog Reef had a seasonal variability of
∼100 µmoles kg−1, with a maxima of∼2070 µmoles kg−1

and minima of∼1970 µmoles kg−1 observed during the sum-
mer of 2003 (Fig. 2c). When compared to contemporaneous
BATS DIC data, in general, Hog Reef DIC data generally
follows (within ∼20 µmoles kg−1) seasonal changes of DIC
observed at the BATS site (Fig. 2c). However, during the
summer of 2003, Hog Reef DIC became depleted by as much
as 30–40 µmoles kg−1 relative to DIC at the BATS site.

Total alkalinity at Hog Reef varied seasonally by
∼100 µmoles kg−1 (Fig. 2c), with considerable differences
observed between Hog Reef and offshore at BATS. For
example, Hog Reef TA was generally lower by∼20–
40 µmoles kg−1 compared to BATS TA for most of 2002
and 2003. However, during the summer of 2003, Hog Reef
TA and DIC were depleted by∼60–80 µmoles kg−1 and 30–
40 µmoles kg−1, respectively, compared to offshore concen-
trations at BATS (Fig. 2c). The depletion of Hog Reef TA
and DIC had an approximate ratio of∼2:1, similar to the-
oretical predictions that the formation of CaCO3 decreases
TA and DIC in a ratio of 2:1 due to the uptake of [Ca2+] and
[CO2−

3 ] (Eqs. 1–3).

The seasonal values of [CO2−

3 ] observed at Hog Reef
ranged from 190 to 250 µmoles kg−1, a smaller range than
changes observed on other reefs (Table 1; Fig. 2d). Hog Reef
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Fig. 2. Time-series of physical, chemical and biological vari-
ables from the coral reefs of Bermuda from August 2002 to Oc-
tober 2003.(a) Surface temperature (◦C) and short wave radiation
(Qsw; W m−2) from the coral reefs of Bermuda. Surface temper-
ature was collected hourly at Hog Reef (∼15 km NW of the island
of Bermuda) using a CARIOCA buoy (red line), and daily aver-
age from a temperature logger at 5 m deep (orange line). The red
diamond symbols denote surface temperature collected during vis-
its to Hog Reef. The daily short wave radiation (Qsw) was cal-
culated from meteorological measurements collected hourly from
the island of Bermuda by the Bermuda Weather Service.(b) Wind
speed (grey line; mph) and surface seawaterpCO2(µatm; blue line).
Wind speed was collected hourly from the island of Bermuda by
the Bermuda Weather Service. The blue diamond symbols denote
values of seawaterpCO2 determined from DIC and alkalinity mea-
surements.(c) Time-series of DIC (black diamond; µmoles kg−1)

and alkalinity (open circle; µmoles kg−1) from Hog Reef. The grey
diamond and circle denote DIC and TA observed offshore at the
BATS site.(d) Time-series of [CO2−

3 ] (black square; µmoles kg−1)

and �aragonite(open triangle) from Hog Reef. The grey square

denote [CO2−

3 ] observed offshore at the BATS site.(e) Time-

series of [CO2−

3 ] (black square; µmoles kg−1) and in situ skeletal
growth rate (i.e.,Gdiploria; grey circle; Hog Reef and open dia-

mond, Twin Breakers; mg CaCO3 g−1 d−1) for the massive coral
Diploria labyrinthiformis from Hog Reef and Twin Breakers. The
horizontal bars denote length of time for each in situ skeletal growth
determination.

[CO2−

3 ] and�aragonitevalues were generally lower by∼30–
70 µmoles kg−1 and∼0.3 (not shown) relative to offshore
[CO2−

3 ] and�aragonitevalues at BATS, with the exception of
a few occurences during early summer 2003 (JD∼180–210)
(Fig. 2d).

The annual range of skeletal growth rates (i.e,Gdiploria)

was∼0.28–0.65 mg CaCO3 g−1 d−1 for D. labyrinthiformis
colonies (Table 2). Skeletal growth rates per unit area
ranged from 0.40–0.96 mg CaCO3 cm−2 d−1 for the sameD.
labyrinthiformiscolonies (Table 2). The highest rates were
observed at Hog Reef for the period of July–August 2003
and lowest rates during the wintertime (Fig. 2e; Table 2). In
situ skeletal growth rates forD. labyrinthiformiscolonies de-
ployed at Twin Breakers were also seasonally similar and
included in Fig. 2d (with the period of in situ colony de-
ployment denoted by the horizontal bars). Twin Breakers
is assumed to have similar seasonal changes in carbonate
chemistry to Hog Reef due to their close proximity. At both
sites, in situ skeletal growth or calcification rates covaried
with seasonal changes of [CO2−

3 ] (Fig. 2e) and�aragonite(not
shown).

4 Discussion

4.1 Estimates of annual rates of in situ coral
calcification

Previous studies of Bermuda corals such asD. labyrinthi-
formis and Porites astreoides, have been shown to accrete
narrow, high density bands of CaCO3 during the summer,
and wider low-density bands during the fall to spring (Lo-
gan and Tomascik, 1991; Cohen et al., 2004). If the in situ
skeletal growth rates observed at Hog Reef are scaled up, we
estimate that the calcification rate per unit area of the rim
reef (i.e.,Greef) ranged from∼1.3 to 3.2 g CaCO3 m−2 d−1,
using the following equation:

Greef= Gdiploria·αβ (8)

where Gdiploria is skeletal growth rate (expressed as
mg CaCO3 cm−2 d−1) scaled up to a m−2 area (i.e.,
1 m2 = 10 000 cm2). α is a multiplier value that varies
between 0 and 1 that is a function of the planar surface
area of the reef. Here,α = 0.21 given that Bermuda’s
rim reefs have a long-term average of 21% coral cover.
However, the actual surface area is larger due to the
complex/hemispherical geometry of coral colony surface
area. Thus in Eq. (8),β is a multiplier that accounts
for the complex/hemispherical geometry of coral colony
surface area, which is set at 1.57 assuming an ideal
hemisphere for coral colony shape. Thus, for example,
if a skeletal growth rate of 0.96 mg CaCO3 cm−2 d−1

is used, and 21% coral cover assumed (i.e.,
α = 0.21), the Greef rate is 3.2 g CaCO3 m−2 d−1 (i.e.,
0.96 mg CaCO3 cm−2 d−1

× 10 000 (cm2) × 0.21× 1.57). In
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Table 2. In situ rates of skeletal growth ofDiploria labyrinthiformisfrom Hog Reef on the rim reef of Bermuda.

Date Day of year n Skeletal Growth Skeletal Growth SST Qsw
(mg CaCO3 (mg CaCO3 (◦C) (W m−2 d−1)

g−2d−1) cm−2d−1)

1 Jul 2002–21 Aug 2002 181–237 8 0.73±0.09 0.87±0.20 6773±1209
21 Aug 2002–19 Oct 2002 233–301 7 0.44±0.08 0.74±0.18 26.0±0.7b 5217±1328
29 Oct 2002–22 Dec 2002 301–356 8 0.55±0.15 0.92±0.21 23.1±0.9 3138±701
22 Dec 2002–17 Feb 2003 356–48 8 0.32±0.08 0.46±0.15 20.2±0.6 3014±542
4 Mar 2003–22 Apr 2003 63–115 8 0.47±0.08 0.72±0.07 20.0±0.5 4985±999
22 Apr 2003–4 Jun 2003 116–154 8 0.43±0.11 0.59±0.09 22.2±0.8 5890±1800
1 Jul 2003–5 Sep 2003 181–247 8 0.64±0.05a 0.96±0.15 28.4±0.9 7368±963
5 Sep 2003–6 Nov 2003 247–314 8 0.79±0.11c 0.69±0.18 26.3±1.1 4485±1082

Note: standard deviation of skeletal growth rates, sea surface temperature (SST) andQsw are also shown in the Table.
a Several of the coral specimens had moderate signs of bleaching potentially suppressing coral skeletal growth;
b surface temperatures only available for day of year 288–301;
c in situ during Hurricane Fabian.

parts of the rim reef, coral cover can be up to 70%, for which
the Greef rate would be∼4.4 to 10.6 g CaCO3 m−2 d−1. In
this calculation, we also assume that the skeletal growth
rates for other coral species present at Hog Reef were
similar to D. labyrinthiformis, and that other calcifying
organisms such as coralline algae do not contribute sub-
stantively to this estimate of calcification rate. Calcification
rates on other reefs can vary by a couple of orders of
magnitude but the calcification rate estimated for the
Bermuda coral reef is at the lower end of the typical
observed range for other reefs (∼<2–40 g CaCO3 m−2 d−1;
e.g., Kinsey, 1985; Pichon 1997; Gattuso et al., 1993,
1996, 1999; Barnes and Lazar, 1993; Yates and Halley,
2006; Silverman et al., 2007). The annual rate of cal-
cification per unit area of the reef is estimated at Hog
Reef to range between 0.5 and 1.2 kg CaCO3 m−2 year−1,
slightly lower than the average calcification rate of
4±0.7 kg CaCO3 m−2 year−1 reported for other coral reefs
(Kinsey, 1985). Benthic turf and fleshy macroalgae distribu-
tions were not directly measured at Hog Reef, but typically
constitute<5–15% of the reef cover (MEP, 2006;http:
//www.bios-mep.info/NEW%20site/SubProgram2c.htm).
The highest macroalgal biomass is typically observed
coincident with the period of highest solar irradiance in June
(Smith, S. R., personal communication), a seasonal feature
typically observed on other reefs (Gattuso et al., 1997).

4.2 Seasonal covariance of coral calcification and
carbonate chemistry on the Bermuda coral reef

There are few datasets that can be used to test relationships
between coral calcification and carbonate chemistry under
natural conditions. Our results from the Bermuda coral reef
indicate that calcification rates ofD. labyrinthiformisat Hog
Reef and Twin Breakers covaried seasonally with [CO2−

3 ]
and �aragonite. Mean in situ skeletal growth rates had a

range of∼0.28–0.65 mg CaCO3 g−1 d−1 while [CO2−

3 ] and
�aragonite varied by∼40 µmoles kg−1 and 0.4 respectively
(Fig. 3). Despite a limited number of observations, in situ
skeletal growth rates (either expressed as weight increase or
per unit area) were well correlated with mean [CO2−

3 ] and
�aragonite(Fig. 3a and b), withr2 of ∼0.68. Similar find-
ings have been shown in the natural environment (Silverman
et al., 2007, 2009) and in vitro experiments with other coral
species (Marubini et al., 2003; Schneider and Erez, 2006).

