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Abstract. Peatlands play an important role in the global car-
bon cycle and represent both an important stock of soil car-
bon and a substantial natural source of relevant greenhouse
gases like CO2 and CH4. While it is known that the quality of
organic matter affects microbial degradation and mineraliza-
tion processes in peatlands, the manner in which the quality
of peat organic matter affects the formation of CO2 and CH4
remains unclear. In this study we developed a fast and sim-
ple peat quality index in order to estimate its potential green-
house gas formation by linking the thermo-degradability of
peat with potential anaerobic CO2 and CH4 formation rates.
Peat samples were obtained at several depths (0–40 cm) at
four sampling locations from an acidic fen (pH∼4.7). CO2
and CH4 formation rates were highly spatially variable and
depended on depth, sampling location, and the composi-
tion of pyrolysable organic matter. Peat samples active in
CO2 and CH4 formation had a quality index above 1.35, and
the fraction of thermally labile pyrolyzable organic matter
(comparable to easily available carbon substrates for micro-
bial activity) obtained by thermogravimetry was above 35%.
Curie-point pyrolysis-gas chromatography/mass spectrome-
try mainly identified carbohydrates and lignin as pyrolysis
products in these samples, indicating that undecomposed or-
ganic matter was found in this fraction. In contrast, lipids and
unspecific pyrolysis products, which indicate recalcitrant and
highly decomposed organic matter, correlated significantly
with lower CO2 formation and reduced methanogenesis. Our
results suggest that undecomposed organic matter is a prereq-
uisite for CH4 and CO2 development in acidic fens. Further-
more, the new peat quality index should aide the estimation
of potential greenhouse gas formation resulting from peat-
land restoration and permafrost thawing and help yield more
robust models of trace gas fluxes from peatlands for climate
change research.
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1 Introduction

Growing peatlands maintain an imbalance between net pri-
mary production and decomposition, leading to the accumu-
lation of large carbon (C) stocks due to the slow mineraliza-
tion of plant biomass (Clymo, 1983; Gorham, 1991; Botch et
al., 1995; Turunen et al., 2002). However, peatlands are also
known to emit greenhouse gases like CO2 and CH4 (i.e. Asel-
mann and Crutzen, 1989; Charman et al., 1999), which are
also important indicators of total C mineralization (Bridgham
and Richardson, 1992). As atmospheric concentrations of
both CO2 and CH4 are increasing rapidly, with consequences
for future global climate (Bridgham and Richardson, 1992;
Houghton, 2005), it is crucially important to fully understand
both sinks and sources in the global carbon cycle.

Measured emission and formation rates of CO2 and CH4
demonstrate strong spatial variation between peatland sites
(i.e. Moore et al., 1990; Whalen and Reeburgh, 1990) which
may result from such site-specific factors as temperature,
oxygen availability and ground water level (Yavitt et al.,
1987; Moore and Knowles, 1990; Bridgham and Richard-
son, 1992; Roulet et al., 1992a; Petrescu et al., 2008). Al-
though there has been some success in relating water level
and temperature to CO2 and CH4 emissions within particular
wetlands (Roulet et al., 1992b; Walter and Heimann, 2000;
Strack and Waddington, 2007; Petrescu et al., 2008), these
variables are insufficient for predicting emissions across a
variety of peatlands (Whiting and Chanton, 1993). Another
important factor that influences the chemical composition,
degradability of peat, and its potential for producing CO2 and
CH4 is the botanical origin of the plant litter (Moore et al.,
2007). For example,Carexpeat contains much less cellulose
and hemicellulose compared toSphagnumpeats (Bohlin et
al., 1989). Because both carbohydrates are likely substrates
for hydrolytic fermentation (Zeikus, 1983) these different
peat types will likely also yield differing amounts of precur-
sors for anaerobic CO2 formation and methanogenesis.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


188 M. Reiche et al.: Impact of peat quality on greenhouse gas formation

Although temperature, water saturation, redox conditions,
vegetation, and degree of peat decomposition are often sim-
ilar on a local scale, CO2 and CH4 formation rates are still
often spatially variable at this scale and a peatland may in-
clude areas with negligible activity (Svensson and Rosswall,
1984; Whalen and Reeburgh, 1990; Reiche et al., 2008).
Consequently, the factors listed above are not sufficient to
explain CO2 and CH4 formation rates reliably on either large
or small spatial scales. In order to reliably estimate the po-
tential greenhouse gas formation of peat in general, a param-
eter based on both the quality and quantity of bioavailable
organic matter present in peat, which should in turn control
CO2 and CH4 formation (Yavitt and Lang, 1990; Bridgham
and Richardson, 1992; Valentine et al., 1994; Christensen
et al., 2003; Reiche et al., 2008), may be required. How-
ever, there is currently no common definition or widely ac-
cepted quantitative index of “organic matter quality” that can
be used to determine potential greenhouse gas emission (Ru-
bino et al., 2007).

