
Biogeosciences, 7, 1247–1261, 2010
www.biogeosciences.net/7/1247/2010/
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

Biogeosciences

Decadal water balance of a temperate Scots pine forest (Pinus
sylvestrisL.) based on measurements and modelling

B. Gielen1, H. Verbeeck2, J. Neirynck3, D. A. Sampson4, F. Vermeiren3, and I. A. Janssens1

1University of Antwerp, Research Group Plant and Vegetation Ecology, Universiteitsplein 1, 2610 Wilrijk, Belgium
2Ghent University, Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty
Bioscience Engineering, Coupure Links 653, 9000 Ghent, Belgium
3Research Institute for Nature and Forest, Gaverstraat 4, 9500 Geraardsbergen, Belgium
4Arizona State University, Decision Center for a Desert City, Global Institute of Sustainability, Tempe, AZ 85287, USA

Received: 5 October 2009 – Published in Biogeosciences Discuss.: 11 November 2009
Revised: 23 March 2010 – Accepted: 24 March 2010 – Published: 13 April 2010

Abstract. We examined the water balance components of
an 80-year-old Scots pine (Pinus sylvestrisL.) forest stand
in the Campine region of Belgium over a ten year period
using five very different approaches; our methods ranged
from data intensive measurements to process model simula-
tions. Specifically, we used the conservative ion method (CI),
the Eddy Covariance technique (EC), an empirical model
(WATBAL), and two process models that vary greatly in
their temporal and spatial scaling, the ORCHIDEE global
land-surface model and SECRETS a stand- to ecosystem-
scale biogeochemical process model. Herein we used the
EC technique as a standard for the evapotranspiration (ET)
estimates. Using and evaluating process based models with
data is extremely useful as models are the primary method
for integration of small-scale, process level phenomena into
comprehensive description of forest stand or ecosystem func-
tion. Results demonstrated that the two process models cor-
responded well to the seasonal patterns and yearly totals of
ET from the EC approach. However, both WATBAL and CI
approaches overestimated ET when compared to the EC es-
timates. We found significant relationships between several
meteorological variables (i.e., vapour pressure deficit [VPD],
mean air temperature [Tair], and global radiation [Rg]) and
ET on monthly basis for all approaches. In contrast, few re-
lationships were significant on annual basis. Independent of
the method examined, ET exhibited low inter-annual vari-
ability. Consequently, drainage fluxes were highly correlated
with annual precipitation for all approaches examined, ex-
cept CI.
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(bert.gielen@ua.ac.be)

1 Introduction

Vegetation strongly interacts with the terrestrial water cycle
to influence runoff processes within vegetated catchments
(Sahin and Hall, 1996). Forests play an important role in
the water and energy balance of the land surface. Com-
plex diurnal cycles of water evaporation and energy fluxes
are generated by the forest floor, and from beneath and
within the forest canopy; vegetation structure and canopy
height strongly influence these water cycling processes (Rut-
ter, 1975). Consequently, forests influence the magnitude
and patterns of rainfall at regional and global scale by in-
fluencing the low level moisture convergence, and they de-
termine the amount of water that flows within the river basin
(Shukla and Mintz, 1982). Long term forest monitoring sites
can provide a wealth of knowledge on the drivers of the inter-
annual and long term seasonal variation of the water balance
components, such as evapotranspiration (ET) and drainage
of forests. Many different approaches ranging from measure-
ments and empirical models to generic and site parameterised
process-based models have been used to estimate ecosystem
water balances.

The eddy covariance technique, a measurement-based ap-
proach, provides measures of latent heat flux, the energy flux
density equivalent of the ET rate, and offers promising esti-
mates for closing the water balances of ecosystems (Aubinet
et al., 2000; Baldocchi and Meyers, 1998). A less common
approach uses conservative ion concentrations in throughfall
water and in soil water below the root zone (Eriksson and
Khunakasem, 1969) to estimate ET. Finally, many different
models have been used to estimate ET at the stand-scale. Em-
pirical models, such as WATBAL, are less complicated and
can calculate ET based on the Jensen and Haise equation by
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using a set of input parameters derived from commonly avail-
able data (Starr, 1999). Conversely, complex process-based
models simulate the different subcomponents of water bal-
ance (e.g., canopy evaporation, soil evaporation, and transpi-
ration) by using process-level algorithms. Using and evalu-
ating process based models with data is extremely useful as
models are the primary method for integration of small-scale,
process level phenomena into comprehensive description of
forest stand or ecosystem function (Hanson et al., 2004).
Each approach, however, has merits and drawbacks that de-
pend on the research question and the scale of focus. Meth-
ods to estimate evapotranspiration vary in at least three ways:
1) each technique has an inherent, representative spatial and
temporal scale that makes either interpolation or extrapola-
tion necessary to make inferences outside of these scales,
2) techniques differ in whether they measure evapotranspira-
tion or just one or several of its components, and 3) a unique
set of particular assumptions, technical difficulties, measure-
ment errors and biases are necessarily introduced with each
technique employed (Wilson et al., 2001) Notwithstanding,
comparing multiple approaches for one site may provide in-
sight into the process drivers of ET and drainage over multi-
ple spatial and temporal scales as they influence forest water
balance.