The correlation between in situ skeletal growth and other
environmental factors were less statistically significant. For
example, mean temperatures during each in situ skeletal
growth measurement at Hog Reef were weakly correlated
with rates of in situ skeletal growth (Fig. 3c). In the Eilat
reef, coral community calcification is well correlated with
temperature (Silverman et al., 2007), while in other reef sys-
tems, the highest seasonal rates of calcification have been
observed a few degrees below the seasonal temperature max-
imum (e.g., Abramovitch-Gottlib et al., 2003; Marshall and
Clode, 2004). In Sect. 4.4, we show that net heterotrophy in-
duced by other components of the reef ecosystem appears to
suppress�aragoniteand rates of coral calcification during pe-
riods of the summertime. As a result, in situ skeletal growth
rates are weakly correlated with temperature on the Bermuda
reef.

There was a poor correlation between in situ skeletal
growth ofD. labyrinthiformisand mean shortwave radiation
(i.e., Qsw; Fig. 3c). This is perhaps surprising since other
studies have shown a strong coupling between light and cal-
cification (e.g., Gattuso and Jaubert, 1990; Marubini et al.,
2003; Schneider and Erez, 2006). Short-term (<2 h) in vitro
chamber experiments usingD. labyrinthiformiscolonies re-
covered from Hog Reef and acclimatized at BIOS, showed a
strong coupling between light (∼200–1400 µE m−2 s−1) and
zooxanthellae photosynthesis and respiration rates (as ex-
pressed as oxygen production or consumption). IfQsw is
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Fig. 3. Relationship between in situ skeletal growth rate ofD.
labyrinthiformis(i.e.,Gdiploria) at Hog Reef against mean [CO2−

3 ],
�aragonite, temperature and light conditions observed at Hog Reef.

Skeletal growth rates are expressed either as mg CaCO3 g−1 d−1

(black square) or as skeletal growth rate per unit surface area
(mg CaCO3 cm−2 d−1; open diamond).(a) Relationship between
in situ skeletal growth rate ofD. labyrinthiformis and average
[CO2−

3 ] (observed at Hog Reef during the concurrent skeletal
growth rate measurement time period.) Regression statistics were:
75.77x + 184.2,r2 = 0.68 (skeletal growth rate per colony weight)
and 49.30x + 183.3,r2 = 0.69 (skeletal growth rate per unit sur-
face area). (b) Relationship between in situ skeletal growth rate
of D. labyrinthiformis and average�aragonite observed at Hog
Reef during the concurrent skeletal growth measurement time pe-
riod. Regression statistics were: 0.976x + 2.65,r2 = 0.68 (skeletal
growth rate per colony weight) and 0.629x + 2.65,r2 = 0.68 (skele-
tal growth rate per unit surface area). The 95% confidence lev-
els for the zero skeletal growth intercept was 2.22–3.08 and 2.21–
3.08, respectively.(c) Relationship between in situ skeletal growth
rate ofD. labyrinthiformisand temperature ( ˚ C) observed at Hog
Reef during the concurrent skeletal growth measurement time pe-
riod. Regression statistics were: 13.44x + 17.36,r2 = 0.28 (skele-
tal growth rate per colony weight) and 9.655x + 16.56,r2 = 0.35
(skeletal growth rate per unit surface area).(d) Relationship be-
tween in situ skeletal growth ofD. labyrinthiformis and average
light (W m−2) observed at Hog Reef during the concurrent skele-
tal growth measurement time period. Regression statistics were:
6617.8x + 2001.4,r2 = 0.27 (skeletal growth rate per colony weight)
and 3791.8x + 2281.1,r2 = 0.21 (skeletal growth rate per unit sur-
face area).

an appropriate proxy for coral photosynthesis, our in situ
observations would suggest a weak coupling between coral
photosynthesis and calcification. However, whileQsw is a
good proxy for the seasonally integrated mean light condi-
tions at Hog Reef,Qsw may not accurately reflect variability

Fig. 4. Annual composite and comparison of surface seawater
pCO2 data (µatm) collected over the last twelve years from the
coral reef of Bermuda and offshore in the North Atlantic Ocean
at BATS and the Bermuda Testbed Mooring (BTM). All seawater
pCO2 datasets have been adjusted to the year 2006 using the long-
term trend of +1.7 µatm year−1 observed at the BATS site in the
North Atlantic Ocean from 1983–2006 (Bates, 2007).Coral reef
seawaterpCO2 datasets include: (1) surface seawaterpCO2 from
October 2002 to January 2003 collected hourly at Hog Reef us-
ing a CARIOCA buoy (red line); (2) surface seawaterpCO2 from
April 2002 to September 2003 hourly at Hog Reef using a CAR-
IOCA buoy (peach line); (3) surface seawaterpCO2 from Octo-
ber 1998 to November 1998 hourly at Hog Reef using a CARI-
OCA buoy (orange line) (Bates et al., 2001); (4) surface seawater
pCO2 (brown closed circles) calculated from surface DIC and al-
kalinity samples collected at Hog Reef from July 2002 to Novem-
ber 2003; (5) daily mean surface seawaterpCO2 (purple closed cir-
cle) collected along the southeastern terrace and rim coral reefs of
the North Lagoon, Bermuda, from the R/VWeatherbird IIduring
∼150 cruises between 1994 and 1998.OffshoreseawaterpCO2
datasets include: (6) surface seawaterpCO2 (grey open diamond)
from November 2005 to December 2006 collected every 3 h at the
BTM site [C. L. Sabine and N. R. Bates, unpub. data] and; (7) daily
mean surface seawaterpCO2 (black closed diamond) collected ev-
ery 2 min at the BATS site from the R/VWeatherbird II during
∼150 cruises between 1994 and 1998 (Bates, 2007).

of in situ PAR over shorter time-scales. With limited data, we
cannot statistically confirm either a strong coupling or uncou-
pling of light and calcification for corals at Hog Reef. Simi-
lar weak correlation between coral calcification and seasonal
changes in shortwave radiation have been shown for other
reefs primarily due to the seasonal lag of several months be-
tween peak solar input, and seawater temperatures and coral
calcification (e.g., Silverman et al., 2007).

4.3 Potential mechanisms coupling seawater carbonate
chemistry and coral calcification

The field data collected from the Bermuda coral reef indi-
cates that the highest rates of calcification occurred when
[CO2−

3 ] in the external reef environment was at seasonally
high concentrations (while [HCO−3 ] was at seasonally low
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values). However, it remains unclear why calcification in
corals responds to changes of seawater carbonate chemistry
in the external natural environment.

Early studies suggested that seawater HCO−

3 was taken
by corals for calcification (Goreau, 1959), with active re-
moval of H+ ions from the calcification site to facilitate al-
kalinization of fluids in the coral calicoblastic layer (e.g.,
McConnaughey, 1989a, b, 1997, 2004, McConnaughey and
Whelan, 1997; Gattuso, 1999; McConnaughey and Cohen,
2004). If coral uptake of HCO−3 is directly proportional
to external seawater [HCO−3 ], then it follows that calcifica-
tion rates should be correlated to [HCO−

3 ]. However, ex-
perimental studies (e.g., Langdon et al., 2000; Marubini et
al., 2001) and field data from Hog Reef and other reefs (Sil-
verman et al., 2007, 2009) indicates that calcification rates
are strongly correlated with and proportional to [CO2−

3 ], and
inversely correlated with [HCO−3 ] (i.e., decreasing calcifica-
tion rate with increasing [HCO−3 ]). As a potential solution
to this conundrum, Marubini et al. (2001) suggested uptake
of CO2−

3 in addition to HCO−3 and, that the pH of the cal-
cifying fluid (calicoblastic layer) would have to be propor-
tionate to external seawater pH. In this scenario, if uptake
of CO2−

3 and HCO−

3 occurs in proportion to external con-
ditions, external seawater carbonate chemistry can enhance
or suppress calcification. For example, at higher external
pH conditions (i.e., higher [CO2−

3 ] and�aragonite, and lower
[HCO−

3 ]), the alkalinization of the calcifying fluids would
be enhanced by reduced energetic needs to actively remove
H+ from the calicoblastic layer produced by dissociation of
HCO−

3 (or pump H+ against a stronger gradient of H+ out-
side the coral). This scenario implies energetic cost for main-
taining suitable chemical conditions for calcification when
seawater conditions may not be conducive for calcification
(Cohen and Holcomb, 2009).

Does this solution agree with field data from Bermuda?
At Hog Reef, [CO2−

3 ] has a seasonal range of∼190–
250 µmoles kg−1 (Fig. 2d), while [HCO−

3 ] has a range of
∼1720–1870 µmoles kg−1 (not shown). In summertime, dur-
ing the highest observed rates of coral calcification, when
[CO2−

3 ] is at a seasonal maxima and [HCO−

3 ] at a seasonal
minima, the ratio of [HCO−3 ]:[CO2−

3 ] is ∼6.8:1. In contrast,
in wintertime, during the lowest observed rates of coral calci-
fication, when [CO2−

3 ] is at a seasonal minima and [HCO−

3 ]
at a seasonal maxima, the ratio of [HCO−

3 ]:[CO2−

3 ] is ∼9.8:1.
Thus the ratio of [HCO−3 ] to [CO2−

3 ] changes by almost 40%
in the natural environment at Hog Reef. In the summer-
time, the low ratio of [HCO−3 ] to [CO2−

3 ] may lessen the
need for corals to actively remove H+ from the calicoblas-
tic layer (from the dissociation of HCO−3 ), thereby facilitat-
ing alkalinization of the calicoblastic fluids and calcification.
In contrast, during winter, the higher seawater proportion of
[HCO−

3 ] relative to [CO2−

3 ], may mean that there is a greater
demand for active removal of H+ from the calicoblastic layer.

Furthermore, with lower external seawater pH and greater
[H+], increased amounts of energy may be required to pump
H+ against this gradient. Higher energetic demands required
to remove H+ as suggested by Cohen and Holcomb (2009),
combined with lower energy production in winter due to re-
duced solar input, may make it more difficult for Bermuda
corals to alkalinize calicoblastic fluids with lower calcifica-
tion rates as a result.

If corals do actively take up both HCO−3 and CO2−

3 ,
changes in zooxanthellae photosynthesis could also enhance
or suppress calcification. Since HCO−

3 (internally converted
to CO2 by CA) is the source of inorganic carbon for photo-
synthesis, increased demand for HCO−

3 by increased zooxan-
thellae photosynthesis (in response to enhanced light condi-
tions) should shift the ratio of [HCO−3 ]:[CO2−

3 ] to lower val-
ues. This should further elevate pH, enhance alkalinization,
and�aragoniteconditions in the calicoblastic layer. Thus, as
evidenced by higher calcification rates during summertime
for the Bermuda coral reef, photosynthesis and favorable car-
bonate chemistry changes may act synergistically to enhance
rates of coral calcification.

