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Abstract. In this paper we present a linear mixed model for
the potassium content of soil across a large region of eastern
England in which the mean is modelled as a linear function of
the passive gamma-ray emissions of the earth surface in the
energy interval commonly associated with potassium decay.
Non-stationary models are proposed for the random effect,
which is the variation not captured by this regression. Specif-
ically, we assume that the local spectrum of the standardized
random effect can be obtained by tempering a common (sta-
tionary) spectrum, that is to say raising its values to a power,
the tempering parameter, which is itself modelled as a linear
function of the radiometric data. This allows the “smooth-
ness” of the random effect to vary locally. In addition the lo-
cal spatially correlated variance and “nugget” variance (ap-
parently uncorrelated given the resolution of the sampling)
can also be modelled as a function of the radiometric data.
Using the radiometric signal as a covariate gave some im-
provement in the precision of predictions of soil potassium
at validation sites. In addition, there was evidence that non-
stationary models for the random effect fitted the data better
than stationary models, and this difference was statistically
significant. Non-stationary models also appeared to describe
the error variance of predictions at the validation sites better.
Further work is needed on selection among alternative non-
stationary models, since simple procedures used here, based
on comparing log-likelihood ratios of nested models and the
Akaike information criterion for non-nested models, did not
identify the model which gave the best account of the predic-
tion error variances at validation sites.

Correspondence to:R. M. Lark
(murray.lark@bbsrc.ac.uk)

1 Introduction

Soil information is costly and relatively sparse, so there is
interest in methods to predict soil properties at unsampled
sites from a set of sampled data. Generally the precision of
such predictions can be improved if covariates, which reflect
factors of soil formation, are incorporated into the predictor.
There are various ways to do this. One of the most efficient,
when direct observations of the target variable are distributed
with reasonable coverage over the area of interest, is the em-
pirical best linear unbiased predictor (E-BLUP) based on a
linear mixed model (see below) in which the relationship be-
tween the target variable and the covariate is expressed as a
linear function of the covariate, and the residual variation is
expressed as a combination of a spatially correlated random
effect (a random variable), and identically and independently
distributed random error. The E-BLUP is, in effect, a com-
bination of a regression-type prediction from the covariation
and a kriging-type prediction from the random effect. This
was discussed in the context of soil information byLark et al.
(2006), and the approach has been applied in various stud-
ies (e.g.,Chai et al., 2008). In addition to the predictor, a
prediction error variance is also computed which provides a
measure of the uncertainty of the prediction.

In the standard LMM-E-BLUP approach to spatial pre-
diction, as in all geostatistical methods, there is a necessary
assumption of stationarity in the covariance of the random
variation. For geostatistical prediction we require the covari-
ance between the random effect at pairs of sites (including
sites where we have data and sites where we require predic-
tions). Since our data provide us, in effect, with a single
realization of this random variable, the covariances cannot
be obtained directly. Some generalization about the random
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variation is therefore necessary, so as to allow the parameters
of the LMM to be estimated. Commonly we assume station-
arity in the covariance (second-order stationarity). Under this
assumption the variance of the random variable is the same
at any two locations,si andsj , and the correlation between
the variable at the locations is a function of the lag vector
between them,

ρ
(
si − sj

)
. (1)

This assumption makes it possible to model the covariance of
the random effect with some appropriate parametric function.
The parameters of this function are best estimated by residual
maximum likelihood (REML).

However, the assumption of stationarity in the covariance
is not usually plausible when applied to properties of the soil,
particularly across complex landscapes. It must first be noted
that the assumption does not apply to data, but rather to a
random function of which it is assumed that the data are a
realization. However, behaviour of the data may indicate
whether or not the assumption is plausible. When a vari-
able appears substantially more heterogeneous in one part of
the landscape than in another, or when the dominant spatial
scale of variation in one part of the landscape differs from
another, then this casts doubt on the plausibility of station-
arity assumptions. This has been discussed by, for example,
Voltz and Webster(1990) who examined variograms for soil
properties over contrasting Jurassic strata in central England,
included in a single data set, and found pronounced differ-
ences. Analysis of soil data sets using wavelet transforms
(e.g.,Lark and Webster, 2001) similarly cast doubt on the
plausibility of stationarity assumptions.

