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Abstract. In this paper we present a linear mixed model for 1  Introduction
the potassium content of soil across a large region of eastern
England in which the mean is modelled as a linear function ofg i information is costly and relatively sparse, so there is

the passive gamma-ray emissions of th? earth su_rface In thf'ﬁterest in methods to predict soil properties at unsampled
energy interval commonly associated with potassium decaygiiag from a set of sampled data. Generally the precision of
Nﬁp—ﬁtatlﬁnary.mpdels are propgsbed r]\‘_or the raqdom eﬁef:tsuch predictions can be improved if covariates, which reflect
whichis the variation not captured by this regression. Specif+y s of soil formation, are incorporated into the predictor.
ically, we assume that the !ocal spectrum ,Of the Standardlzethere are various ways to do this. One of the most efficient,
rgndom effect can be optalned by 'te'mp.enng acommon (Staﬁvhen direct observations of the target variable are distributed
tionary) spectrum, that is to say raising its values to a pOWer, s, reasonable coverage over the area of interest, is the em-
the tempering parameter, which is itself modelled as a lineagyiic | pest linear unbiased predictor (E-BLUP) based on a
functlor} or:‘ the rdad|omftfetr|c data. Th'S”a"OWSdtQ,G_ smr?orh- linear mixed model (see below) in which the relationship be-
nelss oft ”e ran olm ed ectto vary O(;:"f} y- Inaddition the lo- y eq; the target variable and the covariate is expressed as a
cal spatially correlate variance an nggget variance (ap'linear function of the covariate, and the residual variation is
parently uncorrelated given the resolution of the sampling)g, , ossed as a combination of a spatially correlated random
can also be modelled as a function of the radiometric datagge .t (3 random variable), and identically and independently
Using the radiometric signal as a covariate gave some IMyistributed random error. The E-BLUP is, in effect, a com-

prov?.mer.n in Fhe precisiqn of prr]edictions Of, soil pOthaSSiumbination of a regression-type prediction from the covariation
at va idation sites. In addition, there was evidence that non-nd a kriging-type prediction from the random effect. This
stationary models for the random effect fitted the data bette

) L o as discussed in the context of soil informationLayk et al.
than stationary models, and this difference was statistically, 2006, and the approach has been applied in various stud-

significant. Non-stationary models also appeared to describ s (e.g.,Chai et al, 2008. In addition to the predictor, a

the error variance of predictions at the validation sites betterprediction error variance is also computed which provides a

Furt.her work is needed on selection among alternative nony. o< re of the uncertainty of the prediction.
stationary models, since simple procedures used here, based

on comparing log-likelihood ratios of nested models and the !N the standard LMM-E-BLUP approach to spatial pre-
Akaike information criterion for non-nested models, did not diction, as in all geostatistical methods, there is a necessary
identify the model which gave the best account of the predic-2SSUmption of stationarity in the covariance of the random
tion error variances at validation sites. variation. For geostatistical prediction we require the covari-
ance between the random effect at pairs of sites (including
sites where we have data and sites where we require predic-

tions). Since our data provide us, in effect, with a single
Correspondence tdR. M. Lark realization of this random variable, the covariances cannot
BY (murray.lark@bbsrc.ac.uk) be obtained directly. Some generalization about the random
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variation is therefore necessary, so as to allow the parameterzedictions at validation sites than did a simpler stationary
of the LMM to be estimated. Commonly we assume station-linear mixed model.

arity in the covariance (second-order stationarity). Under this A covariate which has been widely used for the prediction
assumption the variance of the random variable is the samef soil properties is passive gamma ray emissions from the
at any two locationss; ands;, and the correlation between earth’s surfaceNicKenzie and Ryan1999 Wilford, 2008.