4.4 The carbonate chemistry coral reef feedback
(CREF) hypothesis

Seasonal changes in seawater carbonate chemistry of
reef systems can be used to evaluate the net ecosystem
metabolism (NEM) of the reef and the impact of benthic pro-
cesses on water overlying the reef system (e.g., Chisholm
and Barnes, 1991; Suzuki et al., 1995; Gattuso et al., 1996;
Bates, 2002; Silverman et al., 2007; Langdon et al., 2010).
Two processes dominate the net ecosystem metabolism of
the reef, each with different influence on seawaterpCO2 and
other components of the seawater carbonate system. The first
process relates to the balance of coral calcification and dis-
solution or net ecosystem calcification (NEC). Positive NEC
values represent net calcification, while negative NEC val-
ues represent net dissolution. In general, calcification release
about 0.6 mole of CO2 to the surrounding environment per
mole of CaCO3 precipitated in coral reef systems (Kinsey,
1985; Frankignoulle et al., 1994; Lerman and Mackenzie,
2005). When rates of calcification exceed dissolution (i.e.,
NEC is positive), the uptake of inorganic carbon into the
coral skeleton as CaCO3 decreases DIC and TA in a ratio
of 1:2, with the net result of CO2 production and increase in
seawaterpCO2. Thus, NEC on most coral reefs results in
net production of CO2 (Gattuso et al., 1999). In many coral
reef systems, higher reef seawaterpCO2 values compared
to offshore conditions have been observed (e.g., Kawahata et
al., 2000; Suzuki and Kawahata, 2003), confirming that coral
reef metabolism generally acts to increase seawaterpCO2.
Similar findings were reported from previous short-term ob-
servations at Hog Reef (Bates et al., 2001), and across the
SE sector of the Bermuda platform (Bates, 2002), and in this
paper (Fig. 4).
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The second process relates to the balance of photosynthe-
sis and respiration or net ecosystem production (NEP). On a
typical coral reef, NEP is dominated by coral/zooxanthellae
respiration/photosynthesis, and benthic macroalgal photo-
synthesis and respiration. In net autotrophic systems, where
the rate of photosynthesis or gross primary production (P )
is greater than rate of respiration (R), NEP values are nega-
tive and the uptake of CO2 decreases DIC only (and seawater
pCO2 also) and TA remains unchanged (minor changes do
occur owing to the uptake of nutrients). In net heterotrophic
systems, whereP <R, NEP values are positive, CO2 is pro-
duced and DIC and seawaterpCO2 increase over time. In
many reef systems, net ecosystem production (NEP) is near
zero despite high rates of gross primary production (e.g.,
Crossland et al., 1991; Gattuso et al., 1999; Ducklow and
McAllister, 2004).

In a previous study, Bates (2002) used monthly differ-
ences of temperature corrected seawaterpCO2 between the
Bermuda coral reef and offshore values to estimate net pro-
ductivity (i.e., equivalent to NEP in this study) rates over the
annual cycle. In the absence of contemporaneous in situ coral
calcification rates, constant rates of calcification over the an-
nual cycle were assumed and used to estimate net productiv-
ity. This previous analysis indicated that the Bermuda coral
reef was net autotrophic over most of the year (i.e., NEP rates
were negative while net heterotrophic conditions occurred in
August and September (i.e., Fig. 3 in Bates, 2002).

In this study, NEC and NEP rates for the Bermuda reef
were determined using mass balance methods following sim-
ilar methods to other studies (e.g., Gattuso et al., 1996; Bates,
2002; Silverman et al., 2007). In this approach, observed dif-
ferences between onshore and offshore seawater carbonate
chemistry are used to quantify how reef processes (i.e., calci-
fication, dissolution, photosynthesis and respiration) modify
the TA and DIC content of waters overlying the reef, thereby
determining the NEM of the reef system. Contemporane-
ous DIC and TA data from the BATS site (Bates, 2007) and
Hog Reef were used for offshore and onshore seawater car-
bonate chemistry conditions, and both TA and DIC datasets
were corrected to a constant salinity of 36.6 to account for
local evaporation/precipitation differences between onshore
and offshore.

In a mass balance sense, if the rate of NEC (i.e., NECreef)

is positive and NEP of the reef (i.e., NEPreef) is zero, wa-
ters modified by net reef metabolism will gain CO2 (i.e., in-
crease seawaterpCO2) compared to offshore conditions due
to the production of CO2 from calcification and formation
of CaCO3 (DIC and TA will decrease). If NECreef is zero
and NEPreef negative (i.e., net autotrophic), waters modified
by net reef metabolism will lose CO2 (i.e., decrease seawa-
ter pCO2) compared to offshore conditions due to uptake of
CO2 from photosynthesis (i.e., photosynthesis> respiration;
DIC will decrease while TA will increase marginally).

4.4.1 Calculation of reef NEC and NEP rates

The calculation of rate of NEC (i.e., NECreef) is based on the
alkalinity anomaly-water residence time technique (Smith
and Key, 1975; Kinsey, 1978; Chisholm and Gattuso, 1991;
Langdon et al., 2010) that has been used previously for es-
timating in situ rates of calcification for reef systems (Gat-
tuso et al., 1996; Silverman et al., 2007). In the method,
differences between offshore and onshore nTA are assumed
to result from the balance of reef calcification and dissolu-
tion (i.e., NEC) that changes the TA content of waters over-
lying the reef (i.e.,1nTANEC). Thus, seasonal values for
1nTANEC are determined using the observed difference in
salinity normalized TA (i.e., nTA) between offshore and on-
shore (nTAoffshore-TAonshore) using data from BATS and Hog
Reef (Table 3). The NECreef rate is then calculated by scal-
ing the values of1TANEC to an appropriate water depth (Z)
and water residence time (τ) for the reef. Thus, following
the method of Langdon et al. (2010):

NECreef= 1nTANEC
= (9)

−0.5(nTAoffshore−TAonshore) ·(ρZ)/τ

whereρ is the density of seawater. Here, an average water
depth of 6 m and water residence time of 2 days is used in
the calculations of NECreef and NEPreef rates with scaling
issues, caveats and uncertainties discussed further. Rates of
NECreef are expressed in units of mmoles CaCO3 m−2 d−1

(or expressed as g CaCO3 m−2 d−1 using a molecular weight
of 100.09). Secondly, the change in DIC for waters overlying
the reef due to NEC (i.e.,1nDICNEC) is calculated using a
TA:DIC ratio of 2:1). Thus:

1nDICNEC
= 1nTANEC/2 (10)

The rate of NEP (i.e., NEPreef) for the reef is calculated
by mass balance given that NEP imparts a change in the
DIC content of waters overlying the reef (with photosyn-
thesis and respiration causing no change in TA). The rate
of NEPreef is thus calculated by mass balance using the ob-
served differences in nDIC between onshore and offshore
(i.e.,1nDICoffshore−onshore; Table 3) and1nDICNEC:

NEPreef= 1nDICNEP
= (11)

1nDICoffshore−onshore−1nDICNEC

NEPreef is then expressed in units of mmoles C m−2 d−1 (or
expressed as g C m−2 d−1 using a molecular weight of 12).

4.4.2 Scaling of NEC and NEP rates

In the above method, the rates of NECreef and
NEPreef are scaled from observed seasonal changes in
1nTAoffshore−onshoreand1nDICoffshore−onshoreas a function
of water depth and water residence time. Based on obser-
vations/models (Johnson, 2003; R. J. Johnson tide/wind
mixing model of the Bermuda reef), an average water depth
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Table 3. Hog Reef TA and DIC data compiled into a composite year. Julian day of sampling is shown along with original sampling data,
sea surface temperature (SST), salinity (S), DIC and TA data (both µmoles kg−1). These data are used in Sect. 4.4 to calculate rates of
NEPreef and NECreef using1nTAoffshore−onshoreand1nDICoffshore−onshorevalues.1nTAoffshore−onshoreand1nDICoffshore−onshoreare
calculated from nTA and nDIC (adjusted to a salinity of 36.6) using contemporaneous Hog Reef (onshore) and BATS data (offshore).

Julian Day Original Sampling Date SST S TA DIC 1nTAoffshore−onshore 1nDICoffshore−onshore

6 6 Jan 2003 20.71 36.815 2372.3 2053.8 33.3 −6.8
116 25 Apr 2003 20.79 36.815 2353.4 2048.8 48.7 16.7
119 28 Apr 2003 20.97 36.627 2346.3 2050.1 43.7 5.0
128 7 May 2003 22.13 36.677 2353.0 2020.1 42.2 38.8
137 16 May 2003 22.19 36.712 2355.4 2052.6 42.0 8.4
144 23 May 2003 22.50 36.616 2326.2 2025.7 65.0 29.9
155 3 Jun 2003 23.55 36.564 2363.0 2027.5 18.1 12.7
157 5 Jun 2003 24.03 36.564 2346.7 2048.6 34.4 −8.4
167 15 Jun 2003 25.80 36.642 2333.9 2067.0 52.1 −22.4
172 20 Jun 2003 25.63 36.619 2366.7 2030.9 17.8 12.3
184 2 Jul 2003 26.49 36.589 2400.3 2044.2 −15.2 0.4
198 16 Jul 2003 28.36 36.671 2331.3 2019.0 59.0 30.1
207 25 Jul 2003 28.76 36.899 2341.4 2017.1 63.4 44.5
212 30 Jul 2003 28.96 36.516 2330.3 1979.4 46.7 44.0
216 3 Aug 2003 29.42 36.608 2317.1 1971.2 65.8 57.2
228 15 Aug 2003 30.00 36.614 2314.0 1993.4 69.3 35.3
241 28 Aug 2003 28.31 36.161 2351.9 2010.6 9.9 −5.5
273 29 Sep 2003 26.50 36.135 2346.0 2045.5 11.6 −45.6
302 29 Oct 2002 25.42 36.524 2359.6 2038.7 25.4 −14.5
309 5 Nov 2002 24.27 36.591 2353.5 2033.1 34.0 −2.0
316 12 Nov 2002 22.82 36.760 2361.2 2027.2 37.2 13.3
324 20 Nov 2002 23.60 36.253 2371.9 2042.2 -6.5 −30.0
339 5 Dec 2002 22.38 36.506 2378.8 2045.3 9.8 −12.1
358 24 Dec 2002 21.44 36.515 2379.5 2047.5 9.6 −13.9

of 6 m and water residence time of 2 days (i.e.,Z and τ

in Eq. 9) were used in the calculations of NECreef and
NEPreef rates (Fig. 5). It is important to recognize that this
mass balance approach does not provide absolute values
for NECreef and NEPreef, but rather, provides a seasonal
view of changes in the balance of calcification/dissolution,
and net heterotrophy/net autotrophy. As a sensitivity test,
the annual rates of NECreef and NEPreef were plotted in
Fig. 6 for a range ofZ andτ values that are within observed
ranges for the Bermuda rim reef (e.g., 4–8 m water depth
and 1–4 day water residence time). If theZ term (i.e.,
water depth) in Eq. (9) is increased, rates of NECreef and
NEPreef also increase (Fig. 6) since reef rate processes (e.g.,
calcification) have to be higher for equivalency to observed
1nTAoffshore−onshoreand1nDICoffshore−onshoredata. In con-
trast, longer water residence times (i.e.,τ in Eq. 9) reduce
NECreef and NEPreef rates (Fig. 6). The strong summertime
net autotrophy and late summertime net heterotrophy shown
in Fig. 5 and discussed later occurs for all proscribed values
of Z andτ values shown in Fig. 6.