Does the failure of this assumption matter?Lark (2009)
compared two LMM for a soil data set. In one of these a
conventional assumption of stationarity in the variance was
made. In the second a non-stationary variance model was fit-
ted (although the underlying autocorrelation was stationary).
Lark (2009) showed that predictions made under these two
models were very similar, but that the prediction error vari-
ances derived from the non-stationary model gave a much
better description of the errors in predictions at validation
sites. (If the autocorrelation appeared to be non-stationary,
then this might affect the predictions themselves).

It would therefore seem worthwhile to attempt to model
non-stationary covariation of soil properties as a basis for
spatial prediction. For this reasonHaskard and Lark(2009)
presented a development and case study of the method of
spectral tempering proposed byPintore and Holmes(2004,
2005). This method is described in more detail below. Es-
sentially it allows both the variance and autocorrelation of
the property of interest to adapt locally in response to a set
of covariates. Thus the variable might appear “smoother” in
some regions than another.Haskard and Lark(2009) also
found that the prediction error variances based on this non-
stationary model gave a better account of the uncertainty of

predictions at validation sites than did a simpler stationary
linear mixed model.

A covariate which has been widely used for the prediction
of soil properties is passive gamma ray emissions from the
earth’s surface (McKenzie and Ryan, 1999; Wilford, 2008).
These emissions arise from the decay of particular elements
in the upper 35 cm or so of the soil. Gamma rays are emit-
ted over an energy spectrum, which can be partitioned into
bands dominated by particular decays. Three bands which
are widely used in soil studies are those associated with
potassium, uranium and thorium. Much of the application
of gamma radiometry for prediction of soil properties has
taken place in Australia. Here the total airborne radiometric
signal – or the ratios between potassium and thorium concen-
trations – relates to the age of the weathered material at the
land surface and provides information on soil texture prop-
erties (Taylor et al., 2002). Radiometry has therefore proved
a useful tool to map complex patterns of soil variation that
arise from erosion and deposition of material over long peri-
ods of time.

Rawlins et al.(2007) undertook a statistical analysis of the
radiometric potassium signal from the soil surface in a part
of eastern England, and showed that its variation could be
attributed to a range of sources including the total potassium
content of the soil determined from samples collected in the
field. This suggested that gamma radiometry is a potentially
useful source of soil information in the relatively young soils
of the United Kingdom. This paper addresses the following
question. If we have a data set on soil potassium as a ba-
sis for geostatistical prediction at unsampled sites, can we
beneficially use airborne radiometric data to model both the
mean and covariance of the target property in an appropri-
ate LMM? By doing so, we may be able to improve both the
precision of the predictions of soil potassium content and the
validity of the prediction error variances.

2 The statistical model

2.1 The stationary model, estimation and prediction

The analyses in this paper are based on the linear mixed
model (LMM) in which our data are assumed to be a realiza-
tion of a random variate, with a single value at any location,

z = Xτ + u + e, (2)

wherez is the n×1 vector of observed values at locations
s1,s2,...sn respectively,τ is a t×1 vector of fixed effects,
such as to allow for a smooth spatial trend or other external
effects, with correspondingn×t design matrixX, u is an×1
vector of zero-mean random effects ande is ann×1 vector
of independent random errors, one element for each obser-
vation. In the application of the LMM to spatial data the
random componentu models the spatially-correlated compo-
nent of variation ande is the so-called “nugget effect” which
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incorporates uncorrelated measurement error and sources of
variation in the target property that are uncorrelated over the
shortest interval between observations. We assume that the
random componentsu ande are mutually independent. The
variance matrix ofu is G (n×n) whose elements depend only
on the sample locations under the assumption of a stationary
covariance function, with a few parameters. These param-
eters are variances, and spatial parameters that characterize
the spatial correlation function introduced in Eq. (1) above.
The random vectorehas zero mean and covariance matrixR
(n×n). The matrixR is diagonal whene denotes a nugget
effect andR=σ 2