Same previous investigations tried to develop thermalsta-
bility indices for the characterization of humic substances,
composts or soil fractions and only few studies have fo-
cused on analyses of whole soil samples (e.g. Dell’Abate et
al., 1998; Grisi et al., 1998; Dell’Abate et al., 2002, 2003;
Lopez-Capel et al., 2005; Plante et al., 2005; Fernandez et
al., 2008). However, there is a lack of knowledge about the
relationship between biochemical and thermal stability (re-
viewed by Plante et al., 2009). A recent study demonstrated
that thermogravimetry (TG) can easily estimate the decom-
position potential of leaf litter in upland soils (Rubino et al.,
2007). Based on these data, we conclude a relationship be-
tween litter composition and microbial CO2 formation as the
proportion of thermal labile compounds and CO2 respiration
rates decreased during an 8-month incubation period. In this
study we applied the same technique to derive a quality in-
dex for peat organic matter. Using pyrolysis-gas chromatog-
raphy/mass spectrometry (Py-GC/MS), we identified the bio-
logical precursors of pyrolysis products present in peat sam-
ples (Kracht and Gleixner, 2000). The peat quality index was
then compared to anaerobic CO2 and CH4 formation rates to
determine the influence of the chemical composition of peat
on the extent of both gas forming processes. We hypothe-
sized that peat with a higher proportion of thermally labile
organic mater would correspond to higher potential CO2 and
CH4 formation rates.

2 Materials and methods

2.1 Peat sampling

Samples were obtained from an acidic fen (Schlöppner-
brunnen, fen area: 0.8 ha, pH 4.7) located in the northern
Fichtelgebirge region in east-central Germany (50◦7′54′′ N,
11◦52′51′′ E, 700 m above sea level) as previously de-

scribed (Reiche et al., 2008). The mean annual precipi-
tation at this site between 1995–2006 was approximately
953 mm and the mean annual air temperature was 6.1◦C. The
Schl̈oppnerbrunnen fen has an average peat accumulation of
about 50 cm and soil is Histosol on granite bedrock. Vegeta-
tion is dominated byCarex canescens, Carex rostrata, Jun-
cus effuses, Molinia caerulea, andEriophorum vaginatum.
Ground water moves through the fen from the north to the
south (Paul et al., 2006), with higher water saturation in south
than in the north due to a slight slope. Thus, the northern
part of the fen is naturally affected by water table fluctuations
during dry seasons. This fen has been studied in detail with
respect to anaerobic microbial processes since 2001. Based
on these earlier investigations, peat was sampled at four loca-
tions in November 2006, from the middle to the southern part
of the fen, following the hydrological gradient. Sampling lo-
cations were named C2, D2, sD1, M according to previous
investigations (Reiche et al., 2009). The maximum distance
between C2 and M was approximately 25 m. Peat obtained at
C2 and D2 was dark brown to black in color and the degree
of decomposition according to Von Post’s humification scale
(Clymo, 1983) was higher (moderately decomposed, H6-7)
than for the brownish peat at sD1 and M (slightly to mod-
erately decomposed H3-5) in the 0–40 cm depth zone, re-
spectively. Peat samples from 0–40 cm depth were obtained
using an 8 cm diameter peat corer. Fresh plant litter was re-
moved from the top and cores were separated in 10 cm depth
segments (I: 0–10 cm , II: 10–20 cm, III: 20–30 cm, IV: 30–
40 cm). Peat samples were then transported to the laboratory
in airtight plastic bags at 4◦C and processed the same day.

2.2 Microcosm incubations and headspace gas
determination

To study the formation of CO2 and CH4, 20 g of peat
(fresh wt) was placed into a sterile 180 mL incubation flask
(Mueller & Krempel, Buelach, Switzerland) in three repli-
cates under a continuous flow of sterile argon. Flasks were
closed with rubber stoppers and screw-caps and incubated
in the dark with an initial overpressure of∼100 mbar at
15◦C. Headspace concentrations of CO2 and CH4 were de-
termined every 2 to 3 days over a 31 day incubation period.
Headspace gases were measured with Hewlett Packard Co.
5980 series II gas chromatographs according to Reiche et
al. (2008). First, a sample volume of 100 µl was obtained
from the headspace of microcosms after shaking them to
release gas trapped inside the peat. CO2 analysis was then
carried out by a thermal conductivity detector and CH4 con-
centrations were determined with a flame ionization detector.

2.3 Analytical techniques

Fresh duplicate peat samples were dried at 105◦C for 24 h
to determine water content (WC) and than burned at 500◦C
for 4 h to calculate the ash content as loss on ignition (LOI).
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Total P, Fe, Al, Mg, Ca, S, H, N and C of dried (60◦C
for 48 h) and milled (Mixer Mill MM301, Retsch, Ger-
many) peat samples were analyzed with an elemental ana-
lyzer (vario EL, Elementar, Germany), by flame atomic ab-
sorption spectrometry (Perkin Elmer, 3300, USA), or photo-
metrically (Varian, Cary 1E, USA) after acid digestion (Re-
iche et al., 2008). Total bacteria in peat depth segments ob-
tained at C2 and D2 were enumerated by the 4,6-diamidino-
2-phenylindole (DAPI) method as described in Reiche et
al. (2008).

Approximately 5 mg of each dried and milled peat sam-
ple (in two replicates) was analyzed by thermogravimetry
(Mettler Toledo, TGA/SDTA 851e, Switzerland) (TG) (Pope
and Judd, 1977). The mass loss at increasing temperatures
(10.2◦C min−1) was measured under a continuous flow of
argon from 60 to 850◦C followed by a final combustion un-
der oxygen at 850◦C (Rubino et al., 2007). Pyrolysis un-
der anoxic conditions was done first to estimate the amount
of thermal labile compounds. Less condensed, thermola-
bile and oxygen-rich compounds, i.e. polysaccharides, amino
acids and volatile lipids evolve first in the TG (up to 300◦C)
by releasing intramolecular water. At higher temperature
at about 500◦C more condensed materials and high boiling
lipids and lignin are destructed. Final combustion was neces-
sary to calculate the amount of formed and pre-existing char.
For further calculations, mass loss was then normalized to to-
tal pyrolyzable matter (between 40 to 95%, data not shown).