4.4.3 Further caveats and uncertainties for estimating
rates of NECreef and NEPreef

There are further caveats and uncertainties using the alka-
linity anomaly-water residence time technique. Firstly, it
should be noted that onshore and offshore seawater carbonate
chemistry were not typically sampled on the same day, but,
we have chosen data sampled as closely in time to estimate
onshore-offshore differences. Secondly, seawater carbonate
chemistry data were not corrected for long-term changes ob-
served at the BATS due to the oceanic uptake of anthro-
pogenic CO2 (Bates, 2007; Bates and Peters, 2007) since
the observations occurred over a 16 month period. These
long-term changes are very minor compared to the observed
changes in seawater carbonate chemistry over the timeframe
of the study. It is also assumed that the uptake of nitrate
by coral photosynthesis does not contribute significantly to
changes in nTA.

In addition, as argued previously by Bates (2002), ben-
thic coral calcification/dissolution, and coral/macroalgae
photosynthesis/respiration are the dominant processes in-
fluencing NEM for the Bermuda reef, with air-sea CO2
gas exchange, pelagic phytoplankton primary production
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Fig. 5. (a) Annual composite of rates of NECreef
(g CaCO3 m−2 d−1; green line) and NEPreef (g C m−2 d−1;
blue line) for the Bermuda reef using seawater TA and DIC data
from Hog Reef and BATS, and the alkalinity anomaly-water
mass residence technique. Positive NECreef values represent
net calcification, and negative values represent net dissolution,
with the zero line denote by grey dashed line. Positive NEPreef
values represent net heterotrophy, and negative values represent
net autotrophy, with the zero line denote by grey dashed line.(b)
Annual composite and comparison of surface seawater [CO2−

3 ]

data (µmoles kg−1; gray circles) and skeletal growth rates (i.e.,
Gdiploria; mg CaCO3 g−1 d−1). (c) Repeat of panel b showing
the CREF hypothesis superimposed on Hog Reef data. In early
summer, enhancement of [CO2−

3 ] and calcification during June and
July [green arrow] occurs due to negative NEP. In late summer,
suppression during September and October on the Bermuda reef
due to positive NEP [blue arrow]. The dashed line illustrates the
hypothesized [CO2−

3 ] in absence of the feedback on carbonate
chemistry due to seasonal changes in NEP.(d) Seasonal composite
of alkalinity difference (i.e.,1nTAoffshore−onshore) between Hog
Reef and the BATS site for the periods 2002–2003 (square symbol)
and 2005–2006 (circle symbol).

Fig. 6. Annual rates of NECreef (g CaCO3 m−2 d−1) plotted against
water depth (m) using the alkalinity anomaly-water mass residence
technique, and mass balance. Different water residence times (τ) of
1 to 4 days are plotted with isolines in blue. NEPreef (g C m−2 d−1;
green lines) are superimposed as isolines in green with negative val-
ues indicating net autotrophy. The most appropriate water depth of
6 m and residence time of 2 days for the Bermuda reef is shown by
the square.

and vertical mixing processes having minor impact on the
carbonate chemistry of waters resident for a short time
(<2 days) on the rim reefs of Bermuda (Bates, 2002). The
NEC for the reef (i.e., NECreef) includes contributions from
other calcifiers such as coralline red algae, green algae,
echinoderms, bryozoans, foraminifera and bivalves. In the
absence of data for other calcifiers, we assume that their con-
tribution is minor and that corals are the dominant calcifier
on the Bermuda coral reef with NECreef' NECcoral.

4.4.4 Seasonal rates of NECreef and NEPreef

The alkalinity anomaly-water residence time technique used
here indicates that NECreef seasonally ranged between−2.2
to 10.4 g CaCO3 m−2 d−1 (Fig. 5a) with highest net calci-
fication in winter (January–April) and mid-summer (July–
August) and lower net calcification in late-summer to fall
(September–December). For comparison, as shown in sec-
tion 4.1, NEC rates scaled up to the Bermuda reef using
observed skeletal growth rates forD. labyrinthiformis(i.e.,
Gdiploria) and a 50% coral cover would be in the range of
4.5 to 11.1 g CaCO3 m−2 d−1. In addition, in situ observa-
tions (Gdiploria) and mass balance approaches (i.e., NECreef),
both determined independently of each other, show similar
seasonal patterns (compare Fig. 5a and b). For most of the
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Fig. 7. Rates of NECreef (g CaCO3 m−2 d−1) against NEPreef
(g C m−2 d−1) using onshore and offshore seawater TA and
DIC data from Hog Reef and BATS. NECreef and NEPreef data
are shown in Fig. 5a using seawater TA and DIC data, and
1nTAoffshore−onshore and 1nDICoffshore−onshore data shown in
Table 3. The regression statistics for the line are:−0.244x +
0.700, r2 = 0.607. Arrows indicates direction of net autotrophy
(i.e.,−NEPreef), net heterotrophy (+NEPreef), net calcification (i.e.,
+NECreef) and net dissolution (i.e.,−NECreef). For example, the
upper left quadrant denotes conditions on the reef with net het-
erotrophy and net dissolution.

year, NECreef rates are generally positive (i.e., calcification
> dissolution) with rates of net calcification similar to other
reefs (e.g., Kinsey, 1985; Pichon 1997; Gattuso et al., 1993,
1996, 1999; Barnes and Lazar, 1993; Yates and Halley, 2006;
Silverman et al., 2007). However, negative NECreef values
were occasionally observed suggesting that the reef may ex-
perience brief periods of net dissolution.

The alkalinity anomaly-water residence time technique
also reveals seasonal changes in net reef metabolism and
shifts between net autotrophy and heterotrophy for the
Bermuda coral reef ecosystem (Fig. 5a). Rates of NEPreef
seasonally ranged between∼ −2.8 to +1.5 g C m−2 d−1.
This compares to early estimates for NEP of other reefs
that ranged from∼−0.6 to +0.6 g C m−2 d−1 (Kinsey,
1985; Andersson et al., 2005). Over relatively short-
timescales, Gattuso et al. (1996) showed that the Moorea
and Yonge reefs were net autotrophic with ranges of−0.4
to −5.8 g C m−2 d−1. More recently, Silverman et al., 2007
showed that the Eilat reef was predominantly net autotrophic
(up to −2.2 g C m−2 d−1 ) over the 1997–2002 period, but
also occasionally net heterotrophic (+0.5 g C m−2 d−1).

In general, NEPreef rates were negative over most of the

year indicating net autotrophic status of the reef, with rates
of photosynthesis greater than respiration. In the summer
(July/August) and fall (November–January) periods, NEPreef
rates were negative indicative of net autotrophy. However,
in late summer (September/October), NEPreef rates were
strongly positive, indicative of net heterotrophic conditions
that generate CO2, similar to previous findings of Bates
(2002). These seasonal patterns suggest that CO2 is taken
up by the reef system in early summer and fall periods, while
CO2 is released from net reef metabolism to waters overlying
the reef during the late summer.

The seasonal changes in carbonate chemistry, NECreef,
and NEPreef are evidence for a feedback between seawater
carbonate chemistry and reef metabolism that enhances or
suppresses coral calcification. As shown in Fig. 5, the high-
est rates of net calcification (i.e., +NECreef values) gener-
ally occur during periods when rates of net autotrophy are
at their highest (i.e.,−NEPreef). We term this feedback as a
seasonal carbonate chemistry coral reef ecosystem feedback
(CREF). In this scenario, in early summer, when macroal-
gal biomass is at it’s maxima on the Bermuda reef, strongly
negative NEPreef indicates net uptake of CO2 into the benthic
biomass (i.e., macroalgae and coral zooxanthellae), which in
turn increases the [CO2−

3 ] and �aragoniteof waters resident
on the reef. Thus, early summer net autotrophy enhances
carbonate chemistry conditions favourable for calcification
(evidenced by high rates in situ skeletal growth; Fig. 5c and
high rates of net calcification, NECreef, Fig. 5a). Similar sea-
sonal enhancement of surface layer [CO2−

3 ] and �aragonite
have been observed elsewhere as response to pelagic phy-
toplankton primary production and strongly net autotrophic
conditions (Feely et al., 1988; Bates et al., 2009). In addi-
tion, a diurnal model of the enhancement and suppression of
[CO2−

3 ] and coral calcification by photosynthesis and respi-
ration, respectively, has been shown for the Shiraho Reef by
Suzuki et al. (1995) using one daytime and one nightime set
of in situ observations for validation of the model. In our
study, although there are caveats and uncertainties in using
mass balance models, the NEPreef values for spring-summer
net autotrophy suggest that in addition to coral metabolism,
other components of the reef system (i.e., macroalgae photo-
synthesis) contributed to net autotrophy and enhancement of
[CO2−

3 ], �aragonite, and NECreef.
In contrast to the early summer condition, NEP rates shift

in late summer to positive values indicating a change from
net autotrophy to net heterotrophic conditions. Release of
CO2 in late summer suppresses [CO2−

3 ] and�aragonitewhich
in turn appears to suppress coral calcification rates (Fig. 5b
and c). During this period, benthic macroalgal biomass typi-
cally decreases from a seasonal maxima in early summer (S.
R. Smith, unpublished data). Net heterotrophic conditions
in late summer likely result from a combination of factors,
such as reduction in zooxanthellae photosynthesis rates, and
remineralization of organic matter produced from the ear-
lier benthic macroalgal production in early summer. Thus,
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late summer net heterotrophy and release of CO2 appears to
depress carbonate chemistry conditions favourable for cal-
cification (evidenced by low rates in situ skeletal growth;
Fig. 5c and low rates of net calcification, NECreef, Fig. 5a).
It is likely that other components of the reef system (i.e.,
macroalgae respiration) contributed to net heterotrophy and
suppression of [CO2−

3 ] and�aragonite. It may also be that late
summer macroalgal respiration and entrainment of respira-
tory CO2 from below the mixed layer due to the breakdown
of the warm, shallow thermocline through mixing induced
by cooling and storms act to increase seawaterpCO2 and
decrease [CO2−

3 ] and�aragonite. The subsequent seasonal re-
bound in [CO2−

3 ] and�aragoniteconditions and in situ skeletal
growth rates during the fall is associated with a return to net
autotrophic conditions. This perhaps reflects a combination
of exhaustion of benthic macroalgal organic matter as a fuel
for remineralization to CO2 and dilution effects as mixing of
reef and offshore waters become more vigorous in the fall
due to higher windspeeds and weather frontal passages as
observed at the BATS site (Bates, 2007). Since the Bermuda
coral reef is a high-latitude reef that experiences strong sea-
sonality in [CO2−

3 ], �aragoniteand other environmental con-
ditions (e.g., light, temperature) compared to tropical reef
counterparts, we expect that the CREF mechanism would be
attenuated in tropical reefs, and not as strongly manifested as
shown for the Bermuda reef.