the variable at the locations is a function of the lag vectorThese emissions arise from the decay of particular elements

between them, in the upper 35cm or so of the soil. Gamma rays are emit-
ted over an energy spectrum, which can be partitioned into
o (si—s)). (1)  bands dominated by particular decays. Three bands which

are widely used in soil studies are those associated with
This assumption makes it possible to model the covariance Of)otassium, uranium and thorium. Much of the application
the random effect with some appropriate parametric functionof gamma radiometry for prediction of soil properties has
The parameters of this function are best estimated by residughken place in Australia. Here the total airborne radiometric
maximum likelihood (REML). signal — or the ratios between potassium and thorium concen-
However, the assumption of stationarity in the covariancetrations — relates to the age of the weathered material at the
is not usually plausible when applied to properties of the soil,Jland surface and provides information on soil texture prop-
particularly across complex landscapes. It must first be noteérties {raylor et al, 2009. Radiometry has therefore proved
that the assumption does not apply to data, but rather to @& useful tool to map complex patterns of soil variation that
random function of which it is assumed that the data are aarise from erosion and deposition of material over long peri-
realization. However, behaviour of the data may indicatepds of time.
whether or not the assumption is plausible. When a vari- Rawlins et al(2007) undertook a statistical analysis of the
able appears substantially more heterogeneous in one part @idiometric potassium signal from the soil surface in a part
the landscape than in another, or when the dominant spatialf eastern England, and showed that its variation could be
scale of variation in one part of the landscape differs fromattributed to a range of sources including the total potassium
another, then this casts doubt on the plausibility of station-content of the soil determined from samples collected in the
arity assumptions. This has been discussed by, for exampléield. This suggested that gamma radiometry is a potentially
Voltz and Webste(1990 who examined variograms for soil - yseful source of soil information in the relatively young soils
properties over contrasting Jurassic strata in central Englancf the United Kingdom. This paper addresses the following
included in a single data set, and found pronounced differquestion. If we have a data set on soil potassium as a ba-
ences. Analysis of soil data sets using wavelet transformssis for geostatistical prediction at unsampled sites, can we
(e.g.,Lark and Webster200]) similarly cast doubt on the  peneficially use airborne radiometric data to model both the
plausibility of stationarity assumptions. mean and covariance of the target property in an appropri-
Does the failure of this assumption matterark (2009  ate LMM? By doing so, we may be able to improve both the
compared two LMM for a soil data set. In one of these a precision of the predictions of soil potassium content and the
conventional assumption of stationarity in the variance wasvalidity of the prediction error variances.
made. In the second a non-stationary variance model was fit-
ted (although the underlying autocorrelation was stationary).
Lark (2009 showed that predictions made under these two2 The statistical model
models were very similar, but that the prediction error vari- ) o o
ances derived from the non-stationary model gave a muct¢-1 The stationary model, estimation and prediction

better description of the errors in predictions at validation Th | i thi based he i ixed
sites. (If the autocorrelation appeared to be non-stationary, e analyses in this paper are based on the linear mixe

then this might affect the predictions themselves). model (LMM) in Whi(_:h our glata are assumed to be a rea_liza-
It would therefore seem worthwhile to attempt to model tion of a random variate, with a single value at any location,

non-stationary covariation of soil properties as a basis for, _ x; . | 4 ¢ )
spatial prediction. For this reas¢taskard and Lark2009

presented a development and case study of the method efherez is thenx1 vector of observed values at locations
spectral tempering proposed Byntore and Holme§2004 S1,S,...S, respectively,t is atx1 vector of fixed effects,
2005. This method is described in more detail below. Es-such as to allow for a smooth spatial trend or other external
sentially it allows both the variance and autocorrelation of effects, with correspondingx: design matrixX, u is anx1

the property of interest to adapt locally in response to a sewvector of zero-mean random effects ams annx1 vector

of covariates. Thus the variable might appear “smoother” inof independent random errors, one element for each obser-
some regions than anotheHaskard and Lark2009 also  vation. In the application of the LMM to spatial data the
found that the prediction error variances based on this nonfandom component models the spatially-correlated compo-
stationary model gave a better account of the uncertainty ohent of variation ane is the so-called “nugget effect” which
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incorporates uncorrelated measurement error and sources wfhereGp,=Cov{up, u}, the elements of which can be com-

variation in the target property that are uncorrelated over theputed given the REML estimates of the variance parame-

shortest interval between observations. We assume that thers, andoszl_Hflx(xTH*lx)*leHfl_ This shows

random componenis ande are mutually independent. The that the E-BLUP at an unsampled location consists of a

variance matrix ofi is G (n xn) whose elements depend only regression-type componerX4z) and a kriging-type com-

on the sample locations under the assumption of a stationargonent {p)-

covariance function, with a few parameters. These param- The PEV is the variance of the prediction error,

eters are variances, and spatial parameters that characteriz/gr{zp_zp}, which can be obtained from

the spatial correlation function introduced in Efj) &bove.