Curie-point pyrolysis-gas chromatography/mass spec-
trometry (Py-GC/MS) (Gleixner et al., 1999) was used to
identify major pyrolysis products from selected peat sam-
ples (C2 I and III, D2 I, II and IV, M I and IV; two repli-
cates each,∼0.7 mg of each sample) (Schulten and Gleixner,
1999). These peat samples were selected with respect to their
differences in the peat quality index (described in Sect. 3.3).
The samples used for Py-GC/MS cover the full span of the
peat quality index and also samples with the highest rates of
CO2 and CH4 formation rates were in this range. Py-GC/MS
is a powerful technique to distinguish between plant derived
“biodegradable” and more “humified” compounds. Pyrol-
ysis products like furanes and substituted phenols that de-
rive from carbohydrates and lignin, respectively, indicate the
presence of plant material whereas alkanes and unspecific
pyrolysis products like benzol, phenol or naphthalene indi-
cate highly humified organic material (Gleixner et al., 1999;
Rubino et al., 2007). Pyrolysis was carried out under he-
lium for 9.9 s at 500◦C with a Curie point Pyrolyzer 0316
(Thermo Fisher, USA). Volatile pyrolysis products were sep-
arated by gas chromatography (HP 5890, Germany) with
a BPX5 capillary column (length, 60 m; inner diameter,
0.32 mm; film thickness, 1 µm; SGE, Germany) and analyzed
using an ion trap mass spectrometer (Thermo Fisher, GCQ,
USA) (Steinbeiss et al., 2006).

2.4 Calculations and statistics

Potential rates for CO2 and CH4 formation were determined
from the linear increase of headspace and dissolved gas con-
centrations, calculated from three replicates. CH4 formation
rates were calculated as the average of the period after onset
of methanogenesis. Peat samples were then grouped accord-
ing to their CH4 and CO2 forming activities by hierarchical
cluster analysis, using the Ward method, based on the Eu-
clidean squared distances (SPSS 15.0, SPSS Inc., Chicago,
Illinois, USA). Pearson’s correlation coefficients (r) were
calculated to test for correlations of anaerobic CO2 and CH4
formation with chemical peat parameters (SPSS 15.0, SPSS
Inc., Chicago, Illinois, USA).

Evaluation of mass spectra obtained by Py-GC/MS was
performed according to Schulten and Gleixner (1999) and
Kracht and Gleixner (2000) and was compared to spectral
databases like Wiley 6.0 (McLafferty, 2001), the National In-
stitute of Standards and Technology (NIST, 2002) and the In-
tegrated Spectral Data Base System for Organic Compounds
(AIST, 2001). Means of two replicates from the mass list of
pyrolysis spectra, the relative abundances of representative
precursor groups (lipids, carbohydrates, lignin, and unspe-
cific pyrolysis products normalized to 1 g pyrolyzable sam-
ple), were calculated as the summed peak areas of individ-
ual pyrolysis products belonging to the same precursor group
(Table 1).

3 Results

3.1 Chemical properties of peat

The C content of peat samples obtained from C2 and D2 in-
creased from 36% at 0–10 cm depth to more than 50% at 30–
40 cm depth, respectively (Table 2). In contrast, amount of C
decreased with increasing depth at sD1 and M. H content and
loss on ignition ranged from 1.4% to 6.7% and from 31% to
92%, and increased at C2 and D2 with depth, but decreased
over depth at the southern sampling locations sD1 and M (Ta-
ble 2). Proportion of total N decreased at all sampling ar-
eas over depth and yielded concentrations from 2.1 to 0.5%.
Corresponding C:N ratios were lowest in the upper peat com-
pared with deeper samples and ranged from 18 to 44 over the
0–40 cm depth profile. The WC in peat obtained in the north-
ern areas C2 and D2 ranged from 76 to 87%. At sD1 and M,
WC decreased from over 91% in upper depth segments to
less than 85% below. The peat samples were naturally satu-
rated or near saturation. Variations in WC between northern
and more southern samples were caused by different degrees
of peat decomposition. At location sD1 in depth below 20 cm
granite gravel from the bedrock decreased the relative wa-
ter content as well. The highest amounts of total Fe and Al
were obtained in the first depth segment of areas D2, sD1
and M and yielded up to 36.4 and 43.8 mg g (dry wt peat)−1.
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Table 1. Retention time, peak identification, precursor groups, and mass spectrometric characteristics of major pyrolysis products present in
selected peat samples (C2, D2, M, according to Fig. 4) obtained over depth (0–40 cm) of an acidic fen.

Retention time Identified compound Precursora Molecular weight Base peak Characteristic fragments
(min) (g mol−1) (m/z)b (m/z)