nuggetI when it is assumed that the nugget ef-

fect has stationary varianceσ 2
nugget. The variance matrix of

the random vectorz is denotedH=G+R.
Because the mean ofz in Eq. (2) is given byXτ it is not

necessarily assumed to be stationary, and the fixed effects
could describe pronounced spatial trends. However, in stan-
dard applications of LMM to spatial data it is assumed that
the covariance ofz is stationary, as described above. In this
study we used an isotropic exponential correlation function
for the variableu. If the variance ofu is σ 2, then, with a sta-
tionary exponential model, element{i,j} of the covariance
matrix G, which is the covariance between the values ofz at
the two locationssi andsj , is given by

σ 2ρ
(
‖ si − sj ‖;φ

)
= σ 2 exp

{(
− ‖ si − sj ‖

)
/φ

}
, (3)

whereφ is a distance parameter. Note that in this isotropic
model the separation between the two locations is expressed
as a (scalar) distance, but the model can be extended to an
anisotropic case in two or more dimensions (Haskard et al.,
2007). When such a stationary model has been specified then
the variance parameters (σ 2

nugget, σ 2 andφ in this case) can
be estimated by residual maximum likelihood (REML), and
these estimates can then be used to obtain the best linear un-
biased estimator (BLUE) of the fixed effect coefficients —τ
in Eq. (2) – by generalized least squares (details are given by
Lark et al., 2006).

Once the parameters of the LMM are estimated then the
empirical best linear unbiased predictor (E-BLUP) can be
computed at unsampled sites where the fixed effects are
known. Let there bep such sites, for which the fixed ef-
fects are contained in thep×t design matrixXp. We require
thep×1 vector of E-BLUPs which is

z̃p = Xpτ̂ + ũp + ẽp (4)

whereτ̂ is the BLUE of the fixed effects vectorτ , ũp is the E-
BLUP of the spatially-correlated random effects vectorup at
the prediction locations, and̃ep is the E-BLUP of the nugget
effect, which is zero at unsampled locations. The E-BLUP
ũp is given by

ũp = GpoG−1ũ

= GpozTPz,

whereGpo=Cov
{
up, u

}
, the elements of which can be com-

puted given the REML estimates of the variance parame-
ters, andP=H−1

−H−1X(XTH−1X)−1XTH−1. This shows
that the E-BLUP at an unsampled location consists of a
regression-type component (Xpτ̂ ) and a kriging-type com-
ponent (̃up).

The PEV is the variance of the prediction error,
Var

{
z̃p−zp

}
, which can be obtained from

[Xp, GpoG−1
] A−1

[Xp, GpoG−1
]
T

+ Gpp − GpoG−1GT
po + Rpp, (5)

whereGpp=Var
{
up

}
, Rpp=Var

{
ep

}
(again, obtained from

the REML estimates of the variance parameters) andA is the
coefficient matrix from the mixed model equations

A =

[
XTR−1X XTR−1Z
ZTR−1X ZTR−1Z + G−1

]
. (6)

Again, more detail is provided byLark et al.(2006), and the
reader looking for a more extensive treatment is referred to
Stein(1999).

2.2 The non-stationary model

In this paper we use the modified and extended version of
the spatially adaptive spectral tempering procedure (Pintore
and Holmes, 2004, 2005) that we introduced and described
in full elsewhere (Haskard and Lark, 2009). We outline this
procedure below.