Climate change (one of many global change issues) influ-
ences many more processes than the commonly reputed ef-
fects on global temperatures; associated changes in the hy-
drologic cycle often have even greater societal impacts than
temperature through changes in precipitation, ET, runoff, and
water available for human use (Chapin et al., 2008). Cli-
mate change (i.e. increased temperatures, vapour pressure
deficit (VPD) and CO2 concentrations) may alter ET and,
consequently, drainage from forested ecosystems (Betts et
al., 2007; Teuling et al., 2009).

We can study the potential effects of altered climate on
forest ET by using a process based modelling approach. A
better understanding of the role of vegetation in catchment
hydrology can thus improve both hydrological predictions,
and mitigation of global change through adaptive manage-
ment strategies (Bonan, 2008; Jackson et al., 2008). Fur-
thermore, it is argued that climate change will intensify the
global water cycle which will result in increased global pre-
cipitation and consequently increased runoff depending on
the effect on ET (Huntington, 2006). Therefore it is essential
to study the effect of climatological variables on ET based on
long time data series.

The objectives of this paper are: 1) to compare and con-
trast measured versus modelled estimates of ET for a Scots
pine forest using five approaches (SECRETS, ORCHIDEE,
WATBAL, EC, CI) 2) to study intra-annual and interannual
variability of ET and drainage for this forest.

2 Material and methods

2.1 Plot description

The experimental forest “De Inslag” is located in Brass-
chaat, 20 km NE of Antwerp in the Belgian Campine region
(51◦18′ N, 4◦31′ E). The study site consists of a 2.0 ha, 80-
year-old even aged Scots pine stand situated within a 150 ha
mixed coniferous/deciduous forest which is part of the ICP
Forests level II and Fluxnet/CarboEurope-IP networks. The
forest that surrounds the site consists of several broadleaf
species, some native, such asBetula pendulaRoth., Quer-
cus roburL. andSorbus aucupariaL., and some introduced
species such as,Quercus rubraL. andCastanea sativaMill.
The non-native understorey, which was mainly comprised of
Prunus serotinaEhrh., was removed in 1993. Since then, a
small but steady recolonisation of the shrub layer byBetula
species andSorbus aucupariaL. has occurred. Following
the understory removalMolinea caeruleaL. Moench. has
emerged along withRubusspecies andDryopterisferns. The
site has a temperate maritime climate, with a long-term mean
annual temperature of 11.1◦C. The long-term mean temper-
atures of the coldest and warmest months are 3 and 19◦C
respectively, and mean annual precipitation is 824 mm. The
site has a flat topography (slope: 0.3%) with an elevation of
16 m a.s.l. The soil is covered with an organic surface layer
of 7.5 cm depth. A deep Aeolian cover sand layer (Dryas
III) rests on a substratum of Clay of the Campine (40% of
clay) (Tiglian) at variable depth, between 1.2 and 2.5 m and
more. The upper soil is rarely saturated, because of rapid hy-
draulic conductivity in the upper horizons. During wet peri-
ods in winter a perched water table is often present above the
clay layer. According to the World Reference Base for Soil
Resources version 2006 (WRB, 2006), the soil is classified
as an Albic Hypoluvic Arenosol. In 1995 tree density was
538 trees ha−1. In the winter of 1999 163 trees ha−1 were
harvested which decreased tree density to 375 stems ha−1

(Xiao et al., 2003). Stand inventories in 2001 and 2003 indi-
cate that no further reduction in tree density occurred during
the study period (1997–2006) (Yuste et al., 2005).

2.2 Measurements

2.2.1 Eddy covariance

The vertical flux of CO2 and H2O above the canopy were
measured using the eddy covariance technique (EC) (Baldoc-
chi and Meyers, 1998). Fluxes of CO2 and H2O were mea-
sured continuously since mid 1996, using a sonic anemome-
ter (Model SOLENT 1012R2, Gill Instruments, Lymington,
UK) for wind speed and an infrared gas analyser (IRGA)
(Model LI-6262, LI-COR Inc., Lincoln, NE, USA) for
gaseous concentrations. Measurements were made at the top
of a 41 m tower centrally located within the stand. The instru-
ments are installed at approximately 18 m above the canopy.