10.6 2-Methylfuran ch 82 81 82, 53
13.3 Benzene us 78 78 77, 58, 51
17.9 Toluene us 92 91 92, 65, 50
19.5 2[3H]Furanone ch 84 55 84, 54
20.9 2-Furaldehyde ch 96 95 96, 39, 37
22.1 Dimethylbenzene us 106 91 106
23.1 Ethylbenzen/Styrene us 106 91 78
25.8 5-Methyl-2-furaldehyde ch 110 109 110, 53, 50
26.2 Phenol us 94 94 66
27.4 4-Hydroxy-5,6-dihydro-(2H)-pyran-2-one ch 114 114 58, 85, 57
28.9 2-Methylphenol us 108 108 107
29.6 3,4-Methylphenol us 108 107 108, 77, 79
30.2 2-Methoxyphenol lg 124 124 109, 81
32.5 p-Ethylphenol lg 122 107 77, 122
33.4 4-Methyl-2-methoxyphenol lg 138 138 123
33.9 unknown n.d.c n.d. 57 85.,70
34.3 4-Vinylphenol (4-ethenylphenol) lg 120 120 91
35.9 4-Ethyl-2-methoxyphenol lg 152 137 152
37.2 4-Vinyl-2-methoxyphenol lg 150 150 135, 107
39.9 4-Formyl-2-methoxyphenol lg 152 151 152
40.8 trans-4-(2-propenyl)-2-methoxyphenol lg 164 164 116
42.1 4-Acetyl-2-methoxyphenol lg 166 151 166
42.7 Levoglucosane ch 162 60 73
43.6 4-Vinyl-2,6-dimethoxyphenol lg 180 180 165, 137
45.6 n-C17 alkene li n.d. 55 69, 83
46.3 n-alkene li n.d. 111 70, 55, 69
47.0 Trans-4-(2-propenyl)-2,6-dimethoxyphenol lg 194 194 131
47.8 n-C18 alkene li n.d. 55 69, 83
47.9 n-C18 alkane li n.d. 57 71, 85
47.9 4-Acetyl-2,6-dimethoxyphenol lg 196 181 196
49.9 n-C19 alkene li n.d. 55 69, 83
49.9 n-C19 alkane li n.d. 57 71, 85
51.8 n-C20 alkene li n.d. 55 69, 83
51.9 n-C20 alkane li n.d. 57 71, 85
53.8 n-C21 alkane/alkene li n.d. 55 57, 69, 71
55.6 n-C22 alkane/alkene li n.d. 55 57, 69, 71
57.3 n-C23 alkane/alkene li n.d. 55 57, 69, 71
59.0 n-C24 alkane/alkene li n.d. 55 57, 69, 71
61.0 n-C25 alkane/alkene li n.d. 55 57, 69, 71
63.1 n-C26 alkane/alkene li n.d. 55 57, 69, 71

a ch = carbohydrates; lg = lignins; li = lipids; us = unspecific,
b mass-to-charge ratio,
c could not be determined
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Fig. 1. Grouping of peat samples according to their CO2 and CH4
formation rates using hierarchical cluster analysis. The dendro-
grams were carried out using the Ward method, based on Euclidean
squared distances. Samples were obtained at different areas along
a hydrological gradient from an acidic fen (from the middle to the
south C2→D2→sD1→M) over 4 depths (I: 0–10 cm, II: 10–20 cm,
III: 20–30 cm, IV: 30–40 cm). Peat samples yielding CH4 and CO2
formation rates above 0.1 and 1.2 µmol g (dry wt peat)−1 d−1, re-
spectively, are highlighted (grey box).

Total concentrations of Mg, Ca, P and S were evenly dis-
tributed over depth and sampling location with mean values
of ∼0.8, 0.3 and 1.3 mg g (dry wt peat)−1 and 0.3%, respec-
tively (Table 2).

3.2 Microbial formation of CO 2 and CH4

Peat soil CO2 and CH4 formation varied between sampling
location and depth (Table 3). In general, anaerobic CO2
formation rates decreased strongly with increasing depth at
all sampling areas with rates up to 12.7 µmol CO2 g (dry
wt peat)−1 d−1 in the upper-most peat segment and below
1.2 µmol CO2 g (dry wt peat)−1 d−1 in deeper segments (Ta-
ble 3). Microbial CO2 formation was highest at M, the south-
ernmost sampling area, compared with C2, D2, and sD1 peat
samples. We found a positive correlation (p <0.01) of anaer-
obic CO2 formation rates with total amounts of Fe (r=0.95),
Al (r=0.92) and Ca (r=0.77) but not with WC, LOI, and total
P, Mg, C, H, N and S (p >0.05).

Peat obtained from the southern areas sD1 and M showed
a potential for CH4 formation with an apparent delay of 2 and
7 days, respectively, at all depths and initial methanogenesis
could be detected below 20 cm depth at sD1. Methane for-
mation rates ranged between 0.04 and 2.11 µmol CH4 g (dry

wt peat)−1 d−1 with maximum values in the 0–10 cm seg-
ment of sD1 and the 10–20 cm segment of M (Table 3). Peat
obtained from 0–10 cm depth at C2 and D2 showed a poten-
tial formation of CH4, which started after an incubation of
approximately 8 and 12 days, respectively. In depths below
these, no formation of CH4 occurred during the prolonged
incubation of 31 days. In general, the formation of CH4 was
positively correlated with the peat WC (r=0.58,p <0.05).

Peat samples were grouped according to their anaerobic
CO2 and CH4 formation rates into two main clusters using
hierarchical cluster analysis (Fig. 1). Rates for CO2 and CH4
formation below 1.2 and 0.1 µmol g (dry wt peat)−1 d−1, re-
spectively, indicated the threshold for less active or inactive
peat while rates above suggested active peat. The low rates
observed in the inactive, deeper peat segments of C2 and D2
could not be explained by differences in microbial cell num-
bers. Numbers of DAPI counted cells were approximately
1010 cells g [dry wt. peat]−1 and were similar at all depths.