Consider a case where we are interested in a total of
nt=n+np locations, atn of which we have direct observa-
tions of our target variable as well as covariates for the fixed
effects, and at the othernp of which we know the values of
the covariates for the fixed effects and require predictions of
the target variable because it has not been measured there.
We may propose an initial stationary variance model for our
variable, and from the parameters of this compute ant×nt

covariance matrix,C. A principal components analysis of
this matrix yields what is known as its spectral decomposi-
tion

C =

nt∑
k=1

vkλkvT
k , (7)

where v1,v2,...,vnt are the nt eigenvectors, and
λ1,λ2,...,λnt are the corresponding eigenvalues. These
latter constitute an empirical spectrum of the data. The
eigenvectors can be regarded as abasisfor the data, that is to
say we can represent the variable as a weighted sum of the
eigenvectors. If we examine the eigenvectors it can be seen
that some correspond to high-spatial frequency (short-range)
components of the variable where as others account for low
frequency components, broader trends. The eigenvalues, as
an empirical spectrum, describe how the overall variance
of the variable is partitioned between these components.

www.biogeosciences.net/7/2081/2010/ Biogeosciences, 7, 2081–2089, 2010



2084 K. A. Haskard et al.: Predicting soil potassium content

Tempering is a method to modify the form of the spectrum,
by raising its components to a powerη. Tempering can
therefore change both the overall variance of a variable,
and its distribution between spatial scales. The latter is
equivalent to a modification of the spatial autocorrelation of
a variable. In spectral tempering the powerη is modelled
as a function of locationη(s). This allows the covariance of
the variable to change with location, to give a non-stationary
covariance matrix

CNS
i,j =

n∑
k=1

[vk]iλ
η(si ,sj )

k [vk]j , (8)

where

η(si, sj ) = 0.5 η(si) + 0.5 η(sj ).

In our modified spectral tempering procedure the function
η(s) is used to adapt the local autocorrelation of the variable
(we refer to this as the “smoothness” of the variable), and the
spatially correlated variance (we refer to this as the spatial
variance) and the nugget variance are modelled separately,
also as functions of spatial coordinates. The variance of the
random effect at locationsi under this non-stationary model
is given byσ 2κ (si), whereσ 2 is the variance in the initial
stationary model. Similarly the nugget variance at location
si is given byγ 2(si). Clearly these functions must return
positive values for allnt locations. Once some general para-
metric forms for the functionsη(s), κ(s) andγ 2(s) have been
proposed the parameters are estimated by REML. The resid-
ual log-likelihood can be computed for any proposed set of
parameters. First we obtain a provisional non-stationary co-
variance matrixCNS, by tempering the empirical spectrum
obtained from initial stationary covariance matrixC. This is
done with Eq. (8). This preliminary matrix is then rescaled to
a non-stationary correlation matrix,B, by dividing each ele-
ment by the square-root of the product of the corresponding
elements on the main diagonal, and then the non-stationary
matrix of the random effectGNS is obtained by

GNS
= σ 2diag(κ)

1
2 B diag(κ)

1
2 , (9)

whereκ=[κ(s1), κ(s2),...]T andσ 2 is the initial stationary
variance. The matrixGNS, along with the non-stationary
nugget variances inγ 2, constitutes the non-stationary vari-
ance component of a linear mixed model.

The resulting non-stationary variance parameters can be
used to compute all the variance matrices required to com-
pute the E-BLUP at thenp sites where we require predictions
of the target variable, and its associated prediction error vari-
ance.

3 Soil data and their analysis

3.1 Stationary variance models

Our data are obtained from 890 locations in a region of ap-
proximately 2400 km2 in north-east England, collected by

the G-BASE project (Johnson et al., 2005) and described
in detail byRawlins et al.(2007). At each location we had
data on total potassium content of the soil, Ksoil, (depth 35–
50 cm). We also had a corresponding value of the radiometric
potassium variable, K0, extracted from the gamma emission
spectrum measured by a 256-channel Picodas PGAM 1000
(Model 6.11) airborne spectroradiometer. The ground foot-
print corresponding to each measurement was an ellipse with
a long axis length of approximately 200 m.