4.5 Ocean acidification, future seasonal decalcification
and critical [CO 2−

3 ] and �aragonite thresholds of the
Bermuda coral reef

There is growing evidence from experimental and model-
ing studies that ocean acidification and decreasing [CO2−

3 ]
and �aragonite will negatively affect marine calcifiers and
ecosystems, but relatively little evidence exists from stud-
ies of the natural environment. For the Bermuda reef, we
show that rates of calcification forD. labyrinthiformiswere
strongly correlated with [CO2−

3 ] and�aragonite. Ocean acid-
ification and the gradual decline of [CO2−

3 ] and �aragonite
should have impacted coral calcification in the past. His-
torical records of coral calcification on tropical reefs show
a decline over the recent past (e.g., Wilkinson, 2000; Ed-
munds, 2007; Edmunds and Elahi, 2007; Cooper et al.,
2008; De’ath et al., 2009). In Bermuda, calcification rates
of mature colonies ofD. labyrinthiformis sampled at Hog
Reef have also been reconstructed using coral skeletal den-
sity analyses (A. Cohen and N. Jacowski, unpub. data; Co-
hen et al., 2004). Such historical records show that skele-
tal density forD. labyrinthiformishas declined from a high
of 4.5 g cm−3 year−1 in 1959 to a low of 3 g cm−3 year−1 in
1999, a change of 1.5 g cm−3 year−1, or decrease of∼33%.
At the BATS site offshore from the island of Bermuda, over
the last 25 years, the observed annual rate of [CO2−

3 ] de-
crease due to the oceanic uptake of anthropogenic CO2 was
0.50±0.03 µmoles kg−1 year−1 (Bates, 2007; Bates and Pe-

ters, 2007). If the rate of [CO2−

3 ] decrease is applied to
the observed in situ correlation between skeletal growth of
D. labyrinthiformis and [CO2−

3 ] at Hog Reef (Fig. 3a), a
∼37% decrease in calcification would be predicted for the
1959–1999 period. Since these assessments are based on the
same coral species, but using very different approaches, there
seems to be strong evidence that ocean acidification has sig-
nificantly decreased calcification rates on the Bermuda coral
reef over the recent past.

We can also estimate the decrease in coral calcification
due to ocean acidification from the pre-industrial period
to present. At the BATS site, the observed [CO2−

3 ] de-
crease of 0.50± 0.03 µmoles kg−1 year−1 is accompanied
by an observed increase in salinity normalized DIC of
0.80± 0.06 µmoles kg−1 year−1 (Bates, 2007; see his Ta-
ble 2). In the subtropical gyre of the North Atlantic,
the increase in DIC due to uptake of anthropogenic CO2
is estimated at∼60 µmoles kg−1 (Sabine et al., 2004).
Given the ratios of observed DIC/[CO2−

3 ] change, we esti-
mate that the mean [CO2−

3 ] was ∼37.5 µmoles kg−1 higher
in pre-industrial times compared to the 2002–2003 pe-
riod of observations at Hog Reef. Since the mean an-
nual skeletal growth ofD. labyrinthiformisobserved at Hog
Reef was 0.47 mg CaCO3 g−1 d−1, the application of the
skeletal growth/[CO2−

3 ] correlation shown in Fig. 3 gives
a hindcast estimate of mean annual skeletal growth of
0.97 mg CaCO3 g−1 d−1 in the pre-industrial period (with a
range of 0.78–1.15 mg CaCO3 g−1 d−1). Thus, our results
suggest that coral calcification rates (forD. labyrinthiformis
at least) at Hog Reef have declined by 52% compared to the
pre-industrial period as a result of changes in seawater car-
bonate chemistry.

The future impact of ocean acidification on coral calcifica-
tion on the Bermuda reef also appears to be negative. Based
on a linear extrapolation, our in situ data suggests that the
calcification rate ofD. labyrinthiformis would reach zero
at [CO2−

3 ] and �aragonite thresholds of∼184 µmoles kg−1

and 2.65, respectively (for both skeletal growth nomalized to
colony weight or colony surface area; Fig. 3). The�aragonite
threshold has a range of 2.22–3.08 at the 95% confidence
level so some caution should be advised proscribing defini-
tive thresholds. Furthermore, the dependence of commu-
nity calcification on [CO2−

3 ] and �aragonitemay not be lin-
ear, but rather based on a second or higher order relation-
ship resulting in a weaker dependence closer to the criti-
cal threshold (Andersson et al., 2009). Nonetheless, with
these caveats in mind, due to lower annual mean surface sea-
water [CO2−

3 ] and�aragonitein Bermuda compared to more
tropical regions, the Bermuda reef should experience crit-
ical threshold values earlier than its tropical reef ecosys-
tem counterparts in response to future acidification of the
oceans. Given that the lowest observed [CO2−

3 ] on the
Bermuda coral reef in 2002–2003 was∼190 µmoles kg−1

during winter, and assuming that the rate of [CO2−

3 ] decrease
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(i.e., 0.50± 0.03 µmoles kg−1 year−1) continues linearly in
the near-future (Bindoff et al., 2007), we anticipate that
the Bermuda coral reef should experience seasonal periods
of zero calcification rates (i.e., NECreef= 0) within the next
decade. Silverman et al. (2007) suggest that decalcification
of coral reefs occurs when the gross calcification rate is equal
to or less than 20% of the pre-industrial calcification rate.
Given our observations of skeletal growth rates of∼0.28–
0.65 mg CaCO3 g−1 d−1 for D. labyrinthiformiscolonies, the
Bermuda reef is currently about 30% of the mean pre-
industrial calcification rate (i.e., 0.97 mg CaCO3 g−1 d−1).
During wintertime, NEC is close to zero, a condition where
dissolution and calcification are nearly in balance. Salinity
normalized alkalinity data from Hog Reef (2002–2003) also
exhibits close to zero difference between onshore and off-
shore values in the wintertime and during the late summer
when net heterotrophy on the reef suppresses� and calci-
fication. This suggests that the threshold for when NECreef
equals zero may already be occurring seasonally (2005–2006
data from Hog Reef also shows NECreef values close to zero
or negative values indicating net dissolution; N. R. Bates and
A. J. Andersson, unpublished data). Thus for the Bermuda
coral reef, there are periods when the balance of calcification
(from corals and other calcifiers such as coralline algae) and
dissolution are equal, with the likelihood of net decalcifica-
tion going forward in time as shown experimentally for reef
mesocosms (Andersson et al., 2009). A potentially amelio-
rating process, as discussed earlier in Sect. 4.4, may be that
net autotrophy of the reef during winter and spring (as part
of the carbonate chemistry coral reef ecosystem feedback)
which enhances [CO2−

3 ] and �aragonitemay delay the onset
of zero NEC or decalcification going forward.

In the near-future, the above scenarios predict that the
Bermuda coral reef will experience seasonal decalcification
for increasing periods of the year. Given that the Bermuda
coral reef experiences a maximum [CO2−

3 ] seasonality of
∼60 µmoles kg−1, we might expect that the reef system
will experience seasonal decalcification for a further 100–
140 years, if the long-term trend of [CO2−

3 ] reduction con-
tinues under IPCC assessments of future anthopogenic CO2
release. During this period, we anticipate that suitable condi-
tions for corals and other organisms to calcify will decrease
progressively going forward in time. In addition, seasonal
decalcification will impact such processes as dissolution of
the framework structure of the reef and settlement of juve-
nile corals. This impact is difficult to predict, but most likely
negative. In the next century, carbonate saturation states will
transition into conditions that no longer facilitate coral reef
calcification. As discussed earlier, if anthropogenic CO2
emissions continue to accelarate, this transition will occur
earlier in time. Due to the seasonality of carbonate chem-
istry on the Bermuda coral reef, the critical thresholds for
initiation of coral decalcification are notsharp transitions
as suggested by Silverman et al. (2009), but relativelyex-

tendedtransitions that potentially extend over a period of
many years. Since, the Bermuda coral reef is a high-latitude
reef that experience strong seasonality, we expect that the
tropical reef counterparts (with reduced seasonality of tem-
perature, light, NEP, and NEC) will have attenuated season-
ality of carbonate chemistry. Thus, we anticipate that the
period of seasonal decalcification on tropical reefs will be
shorter compared to higher latitude reefs.

5 Conclusions

In our study, we show that rates of coral calcification were
closely coupled with seawater carbonate chemistry [CO2−

3 ]
and�aragonite, in the natural environment, rather than other
environmental factors such as light and temperature. Our
field observations provide sufficient data to hypothesize that
there is a seasonal carbonate chemistry coral reef ecosys-
tem feedback (i.e., CREF hypothesis) between the primary
components of the reef ecosystem (scleractinian hard corals
and macroalgae) and seawater carbonate chemistry. It is
also likely that this seasonal phenomenon is present in other
tropical reefs although attenuated compared to high-latitude
reefs such as Bermuda. Furthermore, due to lower annual
mean surface seawater [CO2−

3 ] and �aragonite in Bermuda
compared to more tropical regions, the Bermuda coral reef
will likely experience seasonal periods of zero NEC within
a decade in response to future acidification of the oceans. It
appears that the entire reef may already be experiencing pe-
riods of zero NEC during the wintertime, resulting in a tran-
sition to net decalcification (i.e., net dissolution over calcifi-
cation). As such, the Bermuda coral reef appears to be one
of the first responders to the negative impacts of ocean acid-
ification among tropical and subtropical reefs. Furthermore,
we anticipate that the Bermuda coral reef (as well as other
high latitude reefs) will likely be subjected to “seasonal de-
calcification” with wintertime decalcification occuring many
decades before summertime decalcification. However, net
autotrophy of the reef during winter and spring, as part of the
CREF feedback process may delay the onset of zero NEC or
decalcification going forward. Thus, on societally relevant
time-scales, we expect that the Bermuda reef will endure an
extendedtransition to decalcified conditions over a period of
decades rather than a short transition atsharply-definedcrit-
ical thresholds expected for tropical coral reef counterparts.
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J., Gulev, S., Hanawa, K., Le Quéŕe, C., Levitus, S., Nojiri, Y.,
Shum, C. K., Talley, L. D., and Unnikrishnan, A.: Observations:
Oceanic Climate Change and Sea Level, in: Climate Change
2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovern-
mental Panel on Climate Change, edited by: Solomon, S., Qin,
D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor,

www.biogeosciences.net/7/2509/2010/ Biogeosciences, 7, 2509–2530, 2010



2526 N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef

M., and Miller, H. L., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 2007.