In previous investigations we could show that similar pat-
terns for anaerobic CO2 and CH4 formation rates occurred at
the fen site independent from seasonal shifts from peat ob-
tained at C2 and D2 from 0–40 cm depth during 2006 and
2007 (Reiche et al., 2008, 2009; and data not shown). Addi-
tionally, the pattern of aerobic CO2 formation rates of these
peat samples, measured in oxic microcosms over an incuba-
tion period of 24 hours (Reiche et al., 2009), also supported
this classification. In peat obtained from 0–10 cm depth at C2
and D2, aerobic CO2 formation rates were up to 1.4 (±0.5)
times higher than anaerobic CO2 formation rates. Aerobic
rates were lower in depths below 10 cm and approximated
anaerobic rates. The high anaerobic CO2 and CH4 formation
rates observed from peat sampled at M from 0–30 cm were
also observed during 2001 and 2002 (Küsel et al., 2008).

3.3 Peat quality

The thermal degradability of organic matter of each peat
sample was compared with the mass loss at distinct temper-
ature intervals obtained by the TG technique. Four distinct
temperature intervals were determined using variance analy-
ses of mass loss spectra (mean of two replicates). The first
temperature interval ranged from 205–360◦C (rapid mass
loss due to labile particulate organic matter; pyOMlabile),
the second from 365–480,◦C (slower mass loss due to more
unspecific and more stable particulate organic matter), the
third from 585–630,◦C (slow mass loss due to more recal-
citrant particulate organic matter; pyOMrecalcitrant), and the
fourth was the sudden combustion under oxygen at 850◦C
(highly humified and inert particulate carbon compounds;
pyOMinert). We tested different combinations of these four
distinct temperature intervals to calculate a peat quality index
with the highest correlation to measured anaerobic microbial
CO2 and CH4 formation rates. The best fit equation for the
quality index was expressed as ratio between the sum of mass
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Table 2. Chemical characteristics of peat obtained from an acidic fen (pH 4.7) along a hydrological gradient (from the middle to the south
C2→D2→sD1→M) over 4 depths (I: 0–10 cm, II: 10–20 cm, III: 20–30 cm, and IV: 30–40 cm) in November 2006.

sample WCa LOIb Ptotal Fetotal Al total Mgtotal Catotal Stotal Htotal Ntotal Ctotal C/N
depth (%) (mg g [dry wt peat]−1) (%) ratio

C2 (I)c 80.3 69.6 1.8 9.5 7.2 0.9 0.2 0.3 4.5 2.0 36.2 18.1
C2 (II)c 81.7 83.3 1.5 5.9 4.1 0.3 0.1 0.3 5.4 2.1 47.3 22.5
C2 (III)c 81.6 88.2 0.8 6.2 3.3 0.3 0.3 0.2 5.5 1.5 51.5 34.3
C2 (IV)c 85.7 85.9 1.0 3.2 2.3 0.5 0.2 0.2 6.0 1.2 50.4 42.0

D2 (I)c 87.0 74.6 1.5 36.4 43.8 0.7 0.6 0.3 4.5 1.7 36.4 21.4
D2 (II)c 76.4 62.3 1.2 10.4 6.7 0.8 0.2 0.2 4.4 1.3 37.6 28.9
D2 (III)c 79.8 91.6 0.8 5.6 4.3 0.2 0.3 0.3 6.7 1.3 55.3 42.5
D2 (IV)c 84.4 85.4 1.0 4.7 3.4 0.5 0.2 0.3 6.0 1.3 51.0 39.2

sD1 (I) 90.9 77.7 1.4 28.7 20.2 0.6 0.3 0.4 4.5 1.7 39.0 22.9
sD1 (II) 90.3 74.8 1.5 5.7 2.8 1.0 0.3 0.5 4.7 1.4 37.7 26.9
sD1 (III) 78.6 52.1 1.3 6.9 2.1 1.6 0.2 0.3 3.4 1.0 29.4 29.4
sD1 (IV) 61.8 31.3 1.3 6.9 1.8 2.3 0.1 0.1 1.4 0.5 21.9 43.8

M (I) 91.2 86.3 1.3 19.9 15.9 0.4 0.4 0.3 5.3 1.8 43.1 23.9
M (II) 93.3 85.0 1.5 8.8 7.8 0.6 0.3 0.4 5.3 1.5 41.6 27.7
M (III) 92.9 82.5 1.4 4.5 3.2 0.6 0.3 0.6 5.1 1.4 41.5 29.6
M (IV) 85.9 68.8 1.5 7.1 3.8 1.1 0.3 0.5 4.6 1.3 37.6 28.9

a water content,b loss on ignition,c some data were obtained from Reiche et al. (2009)

Table 3. Anaerobic formation rates of CO2 and CH4, the onset of methanogenesis, and the peat quality index as ratio between the sum of
thermal labile and recalcitrant C-based compounds and inert carbon compounds, (pyOMlabile+pyOMrecalcitrant)/pyOMinert in peat obtained
from an acidic fen (pH 4.7) along a hydrological gradient (from the middle to the south C2→D2→sD1→M) over 4 depths (I: 0–10 cm,
II: 10–20 cm, III: 20–30 cm and IV: 30–40 cm) in November 2006 (n=3).