The random vectoe has zero mean and covariance maRix  [Xp, GpoG 11 A~ [Xp, GpoG 11"

((a;;rzzt).ar;l'g;_mezltan is dlagqnal where denotes a nugget + Gpp — GpoG_ngo + Rop. (5)
=0nuggel When it is assumed that the nugget ef-

fect has stationary varianeg qqer The variance matrix of ~ where Gpp=Var{up}, Rpp=Var{ey} (again, obtained from
the random vectaz is denotedH=G+R. the REML estimates of the variance parameters)faisithe
Because the mean afin Eq. (2) is given byXz itisnot  coefficient matrix from the mixed model equations
necessarily assumed to be stationary, and the fixed effects
i i i XTR™IX XTR™1z
could describe pronounced spatial trends. However, in stana — [ Te 1 T 1 _1] (6)
dard applications of LMM to spatial data it is assumed that Z'RX Z'R7Z4+G

”;e covanance ot is Sia“o.”ary' as defcl”bed ?bt‘?"e'f In t?'s Again, more detail is provided biyark et al.(200), and the
Stucy we used an 1sotropic exponen |a2 corretation IUNCloN e ader looking for a more extensive treatment is referred to
for the variableu. If the variance oti is 0%, then, with a sta- Stein(1999

tionary exponential model, elemefit j} of the covariance
matrix G, which is the covariance between the values af 2.2 The non-stationary model
the two locations; ands;, is given by

5 5 In this paper we use the modified and extended version of
a’p(Is —sjll;p) =o“exp{(— s —s;ll)/#}. (3  the spatially adaptive spectral tempering proced®iatore
and Holmes2004 2005 that we introduced and described

whereg is a d|staqce parameter. Note that in th!s ISOtropic;, f,1l elsewhere Kaskard and Lark2009. We outline this
model the separation between the two locations is express ocedure below

as a (scalar) distance, but the model can be extended to an Consider a case where we are interested in a total of

anisotropic case in two or more dimensiohtagkard et al. ; ; :
2007). V\/phen such a stationary model has beesn specifiZJd theﬁ’:n+np locations, a.Tn of which we have (_:Ilrect °bse“’.a'

. 2 D ons of our target variable as well as covariates for the fixed
the variance paramgtersﬁ(,gget. o”andg in this case) can effects, and at the other, of which we know the values of
be estlma}ted by residual maximum I|kel|h.ood (REML.)’ and the covariates for the fixed effects and require predictions of
these estimates can then be used to obtain the best linear Uiie target variable because it has not been measured there.

_biased estimator (BLL.JE) of the fixed effect co_efficient_Sr— We may propose an initial stationary variance model for our
in Eq. (2) — by generalized least squares (details are given bX/ariabIe, and from the parameters of this computs san;

Lark et al, 2009. covariance matrixC. A principal components analysis of

Once the parameters of the LMM are estimated then theyigs matrix yields what is known as its spectral decomposi-
empirical best linear unbiased predictor (E-BLUP) can beyi

computed at unsampled sites where the fixed effects are
known. Let there bep such sites, for which the fixed ef- c— iv T %
fects are contained in thex: design matrixX,. We require = ke
the px 1 vector of E-BLUPs which is B
where vip,vo,...,v,, are the n;, eigenvectors, and