Five cores were taken at the centre and vertices of a square,
length 20 m, centred at the nominal location of the data point.
The cores were combined and the bulk sample then dried and
disaggregated, sieved to pass 150 µm then coned and quar-
tered and subsampled to produce a 50-g subsample which
was ground in an agate planetary ball mill. A further sub-
sample was then analysed for total content of a range of el-
ements, including potassium, by wavelength dispersive X-
ray fluorescence spectrometry (XRFS), described in detail by
Johnson et al.(2005).

We subdivided this data set at random into a set of 222 ob-
servations for modelling and 661 at which predictions would
be obtained for validation. We restricted the size of the mod-
elling data set to about a quarter of the available values since,
if the data from which the predictions are computed were too
dense, the prediction error variances would only be sensi-
tive to the spatial covariance of the random effects over the
shortest lags. Seven observations were removed because they
took extreme values (large and zero). After exploratory anal-
ysis we decided to transform both the total potassium content
and the gamma potassium values to natural logarithms, since
under these transforms an ordinary least squares regression
of logKsoil on logK0 gave residuals with a histogram (see
Fig. 1) which appears consistent with an assumption of a nor-
mally distributed random variable.

The exploratory statistics of the residuals are also con-
sistent with an assumption of normality. The coefficient
of skewness is 0.13 and the excess kurtosis is only 0.18.
Furthermore the mean and median (0.001 and−0.002 re-
spectively) are very similar, and the first and third quar-
tiles (−0.694 and 0.744 respectively) are symmetrical about
the median. Figure 2 shows the scatter plot of the log-
transformed variables, and Fig. 3 shows a classified post-plot
of the residuals, i.e. a plot of the co-ordinates of the sample
points with the value of the residuals indicated by the size of
the symbols. While an assumption of normality of the resid-
uals is plausible from the histogram (Fig. 1), it is apparent
from Fig. 2 that the scatter of the residuals appears larger
when the radiometric potassium variable is small. This is not
compatible with the assumption of a stationary variance, al-
though it must be remembered that stationarity is not a prop-
erty of data, but of the model that we postulate as underlying
the data. Such exploratory analysis can therefore only be in-
dicative. Figure 3 is suggestive of spatial dependence in the
residuals, since those of similar size appear to be clustered.
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Fig. 1. Histogram of the residuals of an exploratory regression of
logKsoil on logK0 .

Exploratory analysis also showed that there was no pro-
nounced anisotropy in the residuals, so we elected to use an
isotropic variance function. We also found that an exponen-
tial stationary covariance function gave the best fit in a linear
mixed model in which the fixed effect structure was a lin-
ear function of logK0. We used this stationary covariance
function to obtain the E-BLUP and corresponding PEVs for
logKsoil at all the 661 validation sites. This stationary func-
tion was also used to provide an initial stationary empirical
spectrum for spectral tempering to give a non-stationary vari-
ance model.

In addition we fitted a linear mixed model in which the
only fixed effect was an overall mean, specifying a station-
ary exponential covariance function for the random effect.
This was also used to compute the corresponding E-BLUP
and PEVs of logKsoil at the validation sites. This provides a
basis for assessing the utility of K0 as a covariate for spatial
prediction of Ksoil.

3.2 Non-stationary variance models

In this study we hypothesized that the covariance of trans-
formed Ksoil, as well as its local mean, could be predicted
from K0. This hypothesis is compatible with our comments
on Fig. 2 above. We therefore proposed linear functions of
logK0 to obtain the expressions required for non-stationary
variance models:η(s), κ(s) andγ 2(s) so that, for example

η(si) = a0 + a1 log K0(si).

The overall variance models are labeled by a three-
character code, with the three characters denoting, respec-
tively, smoothness, spatial variance and nugget variance. In
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Fig. 2. Scatterplot of logKsoil against logK0 .