Biogeosciences, 7, 1247–1261, 2010 www.biogeosciences.net/7/1247/2010/



B. Gielen et al.: Decadal water balance of a temperate Scots pine forest 1249

Detailed description of the experimental setup can be found
in Kowalski et al. (2000) and Carrara et al. (2003). Half
hourly latent heat (or ET) fluxes were calculated following
the recommendations of the Euroflux network (Aubinet et al.,
2000; Papale et al., 2006; Reichstein et al., 2005). Gapfill-
ing was done using mean diurnal courses (14-d moving aver-
age) and annual sums were calculated as the sum of halfhour
fluxes. Only years with at least 70% of original half hourly
data were considered in this analysis, thus 1998, 1999 and
2003 have no yearly EC sums. The Energy balance closure
was calculated as described by Carrara et al. (2003) and ag-
gregated on daily basis. Latent heat fluxes were corrected for
the energy balance closure as described by Barr et al. (1994)
and Blanken et al. (1997). This adjustment is sometimes re-
ferred as “Bowen ratio closure” because it is based on the as-
sumption that the Bowen ratio is correctly measured (Twine
et al., 2000).

A Self-Organizing Map neural network was used as a
simplified approach to estimate the random uncertainty on
the latent heat fluxes. The Self-Organizing Map is a well
established artificial neural network for processing high-
dimensional data (Kohonen, 2001; Oja et al., 2002). We
used Self-Organizing Maps to cluster days based on the ob-
served air temperature, observed global radiation, observed
vapor pressure deficit, gap-filled soil water content observa-
tions and the sinus of day of year on a daily basis. The Self-
Organizing Map distinguished 72 clusters with an average
of 5 observations per clusters allowing generalization while
avoiding overfitting the Self-Organizing Maps. For each of
the 72 clusters, the daily aggregated latent heat observations
were then assigned to their corresponding climate conditions
and the standard deviation of latent heat flux was calculated.
Standard error propagation was applied to obtain uncertainty
estimates with a lower temporal resolution. A short descrip-
tion of Self-Organizing Maps can be found in Luyssaert et
al. (2007).

2.2.2 Conservative Ions

Conservative ions (CI), such as Na+ and Cl−, are not likely
to be evaporated, therefore, their soil water concentrations
increase for lower soil profiles. The difference in concentra-
tions of CI measured in through-fall and in soil water below
the root zone can thus be used to estimate the ET (Eriks-
son and Khunakasem, 1969). Concentration measurements
of Cl− were done biweekly at three points within the study
plot at 75 cm below soil surface and in through-fall water.

Chemical composition of through-fall water was sampled
twice per month with 10 systematically distributed bulk col-
lectors in an adjacent 0.25 ha large plot. They consisted of a
polyethylene funnel (14 cm∅) placed at a standard height of
1 m, which was connected to a subterranean 2 l polyethylene
bottle. A nylon mesh was placed in the funnel to avoid con-
tamination by large particles and debris. At every sampling,
through-fall volumes from the collectors were recorded in

the field and a pooled sample was taken as a weighted aver-
age from all collectors. Funnels and bottles were replaced at
every sampling event. Samples were kept cool in iceboxes
during transport. Fractions of chloride (Cl−) were analysed
using ion chromatography (Dionex DX-100). Monthly seep-
age fluxes leaving the soil compartment were determined by
multiplying the ratio of monthly chloride (Cl−) through-fall
concentrations to monthly averaged Cl− concentration with
the monthly precipitation collected in the through-fall collec-
tors below the canopy. Monthly seepage fluxes were summed
to obtain the yearly seepage flux.

2.2.3 Additional field measurements

Additional measurements collected for the site included esti-
mates of soil water content (SWC), leaf area index (LAI), and
meteorological data. Volumetric soil water content was mea-
sured using two series of TDR sensors (Time Domain Reflec-
tometry), at two places within the experimental plot twice a
week from 1997 to 2003 and weekly during the remaining
3 years. At each of the two sample points SWC was mea-
sured every 25 cm until a depth of 175 cm. A 10-year daily
time series of projected LAI (m2 m−2) was reconstructed us-
ing a fixed seasonal pattern that was measured in 2007 (Op
de Beeck et al., 2010). Yearly maxima were derived from
measurements recorded in 1999 (Gond et al., 1999), 2003
(Konopka et al., 2005) and 2007 (Op de Beeck et al., 2010).

Meteorological data included half-hourly data recorded
at the top of the tower: Global radiation (Kipp and Zonen
CM6B, the Netherlands), net radiation (REBS 07, Seattle ,
WA, USA), temperature and relative humidity (Didcot In-
strument Co Ltd, Abingdon, United Kingdom DTS-5A), at-
mospheric pressure (SETRA Barometric Pressure transducer
Model 278, Setra systems, Boxborough, MA), wind speed
(Didcot DWR-205G) and precipitation (Didcot DRG-51).
Two heat flux plates (Campbell HFT03, CSI, Logan, UT,
USA) measured soil heat flux. All meteorological variables
were measured at 0.1 Hz and half hourly means were stored
on a data logger (Campbell CR10, UK).

Missing data for Air temperature, relative humidity, at-
mospheric pressure, wind speed and precipitation were ob-
tained from a weather station at Luchtbal which is within
10 km from the research site. Because global radiation was
not available at this station, it was obtained from the closest
possible location which is at 50 km in Uccle.