Broecker, W. S. and Takahashi, T.: calcium carbonate precipitation
on the Bahama Banks, J. Geophys. Res., 71, 1575–1602., 1966.

Broecker, W. S., Li, Y. H., and Peng, T.-H.: Carbon dioxide – man’s
unseen artifact, in: Impingement of Man on the Oceans, edited
by: Hood, D. W., John Wiley & Sons, New York, 287–324, 1971.

Buddemeier, R. W., Kleypas, J. A., and Aronson, R. B.: Coral Reefs
and Global Climate Change: Potential Contributions of Climate
Change to Stresses on Coral Reef Ecosystems. Pew Center on
Climate Change, 44 pp., 2004.

Caldeira, K. and Wickett, M. E.: Anthropogenic carbon and ocean
pH, Nature, 425, 365–368, 2003.

Caldeira, K. and Wickett, M. E.: Ocean model predictions of
chemistry changes from carbon dioxide emissions to the atmo-
sphere and ocean, J. Geophy. Res. Oceans, 110(C9), C09S04,
doi:10.1029/2004JC002671., 2005.

CARICOMP: CARICOMP monitoring of coral reefs, Procedings
of the 8th International Coral Reef Symposium, Panama, 1, 651–
656, 1997a.

CARICOMP: Meteorological and oceanographic characterization
of coral reef, seagrass and mangorve habitats in the wider
Caribbean, Procedings of the 8th International Coral Reef Sym-
posium, Panama, 1, 657–662, 1997b.

CARICOMP: Status and Trends at CARICOMP coral reef sites,
Procedings of the 9th International Coral Reef Symposium, Bali,
1, 325–330, 2000.

Chisholm, J. R. M., and Gattuso, J.-P.: Validation of the alkalinity
anomaly technique for investigating calcification and photosyn-
thesis in coral reef communities, Limnol. Oceanogr., 36, 1232–
1239, 1991.

Chisholm, J. R. M. and Barnes, D. J.: Anomalies in coral reef com-
munity metabolism and their potential importance in the reef
CO2 source-sink debate, P. Natl. Acad. Sci. USA, 95, 6566–
6569, 1998.

Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., and
Richels, R.: Scenarios of Greenhouse Gas Emissions and Atmo-
spheric Concentrations. Sub-report 2.1A of Synthesis and As-
sessment Product 2.1 by the US Climate Change Science Pro-
gram and the Subcommittee on Global Change Research, De-
partment of Energy, Office of Biological & Environmental Re-
search, Washington, DC, USA, 154 pp., 2007.

Cohen, A. L. and McConnaughey, T. A.: Geochemical perspec-
tives on coral mineralization in Biomineralization, Rev. Mineral.
Geochem., 54, 151–187, 2003.

Cohen, A. L., Smith, S. R., McCartney, M. S., and van Etten, J.:
How brain corals record climate: an integration of skeletal struc-
ture, growth and chemistry of Diploria labyrinthiformis from
Bermuda, Mar. Ecol. Prog. Ser., 271, 147–158, 2004.

Cohen, A. L. and Hlcomb, M.: Why corals care about ocean acidi-
fication, Oceanography, 22(4), 118–127, 2009.

Cooper, T. F., De’ath, G., Fabricius, K. E., and Lough, J. M.: De-
clining coral calcification in massive Porites in two nearshore re-
gions of the northern Great Barrier Reef, Glob. Change Biol., 14,
529–538, 2008.

Crossland, C. J., Hatcher, B. G., and Smith, S. V.: Role of coral
reefs in global ocean production, Coral Reefs, 10, 55–64, 1991.

Davies, P. S.: Short-term measurements of corals using an accurate
buoyant weighing technique, Mar. Biol., 101, 389–395, 1989.

Davies, P. S.: A rapid method for assessing growth rates of corals
in relation to water pollution, Mar. Pollut. Bull., 21, 346–348.,
1990.

De’ath, G., Lough, J. M., and Fabricius, K. E.: Declining coral
calcification on the Great Barrier Reef, Science, 323, 116–119,
2009.

de Beer, D., Kuhl, M., Stambler, N., and Vaki, L.: A microsensor
study of light enhanced Ca2+ uptake and photosynthesis in the
reef-building hermatypic coralFavia sp., Mar. Ecol. Prog. Ser.,
194, 75–85, 2000.

Dickson, A. G.: Thermodynamics of the dissociation of boric acid
in potassium chloride solutions from 273.15 K to 318.15 K, J.
Chem. Eng. Data., 35(3), 253–257, 1990.

Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium
constants for the dissociation of carbonic acid in seawater media,
Deep-Sea Res., 34, 1733–1743, 1987.

Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to
best practices for ocean CO2 measurements. Sidney, British
Columbia, North Pacific Marine Science Organization, PICES
Special Publication 3, 2007.

Dobson, F. W. and Smith, S. D.: Estimation of solar radiation at
sea, in: the Ocean Surface, edited by: Toba, Y. and Mitsuyasa,
H., Reidel, Dordrecht, 525–533, 1980.

Dodge, R. E. and Vaisnys, J. R.: Coral populations and growth pat-
terns: responses to sedimentation and turbidity associated with
dredging, J. Mar. Res., 35, 715–730, 1977.

Dodge, R. E., Wyers, S. C., Frith, H. R., Knap, A. H., Smith, S.
R., Cook, C. B., and Sleeter, T. D.: Coral calcification rates by
the buoyant weight technique. Effects of alizarin staining, J. Exp.
Mar. Biol. Ecol., 75, 217–232, 1984.

Dodge, R. E., Knap, A. H., Wyers, S. C., Frith, H. R., Smith, S. R.,
and Sleeter, T. D. The effect of dispersed oil on the calcification
rate of the reef-building coralDiploria strigosa, Proceedings of
the Fifth International Coral Reef Congress, 6, 453–457, 1985.

DOE: Handbook of Methods for the Analysis of the Various Pa-
rameters of the Carbon Dioxide System in Seawater; version 2.0,
edited by: Dickson, A. G. and Goyet, C., US Department of En-
ergy CO2 Science Team Report, 1994.

Doney, S. C.: The dangers of ocean acidification, Scientific Ameri-
can, March 2006, 58–65, 2006.

Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean
acidification: the other CO2 problem, Ann. Rev. Mar. Sci., 1,
169–192, 2009.

Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D.
M.: Physical and biogeochemical modulation of ocean acidifica-
tion in the central North Pacific, P. Natl. Acad. Sci., 106, 12235–
12240, 2009.

Ducklow, H. W. and McAllister, S. L.: Biogeochemistry of car-
bon dioxide in the coastal oceans, in: The Sea, Volume 13, The
Global Coastal Ocean-Multiscale Interdisciplinary Processes,
edited by: Robinson, A. R. and Brink, K., J. Wiley and Sons,
NY, 2005.

Duffie, J. A. and Beckman, W. A.: Solar Engineering of Thermal
Processes, J. Wiley and Sons, New York, 2nd edition, 1991.

Dutton, E. G.: Basic measurements of radiation at station Bermuda
(2002–2003), Climate Monitoring & Diagnostics Laboratory,
Boulder, doi:10.1594/PANGAEA.667769, 2007.

Edmunds, P. J.: Evidence for a decade-scale decline in the growth
rates of juvenile scleractinian corals, Mar. Ecol. Prog. Ser., 341,

Biogeosciences, 7, 2509–2530, 2010 www.biogeosciences.net/7/2509/2010/



N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef 2527

1–13, 2007.
Edmunds, P. J. and Elahi, R.: The demographics of a 15-year de-

cline in cover of the Caribbean reef coral Montastraea annularis,
Ecol. Monogr., 77(1), 3–18, 2007.

Feely, R. A., Byrne, R. H., Acker, J. G., Betzer, P. R., Chen, C. T.-
A., Gendron, J. R., and Lamb, M. F.: Winter summer variations
of calcite and aragonite saturation in the northeast Pacific, Mar.
Chem., 25(3), 227–241., 1988.

Fine, M. and Tchenov, D.: Scleractinian coral species survive and
recover from decalcification, Science, 315, 1811–1813, 2007.

Frankignoulle, M., Canon, D., and Gattuso, J. P.: Marine calcifi-
cation as a source of carbon dioxide – Positive feedback of in-
creasing atmospheric CO2, Limnol. Oceanogr., 39(2), 458–462,
1994.

Frankignoulle, M., Gattuso, J. P., Biondo, R., Bourge, I., Copin-
Montegut, G., and Pichon, M.: Carbon fluxes in coral reefs 2.
Eulerian study of inorganic carbon dynamics and measurement
of air- sea CO2 exchanges, Mar. Ecol. Prog. Ser., 145(1–3), 123–
132, 1996.

Furla, P., Galgani, I., Durand, I., and Allemand, D.: Sources and
mechanisms of inorganic carbon transport for coral calcification
and photosynthesis, J. Exp. Biol., 203, 3445–3457, 2000.

Gattuso, J.-P.: Photosynthesis and calcification at cellular, organ-
ismal and community levels in coral reefs: a review on interac-
tions and control by carbonate chemistry, American Zoologist,
39, 160–183, 1999.

Gattuso, J.-P. and Jaubert, J.: Effect of light on oxygen and carbon-
dioxide fluxes and on metabolic quotients measured in situ in
a zooxanthellate coral, Limnol. Oceanogr., 35(8), 1796–1804,
1990.

Gattuso, J.-P., Pichon, M., Delesalle, B., and Frankignoulle, M.:
Community metabolism and air–sea CO2 fluxes in a coral reef
ecosystem (Moorea, French Polynesia), Mar. Ecol. Prog. Ser.,
96, 259–267, 1993.

Gattuso, J.-P., Pichon, M., and Frankignoulle, M.: Biological con-
trol of air-sea fluxes: effects of photosynthetic and calcifyingg
marine organisms and ecosystems, Mar. Ecol. Prog. Ser., 129,
307–312, 1995.

Gattuso, J.-P., Pichon, M., Delesalle, B., Canon, C., and Frankig-
noulle, M.: Carbon fluxes in coral reefs. I. Lagrangian measure-
ment of community metabolism and resulting air-sea CO2 dise-
quilibrium, Mar. Ecol. Prog. Ser., 145, 109–121, 1996.

Gattuso, J.-P., Payri, C. E., Pichon, M., Delesalle, B., and
Frankignoulle, M.: Primary production, calcification, and air-
sea CO2 fluxes of a macroalgal-dominated coral reef community
(Moorea, French Polynesia), J. Phycology, 33, 729–738, 1997.