Fig. 3. Postplot of the residuals of the exploratory regression of
logKsoil on logK0 .

each position, “L” denotes a linear function in logK0 (two
parameters to estimate), “1” denotes a constant only (one
parameter to estimate), and “0” denotes fixing the function
at the value of the initial stationary variance model (no pa-
rameters to estimate for this term). The option “0” was
never considered for the spatial and nugget variance com-
ponents. When selected for the smoothness it forces the vari-
ance model to be exponential with the same distance param-
eter throughout the region. The spatial variance and nugget
variance may still be varied.

Note that the initial stationary model requires an estimate
for the nugget variance and for the variance of the spatial
variance, so can be seen to require estimation of two vari-
ance parameters, corresponding to model-code 011, condi-
tional on the initial stationary variance model. (If we allow
the method to estimate a common spatial variance and com-
mon nugget variance, withη(s) fixed at 1, it should yield
those optimal values we obtained when fitting the initial sta-
tionary model. However, ifη(s) is different from 1, whether
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Full model: Spatially‐adapting smoothness, 
spatial variance and nugget variance
Model   loglr,  nparams =  LLL   271.877,  6

Stationary exponential
011   259.887,  2

Exponential correlation, 
nugget variance adapts

01L   269.043,  3

Exponential correlation, 
variance adapts, 

nugget variance constant
0L1   259.897,  3

Non‐adapting correlations,
constant variances 
111   260.078, 3

Nugget variance adapts
11L   269.866,  4

Smoothness adapts,
variances constant
L11   269.838,  4

Spatial variance adapts
1L1   260.404,  4

Constant spatial variance
L1L   270.641,  5

Non‐adapting correlations
1LL   271.029,  5

Constant nugget variance
LL1   269.887,  5

p<0.001

p<0.001

Fig. 4. Lattice diagram of alternative non-stationary covariance models.

constant or otherwise, different variance estimates would be
optimal).

A fully non-stationary variance model (LLL) would have
six parameters, conditional on the initial stationary empir-
ical spectrum, by comparison to a stationary model with
two (011). Models of intermediate complexity are also pos-
sible, so we require a method for model selection. In our
previous paper (Haskard and Lark, 2009) we proposed a pro-
cedure to decide whether or not additional variance parame-
ters are justified by the improved fit that they achieve. It is
important to note that this is a procedure for comparing al-
ternative variance models, it is assumed that the fixed effects
structures of all the models are identical, for example a linear
function of logK0 . In this procedure we start with the full
non-stationary variance model (six parameters). The station-
ary model can be regarded as a particular case of the full non-
stationary model, nested within it, in which the parameters
take particular values. There are various pathways from the
full model to the stationary model through successively sim-
pler models each of which is nested within the (more com-
plex) models above it on the pathway. This is represented in a
lattice diagram – see Fig. 4,Haskard and Lark(2009). Hav-
ing estimated the residual log-likelihood for all the models
on the lattice, we may then consider in turn each alternative
to the full model that is one step down each of the possible
pathways. Whether the more complex model is justified can
be decided by testing twice the log-ratio of the likelihoods of
the two models againstχ2 with N degrees of freedom where
the complex model hasN more parameters than the simpler.

If the null hypothesis is accepted the more complex form of
the model is not significantly better than the one a step below
it, and the step down the path is justified. By repeating this
procedure down all the pathways until the null hypothesis for
a particular comparison is rejected (P<0.05), we may obtain
a set of candidate models. These are not necessarily nested,
if not they can be compared with respect to the Akaike in-
formation criterion, twice the number of parameters minus
twice the log-residual likelihood, which will be smaller for
the more parsimonious model (Akaike, 1973).