Sample CO2 formation rate CH4 formation rate Onset of CH4 formation Peat quality
(µmol g [dry wt peat]−1 d−1) (day) index

C2 (I)a 4.3 0.14 ∼8 1.6
C2 (II)a 1.0 0.00 n.ab 1.0
C2 (III)a 0.8 0.00 n.a. 0.8
C2 (IV)a 0.8 0.00 n.a. 1.0

D2 (I)a 12.7 0.32 ∼12 1.7
D2 (II)a 1.2 0.00 n.a. 1.2
D2 (III)a 0.9 0.00 n.a. 1.0
D2 (IV)a 0.6 0.00 n.a. 0.9

sD1 (I) 9.7 1.25 ∼5 1.7
sD1 (II) 1.7 0.32 ∼2 1.4
sD1 (III) 0.7 0.08 1 1.2
sD1 (IV) 0.1 0.04 1 1.0

M (I) 8.9 0.38 ∼7 1.8
M (II) 4.9 2.11 ∼2 1.7
M (III) 2.3 0.80 ∼2 1.5
M (IV) 0.8 0.07 ∼2 1.3

a some data were obtained from Reiche et al. (2009),
b no methanogenic activity within 31 days of incubation
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Fig. 2. Percentage of mass loss during thermogravimetry analyses (n=2) over three temperature intervals corresponding to labile carbon
(pyOMlabile: 205–360◦C), recalcitrant carbon (pyOMrecalcitrant: 365–480◦C) and inert carbon (pyOMinert: 850◦C+oxygen) with respect to
total pyrolyzable organic matter. Mass loss which is not explained by these three temperature intervals is expressed by pyOMother. Peat was
obtained from 4 different sampling sites in an acidic fen along a hydrological gradient (from the middle to the south C2→D2→sD1→M)
over 4 depths (I: 0–10 cm, II: 10–20 cm, III: 20–30 cm and IV: 30–40 cm).

loss of pyOMlabile and pyOMrecalcitrantwith pyOMinert:

QIpeat=
pyOMlabile+pyOMrecalcitrant

pyOMinert
(1)

We decided to calculate the QIpeat as this ratio because
pyOMlabile and pyOMrecalcitrant correlated positively and
pyOMinert negatively with the corresponding gas formation
rates. The fraction of pyOMlabile alone was not sufficient to
define a precise and robust peat quality index compared to
the ratio given above. In principle, the higher the quality in-
dex the higher the quantity of labile and recalcitrant organic
matter should be. For further comparisons, mass loss which
was not described by these three selected temperature inter-
vals was expressed as pyOMother (Fig. 2).

The proportion of pyrolyzable pyOMlabile (38–44%)
tended to be highest in the upper segment (0–10 cm) at all
sampling areas. The lowest segments (30–40 cm) yielded
23–35% (Fig. 2). A high proportion of pyOMlabile in the
10–30 cm depth segment was found at area M (41–44%).
pyOMrecalcitrant reached 2.1–3.2% in the first peat segment
of D2, sD1 and M, which was twice as high as in samples
obtained from C2 or at depths below 10 cm (Fig. 2). In
contrast, the percentage of combustible inert carbon com-
pounds (pyOMinert) tended to increase with depth from ap-
proximately 25% to more than 28%.

Calculating the peat quality index with respect to these
three categories yielded values from 0.8 to 1.8. The index
was highest in peat samples from the upper most peat seg-
ment compared with corresponding segments below (Fig. 3).
At sD1 and M, a high index>1.35 was also observed up to
30 cm depth. Quality index was lowest for peat samples be-
low 10 cm depth at C2 and D2. In general, peat of the south-
ern, water-logged sampling areas sD1 and M was less de-
graded and the amounts of pyOMlabile in depths below 10 cm

were high in comparison with samples obtained from the hy-
drological and redox instable areas C2 and D2. The mean
peat quality index was 1.3 times lower in these areas than in
peat samples from sD1 and M (Fig. 3).

3.4 Major pyrolysis products of peat

The major Py-GC/MS products of all peat samples and pre-
cursor classes, according to the molecule from which each
Py-GC/MS product was generated, are given in Table 1. The
number of peaks detected during the pyrolysis process in-
creased with depth from 46 (0–10 cm) to 64 (20–30 cm) at
C2 and from 44 (0–10 cm) to 80 (30–40 cm) at D2. Peaks
at sampling area M between 0–10 cm and 30–40 cm depths
were as large as 56. The low retention times, between 10.8
and 27.3 min, in the chromatogram of the Py-GC/MS were
indicative for toluene, furan, furaldehyde, phenol, and ben-
zene derivates (Table 1). A “lignin region” between 28.9 and
43.6 min was dominated by methylphenol and methoxyphe-
nol derivates. Compounds with high retention time, 45.6 to
63.2 min, and higher molecular weight dominated the “lipid
region”, i.e. n-alkens and n-alkans, with a chain length of
more than C17. The contribution of carbohydrates, as cal-
culated from the peak area of carbohydrate pyrolysis prod-
ucts, decreased with increasing depth from 20% to 7% at C2
and from 17% to 6% at D2 (Fig. 4). Carbohydrates at the
most southern sampling area M reached 18% and were con-
stant at all measured depths. The contribution of lipids to
the total pyrogram increased in deeper segments of D2 and
M, whereas lignin and carbohydrate pyrolysis products de-
creased with depth. Lipid and lignin contribution to the py-
rogram of C2 samples reached approximately 24% at depth
I (0–10 cm) and 35% at depth III (20–30 cm). Total pyrolyz-
able matter in relation to dry matter was approximately 48%
in peat samples obtained from 20–40 cm depth and 64, 48,
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Fig. 3. Correlation of peat quality index as ratio between the sum
of thermal labile and recalcitrant C-based compounds and inert
carbon compounds, (pyOMlabile+pyOMrecalcitrant)/pyOMinert, ob-
tained with thermogravimetry analyses with formation rates of CO2
(a) and CH4 (b), and proportion of thermal labile particulate or-
ganic matter (pyOMlabile) (c). Peat was sampled at 4 sampling sites
along a hydrological gradient of an acidic fen (from the middle to
the south C2→D2→sD1→M) over 4 depths (I: 0–10 cm, II: 10–
20 cm, III: 20–30 cm and IV: 30–40 cm). The best fit equation for
CO2 formation, CH4 formation and pyOMlabile with peat quality
is expressed by:y=0.025e3.19x (r2=0.71,p <0.01),y=0.002e3.54x

(r2=0.49,p <0.01) andy=18.75x+9.5 (r2=0.89,p <0.01), respec-
tively.