Gattuso, J.-P., Frankignoulle, M., Bourge, I., Romaine, S., and R.
W. Buddemeier, R. W.: Effect of calcium carbonate saturation
of seawater on coral calcification, Global Planetary Change, 18,
37–46, 1998.

Gattuso, J.-P., Allemand, P. D., and Frankignoulle, M. Interactions
between the carbon and carbonate cycles at organism and com-
munity levels on coral reefs: a review of processes and control by
carbonate chemistry. American Zoologist, 39, 160–188, 1999.

Gattuso, J.-P., Reynaud-Vaganay, S., Furla, P., Romaine-Lioud, S.,
Jaubert, J., Bourge, I., and Frankignoulle, M.: Calcification does
not stimulate photosynthesis in the zooxanthellate scleractinian
coral Stylophora pistillata, Limnol. Oceanogr., 45, 246–250,
2000.

Glud, R. N., Eyre, B. D., and Patten, N. Biogeochemical responses
to mass coral spawning at the Great Barrier Reef: effects on
respiration and primary production, Limnol. Oceanogr., 53(3),
1014–1024, 2008.

Goiran, C., Al-Moghrabi, S., Allemand, D., and Jaubert, J.:
Inorganic carbon uptake for photosynthesis by the symbiotic
coral/dinoflagellate association I. Photosynthetic performances
of symbionts and dependence on sea water bicarbonate, J. Exp.
Mar. Biol. Ecol., 199(2), 207–225, 1996.

Goreau, T. F.: The physiology of skeleton formation in corals I. A
method for measuring the rate of calcium deposition by corals
under different conditions, Biol. Bull., 116, 59–75, 1959.

Grottoli, A. G.: Effect of light and brine shrimp in skeletal d13C
in the Hawaiian coralPorites compresa: a tank experiment,
Geochimica Cosmochimica Acta, 66, 1955–1967, 2002.

Grottoli A. G. and Wellington, G. M.: Effect of light and zooplank-
ton on skeletal d13C values in the eastern Pacific coralsPavona
clavusandPavona gigantean, Coral Reefs, 18, 29–41, 1999.

Guinotte, J. M., and Fabry, V. J.: Ocean acidification and its po-
tential effects on marine ecosystems, Year in Ecology and Con-
servation Biology, 2008; Annals of the New York Academy of
Sciences, 1134, 320–342, 2008.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck R. S.,
Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards,
A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto,
R., Muthiga, N., Bradbury, R. H., Dubi, A., and Hatziolos, M. E.:
Coral reefs under rapid climate change and ocean acidification,
Science, 318, 1737–1742, 2007.

Hood, E. M., Merlivat, L., and Johannessen, T.: Variations of
f CO2 and air-sea flux of CO2 in the Greenland Sea using high-
frequency time-series data from CARIOCA drift-buoys, J. Geo-
phys. Res., 104, 20571–20583, 1999.

Hughes, T. P.: Catastrophes, phase shifts, and large-scale degrada-
tion of a Caribbean coral reef, Science, 271, 1298–1299, 1994.

IPCC, Climate Change 1995: The science of climate change, Con-
tribution of working group I to the Second Assessment Report
of the intergovernmental Panel on Climate Change, edited by:
Houghton, J. T., Meiro Filho, L. G., Callander, B. A., Harris, N.,
Kattenberg, A., and Maskell, K., Cambridge University Press,
Cambridge, 572 pp., 1996.

IPCC, Climate change 2001: The scientific basis, Contribution of
Working Group I to the Third Assessment Report of the Inter-
governmental Panel on Climate Change, edited by: Houghton,
J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J.,
Dai, X., Maskell, K., and Johnson, C. A., Cambridge University
Press, Cambridge, 881 pp., 2001.

IPCC, Climate Change 2007: The Physical Science Basis. Contri-
bution of Working Group I to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change. Solomon, S., D.
Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor
and H. L. Miller (eds.), Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 996 p., 2007.

Johnson, R. J.: Climatic and Mesoscale Eddy Modulation of the
Upper Ocean at the Bermuda Time-series Site, Ph.D. disserta-
tion, University of Southampton, UK, 247 pp., 2003.

Jokiel, P. L., Maragos, J. E., and Franzisket, L.: Coral growth:
buoyant weight technique, in: Coral Reef Research Methods,
edited by: Stoddart, D. R., and Johannes, R. E., UNESCO Mono-
graph Oceanographic Methods, 529–542, 1978.

www.biogeosciences.net/7/2509/2010/ Biogeosciences, 7, 2509–2530, 2010



2528 N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef

Jokiel, P., Rodgers, K. S., Kuffner, I. B., Andersson, A. J., Macken-
zie, F. T., and Cox, E. F.: Ocean acidification and calcifying reef
organisms: a mesocosm investigation, Coral Reefs, 27, 473–483,
2008.

Kawahata, H., Suzuki, A., and Goto, K.: Coral reef ecosystems as a
source of atmospheric CO2: evidence frompCO2 measurements
of surface waters, Coral Reefs, 16, 261–266, 1997.

Kawahata, H., Suzuki, A., Ayukai, T., and Goto, K.: Distibution
of the fugacity of carbon dioxide in the surface seawater of the
Great Barrier Reef, Mar. Chem., 72, 257–272, 2000.

Kayanne, H., Suzuki, A., and Saito, H.: Diurnal changes in the
partial pressure of carbon dioxide in coral reef water, Science,
269, 214–216, 1995.

Kayanne, H., Suzuki, A., and Saito, H.: Coral reefs and carbon
dioxide, Science, 271, 1299–1300, 1996.

Kayanne, H., Hata, H., Kudo, S., Yamano, H., Watanabe, A.,
Ikeda, Y., Nozaki, K., Kato, K., Negishi A., and Saito,
H.: Seasonal and bleaching-induced changes in coral reef
metabolism and CO2 flux. Global Biogeochem. Cy., 19(3),
doi:10.1029/2004GB002400, 27 Aug 2005, 2005.

Kinsey, D. W.: Alkalinity changes and coral reef calcification. Lim-
nol. Oceanogr., 23, 989–991, 1978.

Kinsey, D. W.: Metabolism, calcification and carbon production. I.
System Level Studies. Proceedings of the 5th International Coral
Reef Congress, Tahiti, pp. 22, 1985.

Kleypas, J. A. and Yates, K. K.: Coral reefs and ocean acidification,
Oceanography, 22(4), 108–117, 2009.

Kleypas, J. A., Buddemeier, R. W., Archer, D., Gattuso, J.-P., Lang-
don, C., and Opdyke, B. N.: Geochemical consequences of in-
creased atmospheric carbon dioxide on coral reefs, Science, 284,
118–120, 1999a.

Kleypas, J. A., McManus, J., and Menez, L.: Using environmental
data to define reef habitat: where do we draw the line?, Am.
Zool., 39, 146–159, 1999b.

Kleypas, J. A., Buddemeier, R. W., and Gattuso, J.-P.: The future
of coal reefs in an age of global change, International Journal of
Earth Sciences (Geologische Rundschau), 90, 426–437, 2001.

Kleypas, J. A., Feely, R. A ., Fabry, V. J., Langdon, C., Sabine,
C .L., and Robbins, L. L.: Impacts of Ocean Acid- ification on
Coral Reefs and Other Marine Calcifiers: a Guide for Future Re-
search, report of a workshop held 18–20 April 2005, St. Peters-
burg, FL, sponsored by NSF, NOAA, and the US Geological Sur-
vey, 88 pp., 2006.

Langdon C.: Review of experimental evidence for effects of CO2 on
calcification of reef builders, Proceedings of the 9th International
Coral Reefs Symposium, Bali, Indonesia, October 2000, 2001.

Langdon, C. and Atkinson, M. J.: Effect of elevatedpCO2
on photosynthesis and calcification of corals and interac-
tions with seasonal change in temperature/irradiance and nu-
trient enrichment, J. Geophys. Res., Oceans, 110, C09S07,
doi:10.1029/2004JC002576, 2005.

Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J.,
Marubini, F., Aveces, H., Barnett, H., and Atkinson, M. J.: Effect
of calcium carbonate saturation state on the calcification rate of
an experimental coral reef, Global Biogeochem. Cy., 14(2), 639–
654, 2000.

Langdon, C., Broecker, W. S., Hammond, D. E., Glenn, E., Fitzsim-
mons, K., Nelson, S. G., Peng, T.H., Hajdas, I., and Bonani,
G.: Effect of elevated CO2 on the community metabolism of an

experimental coral reef. Global Biogeochem. Cy., 17(1), 1011,
doi:10.1029/2002GB001941, 2003.

Langdon C., Gattuso, J.-P., and Andersson, A. J.: Measurements of
calcification and dissolution of benthic organisms and commu-
nities. In: guide to Beast Practices in Ocean Acidification Re-
seach and Data Reporting, edited by: Riebesell, U., Fabry, V. J.,
Hansson, L., and Gattuso, J.-P., Luxembourg, Office for Official
Publications of the European Communities, 155–174, 2010.

Leclercq, N., Gattuso, J. P., and Jaubert, J.: CO2 partial pres-
sure controls the calcification rate of a coral community, Glob.
Change Biol., 6(3), 329–334, 2000.

Leclercq, N., Gattuso, J. P., and Jaubert, J.: Primary production,
respiration and calcification of a coral reef mesocosm under in-
creased CO2 partial pressure, Limnol. Oceanogr., 47(2), 558–
564, 2002.

Lerman, A. and Mackenzie, F. T.: CO2 air-sea exchange due to cal-
cium carbonate and organic matter storage, and its implications
for the global carbon cycle, Aquat. Geochem., 11(4), 345–390,
doi:10.1007/s10498-005-8620-x, 2005.

Logan, A. and Tomascik, T.: Extension growth rates in two coral
species from high latitude reefs of Bermuda, Coral Reefs, 10,
155–160, 1991.

Logan, A., Yang, L., and Tomascik, T.: Linear skeletal exten-
sion rates in two species ofDiploria form high-latitude reefs in
Bermuda, Coral Reefs, 13, 225–230, 1994.

Manzello, D. P.: Ocean acidification hot spots: Spatiotemporal dy-
namics of the seawater CO2 system of eastern Pacific coral reefs,
Limnol. Oceanogr., 55(1), 239–248, 2010.

Manzello, D. P., Kleypas, J. A., Budd, D. A., Eakin, C. M., Glynn,
P. W., and Langdon, C.: Poorly cemented coral reefs of the east-
ern tropical Pacific: Possible insights into reef development in
a high-CO2 world, P. Natl. Acad. Sci., 105(30), 10450–10455,
2008.

Marshall A. T.: Calcification in hermatypic and ahermatypic corals.
Science, 271, 637–639, 1996.