At each validation location we therefore had a prediction
and PEV from each of: (i) a stationary model in which the
only fixed effect is the overall mean, (ii) a stationary model in
which the overall mean and coefficients of K0 are fixed ef-
fects, and (iii) a set of non-stationary models in which the
overall mean and coefficients of K0 are fixed effects and
the variance model has differing degrees of complexity. We
computed a set of validation statistics from observations and
predictions at these sites. In general ifz(si) is the observed
value of logKsoil at theith validation location out ofnp, and
Z̃(si) is the E-BLUP, given some particular LMM withσ 2

p

the corresponding PEV, then the prediction error (PE) is

PE= z(si) − Z̃(si),

and the standardized squared prediction error (SSPE) is

SSPE=

{
z(si) − Z̃(si)

}2

σ 2
p

.
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Table 1. Mean and median squared predictions errors and standardized squared prediction errors for selected non-stationary variance models
for the BGS potassium data.

log-residual Number of AIC∗ Mean Mean R2
PA Mean Median

Model likelihood parameters PE PE2 SSPE SSPE

Fixed effect: mean only.

Stationary covariance 0.144 0.035 0.676 0.930 0.347

Fixed effects: mean and K0 .

011a 259.887 2 0 0.127 0.028 0.741 0.884 0.357

01Lb 269.043 3 −16.31 0.128 0.029 0.731 0.920 0.364
L11c 269.838 4 −15.90 0.127 0.028 0.741 0.965 0.390
L1Ld 270.641 5 −15.51 0.127 0.028 0.741 0.948 0.373
LL1e 269.887 5 −14.00 0.127 0.028 0.741 0.963 0.385
LLL f 271.877 6 −15.98 0.125 0.028 0.741 0.945 0.365

a Stationary covariance;b Non-stationary covariance, nugget variance adapts;c Non-stationary covariance, smoothness adapts;
d Non-stationary covariance, nugget and smoothness adapt;e Non-stationary covariance, spatial variance and smoothness adapt;
f Non-stationary covariance, nugget and spatial variance and smoothness adapt.
∗The AIC is twice the number of parameters minus twice the log-residual likelihood, for ease of comparison the value of AIC for model 011
was subtracted from all values.

We computed the mean values of PE and of PE2 over the
661 validation sites. As a measure of the quality of predic-
tions we computed what we call the prediction adjusted co-
efficient of determination,R2

PA where

R2
PA = 1 −

PE2

s2
, (10)

wherePE2 and s2 are, respectively the mean value of PE2

and the sample variance of the validation data set. If the pre-
dictions accounted for all the variation in the validation data
(i.e. they are all exact) thenR2

PA=1. If the predictor is no
better than the sample mean thenR2

PA=0, and a very poor
predictor (e.g. a biased one) could haveR2

PA<0.
The SSPE is a measure of the validity of the PEV. The ex-

pected value is 1 when the PEVs are reliable. However, it has
been found (e.g.,Lark, 2009) that the median SSPE which is
a more robust statistic may be more useful than the mean for
assessing PEVs, since it is less affected by a few validation
points at which the SSPE is very large or small. Under an
assumption of normal prediction errors the expected value of
the median SSPE is 0.455.

We computed an empirical distribution of the mean and
median SSPE under conditions where the same distribution
of observation and validation sites are used and the data are
a realization of a known spatial model in which the fixed ef-
fects are a linear function of the overall mean and logK0 and
the random effects have a stationary distribution with param-
eters equal to those fitted in our model (0,1,1). We computed
1001 realizations of this process. The central 95% of the

distribution of the mean SSPE was 0.881 to 1.126, with me-
dian 0.996, while the central 95% of the distribution of the
median SSPE was 0.375 to 0.545, with median 0.454.

4 Results

Figure 4 displays a hierarchy of non-stationary variance
models that were fitted, with lines connecting models that are
nested and therefore for which likelihood-ratio tests can be
carried out.P -values are displayed on the connecting lines
when they are less than 0.05. On the basis of residual log-
likelihood, two candidate models were identified. The first
was 01L with constant variance, with correlation fixed at ex-
ponential (i.e. not spatially adapting) and, with the nugget
variance changing spatially, depending linearly on logK0.
The second candidate model was L11, which keeps both
the spatial variance and the nugget variance constant but al-
lows the smoothness to adapt spatially as a linear function
of logK0 . However this required four parameters to be
estimated, and while the two models L11 and 01L cannot
be compared by a log-likelihood test because they are not
nested, on the basis of the Akaike Information Criterion the
latter was preferred.