Sap flow measurements were conducted from 26 May to
18 October 2000 using the heat field deformation (HFD)
method. The HFD method is based on observed changes in
an artificial heat field around a linear heater inserted into in-
dividual tree stems (Nadezhdina et al., 2004, 2006; Nadezh-
dina, 2000). Sap flow was measured on 14 representative
trees which were selected based on quantils of total of a
forest inventory (Xiao et al., 2003). A more detailed de-
scription of the measurements can be found in Verbeeck et
al. (2007). Sap flow was scaled-up to ecosystem transpiration
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using biometric parameters. This approach was described by
Cerḿak et al. (2004) as suited for even aged stands, and uses
the ratio of basal area at plot scale to that of the measure-
ment trees to scale-up the sap flow measurements to stand
scale transpiration.

2.3 Model descriptions

2.3.1 SECRETS

The Stand to Ecosystem CaRbon and EvapoTranspiration
Simulator (SECRETS) model was written to simulate stand-
to ecosystem-scale carbon and water fluxes at this research
site (Sampson et al., 2001). Accordingly, SECRETS can
simulate multi-species multi-structured stands; stand-scale
estimates of carbon and water fluxes may result from species
dependent processes occurring in the over-story, sub-story,
under-story or any combination of the three depending on the
stand structure simulated. Of course, SECRETS models the
attenuation of light through the vegetation layers present and,
thus, incident radiation to the forest floor. This biogeochem-
ical process model estimates carbon (Sampson et al., 2006)
and water (Meiresonne et al., 2003) pools and fluxes for sim-
ple (Sampson and Ceulemans, 2000) or complex (Sampson
et al., 2006) species associations.

The model simulates stand-scale carbon and water fluxes
using established process algorithms adapted from several
sources. Namely, the model uses maintenance respira-
tion (RM) and water balance formulations adapted from
BIOMASS (McMurtrie and Landsberg, 1992), with photo-
synthesis modelled using the Farquhar formulation found
in the sun/shade model (dePury and Farquhar, 1997). Soil
water holding capacity is calculated from the soil sand and
clay fractions following Saxton et al. (1986). Daily esti-
mates of tissue-specificRM are derived by integration us-
ing diurnal trends in temperature and estimates of standing
mass in standardQ10 equations. Transpiration and evapo-
ration estimates are derived from integration using Penman-
Monteith equations however under-story estimates are based
on formulations by Kelliher et al. (1986). Daily estimates of
transpiration are calculated from hourly estimates of water
vapour conductance using the Ball-Woodrow-Berry model
adapted by Leuning (1995). The SECRETS model simu-
lates photosynthesis for both sun and shade leaves and nee-
dles on an hourly (or half-hourly) time-step. Although most
process-level outputs are available for these analyses we fo-
cused on the components of water balance that included
canopy interception, evaporation, transpiration, throughfall,
stem flow, and surface and soil water evaporation (all in units
of mm d−1). A flow diagram of the model may be found in
Sampson et al. (2001).

2.3.2 ORCHIDEE

ORCHIDEE (Krinner et al., 2005) is a process-oriented in-
tegrated global land-surface model consisting of three sub
modules: a global land surface scheme (Ducoudre et al.,
1993) and a global continental carbon cycle model. The
model simulates the diurnal cycle of turbulent fluxes of CO2,
water, and energy, while the ecosystem carbon and water
dynamics (i.e., carbon allocation, plant respiration, growth,
mortality, soil organic matter decomposition, water infiltra-
tion and runoff) are calculated at a daily time step. As in
most global biogeochemical models, Plant Functional Types
(PFTs) are used to classify vegetation at any particular site.
ORCHIDEE simulates 13 PFTs at the globe scale, with all
PFTs sharing the same equations but using different param-
eter values. Plant phenology is one exception, where PFT-
specific equations exist (Botta et al., 2000). For this study
ORCHIDEE was run at local scale (“grid point mode”) us-
ing the half-hourly meteorological forcing measured at the
site. We used the “temperate evergreen needle-leaf forest”,
a PFT found in ORCHIDEE, as a surrogate for the Scots
pine at Brasschaat for which the standard parameter values
were used. Phenology was simulated prognostically with
a prescribed maximum LAI. ORCHIDEE provided outputs
for transpiration, soil evaporation and canopy evaporation on
daily basis. We initialized biomass and soil carbon pools to
equilibrium values from a 2000 year long spin-up driven by
cycling the 10 year available climate inputs. This resulted in
a total living biomass of 6594 g C m−2 and a total soil carbon
pool (mineral soil and litter) of 7279 g C m−2. These values
are in the same order of magnitude as the inventory estimates
of Yuste et al. (2005): 8450 g C m−2 in the living biomass
and 6650 g C m−2 in the soil and litter. Uncertainties on the
simulated carbon stocks will mainly influence the respiration
and not the water fluxes simulated for this study. Moreover
the simulated leaf biomass (196 g C m−2) – one of the main
drivers of the ecosystem transpiration – corresponds well to
the estimate of the inventory 170 g C m−2 (Yuste et al., 2005).