Zp=XpT +lp+ & 4) A, A2,...,A,, are the corresponding eigenvalues. These

N i . latter constitute an empirical spectrum of the data. The
wheret is the BLUE of the fixed effects vectar Upisthe E- - gjgenvectors can be regarded dmaisfor the data, that is to
BLUP of the spatially-correlated random effects veatpat  gay e can represent the variable as a weighted sum of the
the prediction locations, arg is the E-BLUP of the nugget  gjgenvectors. If we examine the eigenvectors it can be seen
effect, which is zero at unsampled locations. The E-BLUP that some correspond to high-spatial frequency (short-range)
Up is given by components of the variable where as others account for low
frequency components, broader trends. The eigenvalues, as
an empirical spectrum, describe how the overall variance
= GpozTPz, of the variable is partitioned between these components.

www.biogeosciences.net/7/2081/2010/ Biogeosciences, 7, 20882010



2084 K. A. Haskard et al.: Predicting soil potassium content

Tempering is a method to modify the form of the spectrum,the G-BASE project Johnson et al.2005 and described

by raising its components to a powgr Tempering can in detail byRawlins et al.(2007. At each location we had
therefore change both the overall variance of a variabledata on total potassium content of the soilpi (depth 35—
and its distribution between spatial scales. The latter is50 cm). We also had a corresponding value of the radiometric
equivalent to a modification of the spatial autocorrelation of potassium variable, K extracted from the gamma emission

a variable. In spectral tempering the powers modelled  spectrum measured by a 256-channel Picodas PGAM 1000
as a function of locatiom(s). This allows the covariance of (Model 6.11) airborne spectroradiometer. The ground foot-
the variable to change with location, to give a non-stationaryprint corresponding to each measurement was an ellipse with

covariance matrix a long axis length of approximately 200 m.
NS n(s.57) Five cores were taken at the centre and vertices of a square,
C7= Z[Vk]i)\k \73IE (8)  length 20 m, centred at the nominal location of the data point.
k=1 The cores were combined and the bulk sample then dried and
where disaggregated, sieved to pass 150 um then coned and quar-
n(s. s;) =05n(s) + 0.5 n(s;). tered and subsampled to produce a 50-g subsample which

was ground in an agate planetary ball mill. A further sub-

In our modified spectral tempering procedure the functionsamme was then analysed for total content of a range of el-
n(s) is used to adapt the local autocorrelation of the variablegments, including potassium, by wavelength dispersive X-
(we refer to this as the “smoothness” of the variable), and theray fluorescence spectrometry (XRFS), described in detail by
spatially correlated variance (we refer to this as the spatialjgnnson et al2005.
variance) and the nugget variance are modelled separately, e subdivided this data set at random into a set of 222 ob-
also as functions of spanal coordlr)ates. The.vanance of th&ervations for modelling and 661 at which predictions would
random effect at locatios under this non-stationary model e obtained for validation. We restricted the size of the mod-
is given byo?« (), wherea? is the variance in the initial elling data set to about a quarter of the available values since,
stationary model. Similarly the nugget variance at locationit the data from which the predictions are computed were too
s is given byy*(s,). Clearly these functions must return gense, the prediction error variances would only be sensi-
positive values for ali, locations. Once some general para- tjye to the spatial covariance of the random effects over the
metric forms for the functions(s), « (s) andy *(s) have been  gportest lags. Seven observations were removed because they
proposed the parameters are estimated by REML. The residyok extreme values (large and zero). After exploratory anal-
ual log-likelihood can be computed for any proposed set ofysis we decided to transform both the total potassium content
parameters. First we obtain a provisional non-stationary coznd the gamma potassium values to natural logarithms, since
variance matrixC"S, by tempering the empirical spectrum nder these transforms an ordinary least squares regression
obtained from initial stationary covariance mat€x This is of logKsoil on logKr gave residuals with a histogram (see

done with Eq. 8). This preliminary matrix is then rescaled to Fjg. 1) which appears consistent with an assumption of a nor-
a non-stationary correlation matrig, by dividing each ele- )1y distributed random variable.

ment by the square-root of the product of the corresponding The exploratory statistics of the residuals are also con-
elements on the main diagonal, and then the non-stationaryjstent with an assumption of normality. The coefficient

matrix of the random effeds™ is obtained by of skewness is 0.13 and the excess kurtosis is only 0.18.
GNS — ozdiag(:c)%B diag(:c)%, 9) Furthgrmore the mean and median (0:001 armoc_)z re-