Table 1 shows validation results for the E-BLUPs based
on LMMs with stationary variance models, and a selection of
cases with non-stationary models. Note first that there was a
reduction in the mean PE2 on using logK0 as a fixed effect
for prediction (R2

PA increased from 0.67) but very little differ-
ence among the models with this fixed effect with respect to
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PEV and PEV2, for most of the modelsR2
PA=0.74. In short

there was little difference, with respect to the precision of the
predictions, between E-BLUPs with logK0 as a fixed effect
and stationary and non-stationary variance models, even in
non-stationary models where the smoothness (and so the au-
tocorrelation) was adapted. However, there was an effect on
the quality of the computed PEV. Note that the median SSPE
for the BLUPs from the stationary model (with logK0 as a
fixed effect) was smaller than the 2.5 percentile, suggesting
that the error variance was overestimated. This is consistent
with results ofLark (2009) and Haskard and Lark(2009),
who found that the median SSPE of E-BLUPs from sta-
tionary models indicated that the PEVs were overestimated.
However, some of the non-stationary models for which val-
idation results of the corresponding E-BLUPs are presented,
show mean and median SSPE much closer to the expected
values.

5 Discussion and conclusions

These results show that improvements in the precision of spa-
tial prediction of soil potassium (log-transformed) of about
20% (mean square error) were achieved by using the radio-
metric potassium signal as a covariate. It is also seen that the
PEV of E-BLUPs based on a model with a stationary vari-
ance structure, in which this covariate is used, appear to over-
estimate the uncertainty of the predictions. When E-BLUPs
were computed using LMMs based on non-stationary covari-
ance models the PEVs were better as judged by the mean and
median SSPE. However, it must be noted that the LMM se-
lected on the likelihood criteria and AIC (model 01L), only
achieved a small improvement over the stationary model,
as judged by the median SSPE. The best results on SSPE
were obtained with model L11, in which the smoothness was
adapted, but this model would not be selected on the fitting
criteria alone, since its advantages over 01L with respect to
the likelihood were not large enough to justify the inclusion
of an additional parameter.

Our results therefore indicate that across this region some
model for non-stationarity in the variance is appropriate, if
we want to put reliance on the PEV of E-BLUPs. They
also suggest that spatially adaptive tempering, with K0 as
a predictor for the tempering parameterη and local vari-
ances, has potential to improve modelling of the variance of
soil potassium. Application of our approach to other land-
scapes would help to determine whether more complex, non-
stationary variance models based on suitable covariates can
improve prediction of soil properties at unsampled sites.

There are clearly questions for further research, prompted
by the fact that the best non-stationary variance model (se-
lected on likelihood criteria) did not give the best PEVs when
these were validated on independent data. It may be that the
dependence of the non-stationary parameters on the predictor
could be better modelled than by the simple linear functions

that we used here. Improving this modelling would require
the development of some appropriate method for exploratory
analysis of the data. While we might hope that the model se-
lection on the likelihood criteria for the modelling data subset
would identify the model which subsequently proves best on
the validation data, it isby no means guaranteed. An alterna-
tive procedure for model selection might be developed, based
on prediction efficacy with a separate validation data set. Al-
ternatively a cross-validation or generalized cross-validation
procedure (Marcotte, 1995) could be used for model selec-
tion.

To conclude, we have shown that the adapted and extended
spectral tempering method that was presented byHaskard
and Lark(2009) can be applied to large two-dimensional data
sets. We have shown that the use of gamma radiometric data
can improve spatial prediction of a soil property, and that in
principle using spectral tempering can improve modelling of
the spatially-dependent variance of this property, and so the
PEVs of the predictions. Further work remains to be done on
the problem of model selection for non-stationary variance
structures.
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