2.3.3 WATBAL

WATBAL (Starr, 1999) uses water balance calculations typ-
ically found in simple temperature-based models (Thornth-
waite and Mather, 1957; Xu and Singh, 1998), however po-
tential ET in WATBAL is estimated from global radiation and
based on the relationship between air temperature and the ra-
tio between evaporation and global radiation – or the Alfalfa
reference method – as found in Jensen and Haise (1963). It
calculates evaporative heat flux density, which is then con-
verted into mm of potential ET using the latent heat of va-
porization (De Vries et al., 2007). A crop factor, as described
in Meiresonne et al. (2003), uses a seasonal pattern in values
that range between 1.07 and 1.18 to convert potential evap-
oration for the reference crop into one for forest. ET is then
computed by comparing water supply with water demand,
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taking into account soil water availability. Although WAT-
BAL was principally based on an end-of-the-month book
keeping methodology, Starr (unpublished data) altered the
model to enable daily simulations of soil water balance for
several water balance components: daily precipitation inflow,
daily drainage (soil water flux) and ET outflows, and daily
changes in soil water storage. WATBAL uses daily mean
air temperature, precipitation and global radiation (or cloud
cover) as meteorological input.

WATBAL is included in this study because it is a poten-
tial candidate to be used for a multi site water balance study
within the ICP-forest network.

2.4 Water balance

Water balance estimates for the five approaches range greatly
from pure data driven methods (CI and EC) to an empirical
approach (WATBAL), to process models (ORCHIDEE and
SECRETS). All five approaches gave us an estimate for ET
or drainage, which was then used to calculate the missing
term from the water balance equation:

P= ET+drainage±1SWC+R (1)

Where: P is total precipitation (mm a−1), ET (mm a−1) was
previously described,1SWC is the difference in soil water
content, R is horizontal runoff (mm a−1) and drainage is ver-
tical water loss. For these analyses we assume that R is equal
to zero because of the high hydraulic conductivity of the soil
and no sloping terrain at our site. In addition to daily esti-
mates of ET the two process models, ORCHIDEE and SE-
CRETS, also estimated the subcomponents of ET: transpira-
tion, soil evaporation, and canopy evaporation.

3 Results

3.1 Climatic conditions

Rainfall varied considerably during the course of this inves-
tigation (Fig. 1). Of the ten years examined, the driest year
was 1997 which exhibited a total rainfall of 671 mm; 470 mm
(70%) fell during the growing season (which generally starts
1st April and lasts until 31st October. In contrast, the wettest
year was 1998, with a total of 1041 mm, of which 793 mm
(72%) fell during the growing season. Mean yearly temper-
ature was the lowest in 1997 (10.6◦C) and highest in 2006
(11.9◦C). The coldest month was observed in January 1997,
with mean monthly temperature of−0.8◦C. The warmest
month was measured in July 2006, with a mean monthly tem-
perature of 22.4◦C (Fig. 1).

Distinct diurnal and seasonal patterns in the meteorolog-
ical variables that drive water flux and, thus, site water bal-
ance were evident for our site (Fig. 2). Note that there were
no gap filled EC measurements available for 1998, 1999, and
2003 (<70% data coverage). Closure of the surface energy

Fig. 1. Summary of the meteorological data measured on a 41 m
centrally located tower within the study site during the period from
1997 through 2006 (abscissa). The left ordinate axis displays yearly
precipitation (mm) during the dormant season (dashed bar graph)
and the growing season (open bars). The right ordinate displays av-
erage yearly temperature (◦C) (line graph: asterisks indicate lowest
and highest mean monthly temperatures).

Fig. 2. Latent heat (LE-W m−2), air temperature (Tair-
◦C), vapour

pressure deficit (VPD- kPa) and incident (global) radiation (Rg-
W m−2) during the study period. Data reflect half-hourly measure-
ments from the top of a 41 m tower located within the study site by
year (abscissa) and hour of the day (ordinate). The color bar at the
right of the figure indicates the magnitude of the response for each
variable.

balance, which is used as a quality test for eddy covariance
data (Wilson et al., 2002), was calculated by comparing daily
total fluxes of net radiation against the sums of sensible heat
flux, latent heat flux, soil heat flux and storage in the biomass.
The mean energy balance closure was 84% over the seven
years of measurements (Table 1), which considered normal
for eddy covariance measurements over a tall forest (Aubinet
et al., 2000; Wilson et al., 2002).

www.biogeosciences.net/7/1247/2010/ Biogeosciences, 7, 1247–1261, 2010



1252 B. Gielen et al.: Decadal water balance of a temperate Scots pine forest

Table 1. The closure of the surface energy balance was calculated
by comparing daily total fluxes of net radiation (W m−2) against
the sums of sensible heat flux (W m−2), latent heat flux (W m−2),
soil heat flux (W m−2) and heat storage (W m−2). In all cases the
model used was:y(x)=a*x+b. Included in the table are estimates
of the coefficient of determination (r2) and thep-values for each
regression analysis.