T 5. o _ spectively) are very similar, and the first and third quar-
wherex=[«(s1), k(s2),...]" ando is the initial stationary  jjes (—0.694 and 0.744 respectively) are symmetrical about

variance. The matrbGN®, along with the non-stationary the median. Figure 2 shows the scatter plot of the log-
nugget variances |m2,_constltgtes the non-stationary vari- ransformed variables, and Fig. 3 shows a classified post-plot
ance component of a linear mixed model. of the residuals, i.e. a plot of the co-ordinates of the sample
The resulting non-stationary variance parameters can bgqints with the value of the residuals indicated by the size of
used to compute all the variance matrices required to comgne sympols. While an assumption of normality of the resid-
pute the E-BLUP at the), sites where we require predictions | 5is is plausible from the histogram (Fig. 1), it is apparent
of the target variable, and its associated prediction error varifom Fig. 2 that the scatter of the residuals appears larger
ance. when the radiometric potassium variable is small. This is not
compatible with the assumption of a stationary variance, al-
though it must be remembered that stationarity is not a prop-
erty of data, but of the model that we postulate as underlying
3.1 Stationary variance models the data. Such exploratory analysis can therefore only be in-
dicative. Figure 3 is suggestive of spatial dependence in the
Our data are obtained from 890 locations in a region of ap-+esiduals, since those of similar size appear to be clustered.
proximately 2400 krf in north-east England, collected by

3 Soil data and their analysis
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tion was also used to provide an initial stationary empirical Fio. 3. Postolot of the residuals of the exploratory rearession of
spectrum for spectral tempering to give a non-stationary vari- g. . Fostplot of the residuals of the exploralory regression o

ance model. 109K soil 0N 10gKy--

In addition we fitted a linear mixed model in which the
only fixed effect was an overall mean, specifying a station-
ary exponential covariance function for the random effect.each position, “L” denotes a linear function in logKtwo
This was also used to compute the corresponding E-BLURparameters to estimate), “1” denotes a constant only (one
and PEVs of logk, at the validation sites. This provides a parameter to estimate), and “0” denotes fixing the function
basis for assessing the utility of¥as a covariate for spatial at the value of the initial stationary variance model (no pa-

prediction of Ksgj. rameters to estimate for this term). The option “0” was
_ _ never considered for the spatial and nugget variance com-
3.2 Non-stationary variance models ponents. When selected for the smoothness it forces the vari-

) ) ) ance model to be exponential with the same distance param-
In this study we hypothesized that the covariance of tranSeter throughout the region. The spatial variance and nugget
formed Kei, as well as its local mean, could be predicted yariance may still be varied.
from Kr. This hypothesis is compatible with our comments Note that the initial stationary model requires an estimate

on Fig. 2 abOYe- We theref(_)re propo_sed linear functl_onS Offor the nugget variance and for the variance of the spatial
logKr to obtain the expressions required for non-stationary,

. del dv2 hat | variance, so can be seen to require estimation of two vari-
variance models;(s), « (s) andy “(s) so that, for example ance parameters, corresponding to model-code 011, condi-

tional on the initial stationary variance model. (If we allow
the method to estimate a common spatial variance and com-
The overall variance models are labeled by a three-mon nugget variance, with(s) fixed at 1, it should yield
character code, with the three characters denoting, respethose optimal values we obtained when fitting the initial sta-
tively, smoothness, spatial variance and nugget variance. Itionary model. However, ifi(s) is different from 1, whether

n(s) = ap + a1 log Kr(s).

www.biogeosciences.net/7/2081/2010/ Biogeosciences, 7, 20882010
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Full model: Spatially-adapting smoothness,
spatial variance and nugget variance
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Fig. 4. Lattice diagram of alternative non-stationary covariance models.

constant or otherwise, different variance estimates would béf the null hypothesis is accepted the more complex form of
optimal). the model is not significantly better than the one a step below