59% in upper peat depths of C2, D2 and M, respectively. The
content of lignin was positively correlated with the anaer-
obic formation rates of CO2 (r=0.86, p <0.01) and CH4
(r=0.93,p <0.05), whereas the content of lipids were neg-
atively correlated with the anaerobic formation rates of CO2
(r = −0.84,p <0.01) and CH4 (r = −0.91,p <0.05).

4 Discussion

4.1 Peat composition

The percentage of pyOMlabile during TG analyses was high-
est in the 0–10 cm segment at C2, D2, and sD1. Similarly, the
percentage of pyOMrecalcitrantwas highest in the uppermost
segment at D2, sD1, and M (Fig. 2). This high percentage
likely indicates an input of fresh and therefore less decom-
posed plant litter, i.e. from dead roots and leaves of grow-
ing vegetation. This vegetation can further increase the pool
of easy available carbon substrates, such as carbohydrates
and amino acids, through the leakage of exudates from liv-
ing plant roots (Grayston et al., 1996; Yan et al., 2008). The
large number of detectable peaks obtained with Py-GC/MS
at C2 and D2 of the lower segments, compared to the upper
peat segments, demonstrated a high complexity of organic
matter in deep peat segments. Additionally, the increased
percentage of unspecific pyrolysis products in depths below
10 cm was indicative of more humified peat.

In all pyrograms, lipids, lignin, and to a lesser extent, car-
bohydrates, were the major pyrolysis precursors (Fig. 4 and
Table 1). Large amounts of long-chain lipids accumulated in
deeper peat segments (Fig. 4 and Table 1). Several studies
have shown that aliphatic biopolymers are highly resistant to
biodegradation and can be well preserved in soils (Gleixner
et al., 2001; Winkler et al., 2005; Otto and Simpson, 2006).
The high proportion of linear alkane/alkene peaks in the Py-
GC/MS data in peat segments below 10 cm at D2 and M sug-
gested that aliphatic polymer material is an important part
of the lower peat organic matter (Fig. 4 and Table 1). Alka-
nes/alkenes with chain lengths of more than C16 are com-
mon compounds that originate from plant aliphatic polymers
such as leaf and root waxes, like cutin- and suberin-derived
polymers (Nip et al., 1986; Tegelaar et al., 1995; Gleixner
et al., 2001; K̈ogel-Knabner, 2002). The proportion of car-
bohydrates in deeper peat segments (II, III, IV) represented
more than 30% of the relative carbohydrate proportion in
peat segment I suggesting carbohydrate degradation through-
out the profile, probably caused my microbial mineralization.
However, we observed almost no difference in the patterns
of carbohydrate-related peaks in the different peat segments.
Carbohydrates are known to be recycled or newly formed in
soils during decomposition (Gleixner et al., 2002) and this
may also occur in peat (Kracht and Gleixner, 2000).

4.2 Microbial formation of CO 2 and CH4

This fen site has been investigated intensively within a na-
tional interdisciplinary research group since 2001. Accord-
ing to previous investigations (K̈usel et al., 2008; Reiche et
al., 2008, 2009), CO2 and CH4 formation rates were highly
spatially variable and depended neither on peat depth or the
hydrological gradient at this site. In all areas, anaerobic CO2
formation rates were highest in the upper peat segments,
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Fig. 4. Relative proportion (% of total pyrolyzable compounds) of identified compounds grouped by precursor classes of chemical compounds
(carbohydrates, lignin, lipids and unspecific C-based compounds) from different peat samples obtained from an acidic fen (C2: middle part,
D2: more southern part, M: most southern part) over 4 depths (I: 0–10 cm, II: 10–20 cm, III: 20–30 cm and IV: 30–40 cm). Compounds were
identified using Curie-point pyrolysis-gas chromatography/mass spectrometry (n=2).

suggesting favorable conditions for microorganisms in the
segment most influenced by growing vegetation. Positive
correlation of CO2 formation rates with the total amounts of
Fe confirmed that high Fe(III)-reducing activity in the up-
per most peat segment (Küsel et al., 2008) may contribute to
anaerobic CO2 formation. The positive correlation of CO2
formation rates with Al and Ca in this study can not be at-
tributed to a microbial respiratory process and are better ex-
plained by co-precipitation with Fe(III)-oxides during oxy-
genation or drying events.

Peat below 10 cm depth at C2 and D2 did not form CH4
during an incubation period of 31 days. In addition, the CO2
formation rates were very low, although numbers of DAPI
counted cells were in the same order of magnitude as in
segment I. Peat sampled at areas sD1 and M decreased in
CH4 formation rates with increasing depth, similar to other
peatlands (Hughes et al., 1999; van den Pol-van Dasselaar
and Oenema, 1999; Chow et al., 2006). The activity of
methanogenically-active peat segments was in the range as
has been reported for boreal peatlands (Bergman et al., 2000;
Galand et al., 2005; Metje and Frenzel, 2007; Rooney-Varga
et al., 2007). In general, northern wetland CH4 emissions
contribute 10–44 Tg of the greenhouse gas methane (CH4)
annually (Mikaloff Fletcher et al., 2004; Zhuang et al., 2004;
Walter et al., 2006). The long onset of CH4 formation in the
upper peat segments and the low to negligible CH4 forming
activity of deeper peat segments suggested that CH4 produc-
tion is not a significant pathway of carbon flow out of this
fen. The high spatial heterogeneity of the rates observed even
within a small field site like this fen suggests a need for more
replicate studies of CO2 and CH4 emission rates. Adequate
assessment of the contribution of peatlands to the global CO2
and CH4 budget will require not only field measurements of
gas fluxes over the complete season and a wide range of dif-
ferent peatland sites for CH4 fluxes (Crill et al., 1988), but
also at different areas within the same peatland site.