Year b a r2 p-value

1997 −745 0.79 0.85 p <0.01
2000 −1095 0.81 0.76 p <0.01
2001 −1323 0.83 0.82 p <0.01
2002 −1124 0.78 0.83 p <0.01
2004 −966 0.81 0.81 p <0.01
2005 −441 0.84 0.73 p <0.01
2006 −435 0.89 0.72 p <0.01

Fig. 3. The relationship between canopy transpiration (mm d−1)

simulated by (SECRETS (•) and ORCHIDEE (◦) (ordinate) and up-
scaled estimates from sap flow (abscissa) measured over a period of
120 days in 2001. The solid line depicts the 1:1 relationship.

3.2 Model evaluation

Model simulations suggest that transpiration represented the
dominant portion of the annual ET flux (on average, 55% for
SECRETS and 65% for ORCHIDEE). Therefore, the simu-
lated transpiration was evaluated with estimates of transpi-
ration from sap flow data (Fig. 3). ORCHIDEE overesti-
mated the measured sap flow by 8% (r2

= 0.76) while SE-
CRETS underestimated measured sap flow by, on average,
14% (r2

= 0.67). Total stand-scale ET simulated by the mod-
els was compared to monthly estimates of the latent heat
fluxes (Fig. 4). Results indicated that both SECRETS and
ORCHIDEE performed well, although both models slightly
overestimated the ET in the lower range up to 0.5 mm d−1.
SECRETS demonstrated good correspondence to the mea-

Fig. 4. Mean monthly estimates of latent heat flux measured by
eddy covariance (abscissa- mm d−1) and model estimates (ordinate)
for SECRETS (•), ORCHIDEE (◦) and WATBAL (+). The solid
line represents the 1:1 relationship.

sured latent heat flux (r2
= 0.69), underestimating ET by

only 3%. ORCHIDEE underestimated the latent heat fluxes
by 7% but with less variance (r2

= 0.86). On average,
estimates obtained from WATBAL were 73% (r2

= 0.82)
greater than the measured latent heat fluxes. Additionally,
ORCHIDEE and SECRETS simulated canopy evaporation,
which were (22± 1%) and (6± 1%) of annual ET, respec-
tively.

3.3 Approach comparison

3.3.1 Annual estimates

Box and wisker plots of the seven-year mean annual ET (re-
call, we have no gapfilled EC data for 1998, 1999 and 2003)
for the five methods indicated that the two process models
ORCHIDEE (291± 28 mm) and SECRETS (304± 28 mm)
(Fig. 5a) produced the lowest estimate of ET, followed by
the EC approach (321± 33 mm). Both process models fall
within the ranges of the estimated uncertainty of the EC mea-
surements (Table 6) which is on average 22% of the an-
nual ET. WATBAL (475± 30 mm) and CI (505± 77 mm)
both overestimated ET when compared to the EC mea-
surements. Simulation and measurement based results for
drainage were the opposite; estimates of latent heat fluxes
from the process based models SECRETS (516± 129 mm)
and ORCHIDEE (529± 137 mm) were highest of the five
methods examined, followed by EC (499± 144 mm). Fi-
nally, WATBAL (346± 134 mm) and CI (310± 101 mm) un-
derestimated drainage when compared to the EC-based mea-
surements.
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Table 2. Coefficients for the linear regression analyses between ET (based on monthly totals) estimated by the four different approaches
(SECRETS, ORCHIDEE, WATBAL, eddy covariance [EC]) and the meteorological variables (i.e., mean monthly VPD; kPa, mean monthly
air temperature [Tair; Celsius] and monthly total global radiation [Rg; MJ m−2 month−1]) for each of the four methods. In all cases the model
used was:y(x)=a*x+b. Included in the table are estimates of the coefficient of determination (r2 ) and thep-values for each regression
analysis.

VPD Tair Rg

b a r2 p-value b a r2 p-value b a r2 p-value

SECRETS 6.3 63 0.61 p <0.01 −5.6 2.82 0.83 p <0.01 2.8 0.08 0.76 p <0.01
ORCHIDEE −1.1 84 0.75 p <0.01 −13.6 3.45 0.86 p <0.01 −5.6 0.10 0.92 p <0.01
WATBAL 2.7 121 0.64 p <0.01 −17.9 5.23 0.80 p <0.01 −7.3 0.16 0.91 p <0.01
EC 0.9 86.8 0.63 p <0.01 −16.28 3.89 0.82 p <0.01 −6.1 0.11 0.81 p <0.01

Fig. 5. Box and whisker plots of annual estimates of evapotranspi-
ration (a) and drainage(b) for the five different approaches used
in this study. Data represent the period 1997 through 2008 with-
out 1998, 1999 and 2003. Box lines depict the lower (25%) quar-
tile, median, and upper (75%) quartile values for each variable.
Whiskers, on either end of the box, designate the 95 percentile for
each variable. Outliers are represented by the “plus” symbol beyond
the ends of the whiskers.