A fully non-stationary variance model (LLL) would have it, and the step down the path is justified. By repeating this
six parameters, conditional on the initial stationary empir- Procedure down all the pathways until the null hypothesis for
ical spectrum, by comparison to a stationary model with@ particular comparison is rejectedl £0.05), we may obtain
two (011). Models of intermediate complexity are also pos-2 set of candidate models. These are not necessarily nested,
sible, so we require a method for model selection. In ourif not they can be compared with respect to the Akaike in-
previous paper}daskard and Lar;|Q009 we proposed apro- formation criterion, twice the number of parameters minus
cedure to decide whether or not additional variance parametwice the log-residual likelihood, which will be smaller for
ters are justified by the improved fit that they achieve. It isthe more parsimonious modeéiKaike, 1973.
important to note that this is a procedure for Comparing al- At each validation location we therefore had a prediction
ternative variance models, it is assumed that the fixed effectgnd PEV from each of: (i) a stationary model in which the
structures of all the models are identical, for example a lineanly fixed effectis the overall mean, (i) a stationary model in
function of logK- . In this procedure we start with the full Which the overall mean and coefficients of lre fixed ef-
non-stationary variance model (six parameters). The stationtects, and (iii) a set of non-stationary models in which the
ary model can be regarded as a particular case of the full noroverall mean and coefficients ofKare fixed effects and
stationary model, nested within it, in which the parametersthe variance model has differing degrees of complexity. We
take particular values. There are various pathways from th&omputed a set of validation statistics from observations and
full model to the stationary model through successively sim-Predictions at these sites. In generat () is the observed
pler models each of which is nested within the (more com-value of logksoi at theith validation location out o, and
plex) models above it on the pathway. This is represented in &(s;) is the E-BLUP, given some particular LMM with2
lattice diagram — see Fig. #Haskard and Lark2009. Hav-  the corresponding PEV, then the prediction error (PE) is
ing estimated the residual log-likelihood for all the models PE= 2(s) — 7(s

. T . =z(s) — Z(s),

on the lattice, we may then consider in turn each alternative
to the full model that is one step down each of the possibleand the standardized squared prediction error (SSPE) is

pathways. Whether the more complex model is justified can - 2
be decided by testing twice the log-ratio of the likelihoods of {Z(Si) - Z(Si)}
the two models againgt® with N degrees of freedom where — ) :

the complex model ha¥ more parameters than the simpler. g

Biogeosciences, 7, 20820689 2010 www.biogeosciences.net/7/2081/2010/
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Table 1. Mean and median squared predictions errors and standardized squared prediction errors for selected non-stationary variance model
for the BGS potassium data.

log-residual Numberof AI€E Mean Mean R,%A Mean Median
Model likelihood  parameters PE PE SSPE  SSPE

Fixed effect: mean only.
Stationary covariance 0.144 0.035 0.676 0.930 0.347

Fixed effects: mean andK

0113 259.887 2 0 0.127 0.028 0.741 0.884 0.357
o1LP 269.043 3 —-16.31 0.128 0.029 0.731 0.920 0.364
L11¢ 269.838 4 —15.90 0.127 0.028 0.741 0.965 0.390
LiLd 270.641 5 —1551 0.127 0.028 0.741 0.948 0.373
LL1® 269.887 5 —14.00 0.127 0.028 0.741 0.963 0.385
LLLf 271.877 6 —15.98 0.125 0.028 0.741 0.945 0.365

a Stationary covarianc&; Non-stationary covariance, nugget variance ad&pygn-stationary covariance, smoothness adapts;

d Non-stationary covariance, nugget and smoothness gtibiot)-stationary covariance, spatial variance and smoothness adapt;

f Non-stationary covariance, nugget and spatial variance and smoothness adapt.

*The AIC is twice the number of parameters minus twice the log-residual likelihood, for ease of comparison the value of AIC for model 011
was subtracted from all values.