4.3 Link of peat quality to microbial activity

The quality of organic matter is a key factor controlling the
rate of organic matter mineralization (Yavitt and Lang, 1990;
Bridgham and Richardson, 1992; Crozier et al., 1995; Wag-
ner et al., 2005). The poor substrate quality of highly de-
composed, humified peat limits both CO2 and CH4 produc-
tion rates, even though the peat can be up to 95% organic
matter (Bridgham and Richardson, 1992). Many quality in-
dexes have been proposed in the past, but there is currently
no common definition or widely accepted quantitative index
of “quality” (Rubino et al., 2007). For example, the ratio of
C to N concentration (C:N ratio) or the ratio of lignin to N
concentration (lignin:N ratio), have been frequently used as
an index of litter quality (Taylor et al., 1989; Enriquez et al.,
1993; Valentine et al., 1994; Gholz et al., 2000; Moore et
al., 2007). Lignin:N ratios can provide a modest explana-
tion of peat decomposition rates (Moore et al., 2005). In this
study, the anaerobic CO2 formation rates observed correlated
negatively with their corresponding C:N ratios (r = −0.60,
p <0.05), but did not with the lignin:N ratios. In contrast,
CH4 formation rates did not correlate with C:N or lignin:N
ratios. However, the low C:N ratios in the upper peat segment
(Table 2) suggested a higher peat quality than in depths be-
low. Other correlations indicated that less decomposed plant
biomass rich in lignin and poor in lipids at area M and in up-
per peat of areas C and D is a prerequisite for CO2 and CH4
formation in this fen. This finding was confirmed by the Von
Post’s humification scale (Clymo, 1983). However, this was
not sufficient to explain small spatial differences of CO2 and
CH4 formation at all depths. Although there are indications
that the degree of humification may be an important control
of CO2 and CH4 production (Glatzel et al., 2004), we did not
find a clear relationship which would allow a clear prediction
of CO2 and CH4 production rates under anoxic conditions.
This finding was also previously reported (Moore and Dalva,
1997).
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The TG measurements showed that peat quality in rela-
tion to biological function can be described as ratio between
the sum of labile and recalcitrant carbon compounds and the
proportion of highly humified inert C-based compounds. In
principle, the lower the quality index, the higher the quantity
of inert C-based compounds in the peat should be. Conse-
quently, peat with a high quality index will also show higher
concentrations of easily biodegradable organic matter from
either pyOMlabile or pyOMrecalcitrant.

The thermal degradability of peat obtained with TG might
not agree with microbial availability of peat organic matter
and does not explain differences in the onset of CH4 for-
mation. However, assuming that the fraction of pyOMlabile
represents easily available substrates for microorganisms
(Gleixner et al., 2002), our results showed that peat was ac-
tive in anaerobic CO2 and CH4 formation when this fraction
was above 35% and the QIpeat was above 1.35. Correlating
TG with Py-GC/MS data suggested that carbohydrates were
a relevant part of the pyOMlabile (r=0.87,p <0.05). A pos-
itive correlation (r=0.88,p <0.01) with CO2 formation was
also found with the fraction of pyOMrecalcitrant. This indi-
cated that thermally recalcitrant carbon compounds can be
also efficiently used as a carbon source by microorganisms.

The new peat quality index was successfully used to es-
timate the potential formation of the greenhouse gases CO2
and CH4 at four areas from this fen. Although it only ranged
from 0.8 to 1.8, this small range may be enlarged depend-
ing on the proportion of the pyOM fractions resulting from
the diverse botanical origins of peat organic matter found in
other peatlands. How stable this current peat quality index
is with respect to the potential CO2 and CH4 formation is
still an open question. Mesocosm experiments indicate that a
change in the size and/or quality of the labile carbon pool
can occur relatively quickly (less than 6 years) (Keller et
al., 2004). More research on different types of peatlands,
i.e. Sphagnum-peat bogs, boreal peatlands, Siberian bogs,
and degradated peatland sites is needed to confirm whether
this new quality index can be used to estimate the potential
greenhouse gas formation of peatlands in general.

5 Conclusions

Although parameters like water table depth, moisture con-
tent, loss on ignition, and the C:N ratio are easy to determine
and can be correlated in several cases with the potential for-
mation rates of CO2 and CH4, they are often not sufficient to
explain small spatial heterogeneities in greenhouse gas for-
mation. Our new peat quality index was an easy tool to es-
timate the potential greenhouse gas formation for both CO2
and CH4. The content of thermally labile and recalcitrant or-
ganic compounds appeared to be the most important factor
controlling CO2 and CH4 formation. Therefore, the direct
link presented here between peat quality and microbial CO2
and CH4 formation should facilitate predictions with a ro-

bust theoretical basis for modeling and calculating element
cycles or trace gas fluxes from peatlands for climate change
research.
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