3.3.2 Seasonal patterns

We used the seven-year mean monthly estimates of ET
and drainage to calculate seasonal patterns in these fluxes
for all methods except the CI approach. Seasonal patterns
were not possible for the CI estimates because of the ir-

Fig. 6. The seven year mean seasonal patterns of evapotranspira-
tion (ET) (a) and drainage(b) expressed as mm month-1 for OR-
CHIDEE (blue), SECRETS (red),WATBAL (green) and EC (black).
1998, 1999 and 2003 were excluded because there were no EC data.

regular sampling methodology. Results (Fig. 6a) show that
ET reached a maximum in mid-summer. WATBAL fol-
lowed the same seasonal trends as the other approaches
but estimated ca. 46% more ET (2.4 mm d−1 compared to
ca. 1.8 mm d−1) than the process models. The process model
estimates of monthly ET were comparable to those measured
by the EC approach (Fig. 6a). A monthly mean maximum of
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Table 3. Coefficients for the linear regression analyses between pre-
cipitation (mm month−1) and drainage (mm month−1) for the four
approaches (SECRETS, ORCHIDEE, WATBAL, eddy covariance
[EC]). Included in the table are estimates of the coefficient of deter-
mination (r2) and thep-values for each regression analysis.

b a r2 p-value

SECRETS 27.97 0.26 0.17 p <0.01
ORCHIDEE 23.13 0.34 0.22 p <0.01
WATBAL 26.67 0.20 0.10 p <0.01
EC 25.30 0.29 0.17 p <0.01

1.5 mm d−1 was observed. Because precipitation was evenly
distributed throughout the year (data not shown), the sea-
sonal trends of drainage followed an inverse pattern than
that of ET (Fig. 6b). Drainage reached a monthly mean
maximum in October, varying from 1.5 mm d−1 for WAT-
BAL, 1.7 mm d−1 for SECRETS, 1.7 mm d−1 for the EC
fluxes, and 1.8 mm d−1 for ORCHIDEE. This maximum in
the 7 year mean seasonal pattern was caused by a large
drainage flux in October 2000. The monthly mean mini-
mum was achieved in June due to the high ET for the month.
The relative difference between the approaches was highest
in summer where the difference in ET estimates was also
the highest WATBAL reached a monthly mean minimum
drainage of 0 mm d−1 while the process models did not drop
below 1 mm d−1.

3.4 Intra-annual variability

Total monthly global radiation (Rg) (Fig. 7a), mean monthly
air temperature (Tair) (Fig. 7b), and mean monthly vapour
pressure deficit (VPD) (Fig. 7c) were used to examine the
functional relationships between ET and the meteorological
variables for each of the five approaches. Linear regression
analyses demonstrated that all relationships were statistically
significant. The best fits as evaluated using the coefficient
of determination (r2) were found forRg andTair (Table 1).
Overall the lowestr2 were found for VPD.

Intra-annual variability in drainage for all approaches, al-
though relations were found significant, was much weaker
correlated with total monthly precipitation (Fig. 7d, Table 3)
than ET withRg, Tair and even VPD.

3.5 Interannual variability

In contrast to intra-annual variability, very few correlations
between ET and meteorological variables were significant on
annual basis. The CI method was the only approach that even
exhibited a negative slope for the regression between ET and
all three variables:Rg, Tair and VPD. Overall the lowestr2

were found for the estimates from WATBAL, except forRg
where EC has the lowestr2 (Table 4). Also in contrast, inter-

Fig. 7. Linear regression lines for three main drivers of ET on
monthly scale for the four different approaches (SECRETS, OR-
CHIDEE, WATBAL, eddy covariance [EC]) examined in this study.
Total global radiation(a), mean annual temperature(b) and mean
VPD (c). The lower right panel shows(d) the relation between
monthly drainage (ordinate) and precipitation (abscissa).
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annual variability in drainage, for all approaches, was highly
correlated with yearly precipitation (Fig. 8d, Table 4).

4 Discussion

With the exception of the CI method and WATBAL, our es-
timates of ET are close to previously reported values. Ver-
straeten et al. (2005) estimated a yearly ET of 314 mm for
our study site using the empirical model WAVE (Vanclooster
et al., 2000). The proportion of transpiration to ET (0.55 to
0.65) as estimated by OCHIDEE and SECRETS is also com-
parable to literature values. McLaren et al. (2008) reported
that for a temperate Scots pine forest, 47% of ET could be at-
tributed to transpiration, Oren et al. (1998) reported that tran-
spiration accounted for 69% of ET in a temperate Loblolly
pine (Pinus taedaL.) plantation in North Carolina, USA.
Unsworth et al. (2004) reported transpiration to be 65% of
ET in a temperate Douglas fir– Western hemlock (Pseudot-
suga menziesii–Tsuga heterophylla) old growth forest, and
Grelle et al. (1997) reported 60% in a boreal mixed conifer
(Picea abies–Pinus sylvestrisL.) forest. Finally, Kurpius et
al. (2003) found that 53% of ET came from transpiration in
a Ponderosa pine (Pinus ponderosaLaws) plantation in Cal-
ifornia, USA. The rather low ratio at our stand is most likely
caused by the low LAI.