We computed the mean values of PE and of Bier the  distribution of the mean SSPE was 0.881 to 1.126, with me-
661 validation sites. As a measure of the quality of predic-dian 0.996, while the central 95% of the distribution of the
tions we computed what we call the prediction adjusted co-median SSPE was 0.375 to 0.545, with median 0.454.
efficient of determinationR3, where

Ra—=1— F;_Ez (10) 4 Results
N Figure 4 displays a hierarchy of non-stationary variance

wherePE? ands? are, respectively the mean value ofPE models that were fitted, with lines connecting models that are
and the sample variance of the validation data set. If the prenested and therefore for which likelihood-ratio tests can be
dictions accounted for all the variation in the validation datacarried out. P-values are d|Sp|ayed on the Connecting lines
(i.e. they are all exact) theR3,=1. If the predictor is N0 when they are less than 0.05. On the basis of residual log-
better than the sample mean thEﬁAzo, and a very poor likelihood, two candidate models were identified. The first
predictor (e.g. a biased one) could ha?éA<0. was 01L with constant variance, with correlation fixed at ex-

The SSPE is a measure of the validity of the PEV. The ex-ponential (i.e. not spatially adapting) and, with the nugget
pected value is 1 when the PEVs are reliable. However, it hayariance changing spatially, depending linearly on lpgK
been found (e.glLark, 2009 that the median SSPE which is The second candidate model was L11, which keeps both
a more robust statistic may be more useful than the mean fothe spatial variance and the nugget variance constant but al-
assessing PEVs, since it is less affected by a few validatiodows the smoothness to adapt spatially as a linear function
points at which the SSPE is very large or small. Under anof logKr . However this required four parameters to be
assumption of normal prediction errors the expected value ofstimated, and while the two models L11 and O1L cannot
the median SSPE is 0.455. be compared by a log-likelihood test because they are not

We computed an empirical distribution of the mean andnested, on the basis of the Akaike Information Criterion the
median SSPE under conditions where the same distributiotatter was preferred.
of observation and validation sites are used and the data are Table 1 shows validation results for the E-BLUPs based
a realization of a known spatial model in which the fixed ef- on LMMs with stationary variance models, and a selection of
fects are a linear function of the overall mean and Ipgidd  cases with non-stationary models. Note first that there was a
the random effects have a stationary distribution with param+eduction in the mean PBn using logk- as a fixed effect
eters equal to those fitted in our model (0,1,1). We computedor prediction (RE,A increased from 0.67) but very little differ-
1001 realizations of this process. The central 95% of theence among the models with this fixed effect with respect to

www.biogeosciences.net/7/2081/2010/ Biogeosciences, 7, 20882010



2088 K. A. Haskard et al.: Predicting soil potassium content

PEV and PEY, for most of the modelﬂ%A:0.74. In short  that we used here. Improving this modelling would require
there was little difference, with respect to the precision of thethe development of some appropriate method for exploratory
predictions, between E-BLUPs with logkas a fixed effect analysis of the data. While we might hope that the model se-
and stationary and non-stationary variance models, even ifection on the likelihood criteria for the modelling data subset
non-stationary models where the smoothness (and so the awould identify the model which subsequently proves best on
tocorrelation) was adapted. However, there was an effect omhe validation data, it isby no means guaranteed. An alterna-
the quality of the computed PEV. Note that the median SSPHive procedure for model selection might be developed, based
for the BLUPs from the stationary model (with logkas a  on prediction efficacy with a separate validation data set. Al-
fixed effect) was smaller than the 2.5 percentile, suggestindernatively a cross-validation or generalized cross-validation
that the error variance was overestimated. This is consisterprocedure llarcotte 1995 could be used for model selec-
with results ofLark (2009 and Haskard and Lark2009), tion.
who found that the median SSPE of E-BLUPs from sta- To conclude, we have shown that the adapted and extended
tionary models indicated that the PEVs were overestimatedspectral tempering method that was presentediagkard
However, some of the non-stationary models for which val-and Lark(2009 can be applied to large two-dimensional data
idation results of the corresponding E-BLUPs are presentedsets. We have shown that the use of gamma radiometric data
show mean and median SSPE much closer to the expecteshn improve spatial prediction of a soil property, and that in
values. principle using spectral tempering can improve modelling of
the spatially-dependent variance of this property, and so the
PEVs of the predictions. Further work remains to be done on
5 Discussion and conclusions the problem of model selection for non-stationary variance
structures.
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