Marshall A. T. and Clode, P. L.: Calcification rate and the effect
of temperature in a zooxanthellatre and azooxanthelllate sclerac-
tinian reef coral, Coral Reefs, 23(2), 216–224, 2004.

Marubini, F. and Atkinson, M. J.: Effects of lowered pH and el-
evated nitrate on coral calcification, Mar. Ecol. Prog. Ser., 188,
117–121, 1999.

Marubini, F. and Thake, B.: Bicarbonate addition promotes coral
growth, Limnol. Oceanogr., 44(3), 716–720, 1999.

Marubini, F., Barnett, H., Langdon, C., and Atkinson, M. J.: De-
pendence of calcification on light and carbonate ion concentra-
tion for the hermatypic coralPorites compressa, Mar. Ecol. Prog.
Ser., 228, 153–162, 2001.

Marubini, F., Ferrier-Pages, C., and Cuif, J. P.: Suppression of
skeletal growth in scleractinian corals by decreasing ambient
carbonate-ion concentration: a cross-family comparison, Pro-
ceedings of the Royal Society London B, 270, 179–184, 2003.

Marubini, F., Ferrier-Pages, C., Fulra, P., and Allemand, D.: Coral
calcification responds to seawater acidification: a working hy-
pothesis towards a physiological mechanism, Coral Reefs, 27,
491–499, 2008.

McConnaughey, T. A.:13C and18O isotope disequilibria in bio-
logical carbonates. 1. Patterns, Geochimica Cosmochimica Acta,
53, 151–162, 1989a.

McConnaughey, T. A.:13C and18O isotope disequilibria in biolog-

Biogeosciences, 7, 2509–2530, 2010 www.biogeosciences.net/7/2509/2010/



N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef 2529

ical carbonates. 2. In vitro simulation of kinetic isotope effects,
Geochim. Cosmochim. Ac., 53, 163–171, 1989b.

McConnaughey, T. A.: Calcification generates protons for nutrient
and bicarbonate uptake, Earth-Sci. Rev., 42, 95–117, 1997.

McConnaughey, T. A.: Sub-equilibrium oxygen-18 and carbon-13
levels in biological carbonates: carbonate and kinetic models,
Coral Reefs, 22, 316–327, 2004.

McConnaughey, T. A. and Whelan, J. F.: Calcification generates
protons for nutrient and bicarbonate uptake, Earth-Sci. Rev., 42,
95–117, 1997.

Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkow-
icz, R. M.: Measurement of the apparent dissociation constants
of carbonic acid in seawater at atmospheric pressure, Limnol.
Oceanogr., 18, 897–907, 1973.

MEP: BIOS Marine Environmental Program (MEP) Annual Report
2005/06. Report to the Government of Bermuda, 128 pp., (http:
//www.bios-mep.info/), 2006.

Merlivat, L, and Brault, P.: CARIOCA buoy-Carbon dioxide moni-
tor, Sea Technol., 36(10), 23, 1995.

Morris, B., Barnes, J., Brown, F., and Markham, J.: The Bermuda
Marine Environment, Bermuda Biological Station Special Publi-
cation, 15, 72 pp., 1977.

Morse, J. W., Andersson, A. J., and Mackenzie, F. T.: Ini-
tial responses of carbonate-rich shelf sediments to rising atmo-
sphericpCO2 and ocean acidification: Role of high Mg-calcites,
Geochim. Cosmochim. Ac., 70, 5814–5830, 2006.

Mucci, A.: The solubility of calcite and aragonite in seawater at var-
ious salinities, temperatures, and one atmosphere total pressure,
Am. J. Sci., 283, 780–799, 1983.

Ohde, S. and van Woesik, R.: Carbon dioxide flux and metabolic
processes of a coral reef, Okinawa, B. Mar. Sci., 65, 559–576,
1999.

Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S .C., Feely,
R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key,
R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P.,
Mouchet, A., Najjar, R. G., Plattner, G. K., Rodgers, K. B.,
Sabine, C. L., Sarmiento, J. L., Schlitzer, R., Slater, R. D., Tot-
terdell, I. J., Weirig, M. F., Yamanaka, Y., and Yool, A.: Anthro-
pogenic ocean acidification over the twenty-first century and its
impacts on calcifying organisms, Nature, 437, 681–686, 2005.

Partridge, G. W.: Radiative Processes in Meteorology and Clima-
tology, Elsevier Scientific Pub. Co, 1976.

Payne, R. E.: Albedo of the surface of the sea, J. Atmos. Sci., 29,
77–88, 1972.

Pichon, M.: Coral reef metabolism in the IndoPacific: the broader
picture, Proceedings of the 8th International Coral Reef Sympo-
sium, Panama, 1, 977–980, 1997.

Renegar, D. A. and Riegel, B. M. Effect of nutrient enrichment and
elevated CO2 partial pressure on growth rate of Atlantic scler-
actinian coral Acropora cervicornis, Mar. Ecol. Prog. Ser., 293,
69–76, 2005.

Reynaud, S., Leclercq, N., Romaine-Lioud, S., Ferrier-Pages, C.,
Jaubert, J., and Gattuso, J. P.: Interacting effects of CO2 partial
pressure and temperature on photosynthesis and calcification in a
scleractinian coral, Glob. Change Biol., 9(11), 1660–1668, 2003.

Royal Society: Ocean acidification due to increasing atmospheric
carbon dioxide, the Clyvedon Press, Ltd, Cardiff, UK, 2005.

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullis-
ter, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R.,

Tilbrook, B., Millero, F. J., Peng, T. H., Kozyr, A., Ono, T., and
Rios, A. F. The oceanic sink for anthropogenic CO2, Science,
305(5682), 367–371, 2004.

Santana-Casiano, J. M., Gonzalez-Davila, M., Rueda, M. J., Lli-
nas, O., and Gonzalez-Davila, E. F.: The interannual variabil-
ity of oceanic CO2 parameters in the northeast Atlantic subtrop-
ical gyre at the ESTOC site. Global Biogeochem. Cy., 21(1),
GB1015, doi:10.1029/2006GB002788, 8 March 2007, 2007.

Schneider, K. and Erez, J.: The effect of carbonate chemistry on
calcification and photosynthesis in the hermatypic coralAcrop-
ora eurystoma, Limnol. Oceanogr., 51, 1284–1293, 2006.

Silverman, J., Lazar, B., and Erez, J.: Effect of aragonite satura-
tion, temperature, and nutrients on the community calcification
rate of a coral reef, J. Geophys. Res. Oceans, 112(C5), C05004,
doi:10.1029/2006JC003770, 2007.

Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral
may start dissolving when atmospheric CO2 doubles, Geophys.
Res. Lett., 36, L05606, doi:10.1029/2008GL036282, 2009.

Smith, S. D.: Coefficients for sea-surface wind stress, heat-flux,
and wind profiles as a function of wind-speed and temperature,
J. Geophys. Res., 93(C12), 15467–15472, 1988.

Smith, S. V.: Carbon dioxide dynamics: a record of organic carbon
production, respiration, and calcification in the Eniwetok reef flat
community, Limnol. Oceanogr., 18, 106–120, 1973.

Smith S. V. and Key, G. S.: Carbon dioxide and metabolism in ma-
rine environments, Limnol. Oceanogr., 20, 493–495, 1975.

Smith, S. V. and Buddemeier, R. W.: Global change and coral reef
ecosystems, Annu. Rev. Ecol. Syst., 23, 89–118, 1992.

Steinberg, D. K, Carlson, C. A., Bates, N. R., Johnson, R. J.,
Michaels, A. F., and A. H. Knap, A. H.: The US JGOFS Bermuda
Atlantic Time-series Study: a decade-scale look at ocean biology
and biogeochemistry, Deep-Sea Res. II, 48(8–9), 1405–1447,
doi:10.1016/S0967-0637(99)00052-7, 2001.

Suzuki, A., Nakamori, T., and Kayanne, H.: The mechanism of
production enhancement in coral reef carbonate systems: model
and empirical results, Sediment. Geol., 99, 259–280, 1995.

Suzuki, A. and Kawahata, H.: Carbon budget of coral reef systems:
an overview of observations in fringing reefs, barrier reefs and
atolls in the Indo-Pacific regions, Tellus, 55B, 428–444, 2003.

Watt Engineering Ltd.: On the Nature and Distribution of Solar Ra-
diation. US Printing Office Stock No. 016-000-00044-5, March
1978, 1978.

Weis, V. M.: The induction of carbonic anhydrase in the symbiotic
sea anemoneAiptasia pulchella, Biol. Bull., 180, 496–504, 1991

Weis, V. M.: Effect of dissolved inorganic carbon concentration on
the photosynthesis of the symbiotic sea anemoneAiptasia pul-
chella Carlgren: role of carbonic anhydrase, J. Exp. Mar. Biol.
Ecol., 174, 209–225, 1993.

Weis, V. M. and Reynolds, W. S.: Carbonic anhydrase expression
and synthesis in the sea anemoneAnthopleura elegantissimaare
enhanced by the presence of dinoflagellate symbionts, Physiol.
Biochem. Zool., 72(3), 307–316, 1999.

Weiss, R. F.: Carbon dioxide in water and seawater; the solubility
of a non-ideal gas, Mar. Chem., 2, 203–215, 1974.

Wilkinson, C.: Status of coral reefs of the world: Queensland, Aus-
tralian Institute of Marine Science, 2000.

Winn, C. D., Li, Y.-H., Mackenzie, F. T., and Karl, D. M.: Rising
surface ocean dissolved inorganic carbon at the Hawaii Ocean
Time-series site, Mar. Chem., 60, 33–47, 1998.

www.biogeosciences.net/7/2509/2010/ Biogeosciences, 7, 2509–2530, 2010

http://www.bios-mep.info/
http://www.bios-mep.info/


2530 N. R. Bates et al.: Feedbacks and responses of coral calcification on the Bermuda reef

Wollast, R., Garrels, R. M., and Mackenzie F. T.: Calcite-seawater
reactions in ocean surface waters, Am. J. Sci., 280(9), 831–848,
1980.

Yates, K. K. and Halley, R. B.: Measuring coral reef community
metabolism using new benthic chamber technology, Coral Reefs,
22, 247–255, 2003.

Yates, K. K. and Halley, R. B.: CO2−

3 concentration andpCO2
thresholds for calcification and dissolution on the Molokai reef
flat, Hawaii, Biogeosciences, 3, 357–369, doi:10.5194/bg-3-357-
2006, 2006.

Zeebe, R. and Wolf-Gladrow, D.: CO2 in Seawater: equilibrium,
Kinetics, Isotopes, Elsevier Oceanography Series, 65, 2001.

Biogeosciences, 7, 2509–2530, 2010 www.biogeosciences.net/7/2509/2010/