The non-linear shape of the relationship between simu-
lated transpiration and that measured from sap flow may, to
some extent, be due to storage effects in the stem (Fig. 4).
This would indicate that transpiration was under-estimated
by sap flow measurements on days with high atmospheric de-
mand, and over-estimated on days with low atmospheric de-
mand. On days with high atmospheric demand, some of the
transpired water could come from storage in the stem as ob-
served by Verbeeck et al. (2007). Furthermore the non-linear
shape of the curve could be probably also be explained by
parameters of the function that is used by the process models
to describe the VPD response of stomatal conductance and
thus transpiration. Finally, the sap flow measurements ex-
hibited an upper limit, which may suggest limiting hydraulic
conductivity in either the stems of the roots, but this physio-
logical limitation is not embedded in the process based mod-
els.

Comparing the five different approaches we find relatively
good agreement between the two process models (SECRETS
and ORCHIDEE) and the EC method. While the empirical
models differed more, discrepancies in the relationship be-
tween ET simulated by the models and the EC fluxes could
be due to several reasons (Fig. 6). Firstly, the absence of
understorey ET in the model simulations could cause an un-
derestimation of ET. Due to a change in forest management
this understorey, which was removed in the past, has emerged
since the beginning of period of this study. It is not possible
to reconstruct the succession of this vegetation layer and thus
the contribution of the understorey at a given time. Hence,

Fig. 8. Linear regression lines for three main drivers of ET on
annual scale for the five different approaches (SECRETS, OR-
CHIDEE, WATBAL, eddy covariance [EC], eddy covariance [EC],
Conservative Ion (CI)) examined in this study. Total global radi-
ation (a), mean annual temperature(b) and mean VPD(c). The
lower right panel shows(d) the relation between annual drainage
(ordinate) and precipitation (abscissa).
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Table 4. Coefficients for the linear regression analyses between ET (based on annual totals) estimated by the five different approaches
(SECRETS, ORCHIDEE, WATBAL, eddy covariance [EC], eddy covariance [EC], Conservative Ion (CI)) and the meteorological variables
(i.e., mean yearly VPD; kPa, mean yearly air temperature [Tair; Celsius] and yearly total global radiation [Rg; MJ m−2 a−1]) for each of the
five methods. In all cases the model used was:y(x)=a*x+b. Included in the table are estimates of the coefficient of determination (r2 ) and
thep-values for each regression analysis.

VPD Tair Rg

b a r2 p-value b a r2 p-value b a r2 p-value

SECRETS 224.2 288.6 0.41 0.05 −93.7 36.8 0.39 0.05 59.0 0.07 0.31 0.09
ORCHIDEE 184.4 378.6 0.51 0.02 −243.4 49.3 0.51 0.02 −90.9 0.11 0.54 0.02
WATBAL 453.2 10.8 0.00 0.96 397.5 5.3 0.01 0.84 494.2−0.01 0.00 0.85
EC 267.5 177.2 0.17 0.37 25.5 35.9 0.21 0.30 −218.3 0.15 0.21 0.30
CI 636.4 −408.3 0.16 0.25 1133.6 −56.3 0.18 0.22 1060.2 −0.15 0.29 0.11

we are not able to give an estimate for the contribution of un-
derstorey ET to total stand ET. Omitting the understorey in
the model simulation could lead to a significant underestima-
tion of ET. Granier et al. (1989) cited a contribution of 10%
for bilberry understory (Vaccinium myrtillusL.) in a Scots
pine forest and Jarosz et al. (2008) reported a contribution
of 38% for purple moor-grass (Molinia coeruleaL. Moench)
under a maritime Pine forest (Pinus pinasterAit). However,
there could be a trade-off with the simulated soil evapora-
tion. Especially because the contribution of the soil evapora-
tion is high because of the rather low LAI (Wullschleger et
al., 1998). A second reason for this deviation could be due
to phenology, because a fixed LAI pattern that was measured
in 2007 was used for SECRETS for the 10 year period and
ORCHIDEE has a sub module that simulates the LAI pattern
with a maximum of 1.8. This value was the maximum peak-
LAI that was measured of the 10 years period. Since the
timing of budburst and senescence differs from year to year,
using a fixed LAI pattern or attempt to model it could cause
deviation between the model estimates of ET and the EC ap-
proach. A third possible explanation could be the fact that the
EC measurements comprise patches with other tree species,
grasses and heathland. The influence of those patches could
alter the correlation between the measured fluxes and the
model results which are species-specific.

The empirical WATBAL model produces relatively high
estimates of ET with an average overestimate of 47% when
compared to the EC fluxes (Fig. 5). The seasonal course of
ET shows that the overestimate occurred mostly in summer,
while in winter the ET is slightly lower than the EC (Fig. 6).
The CI method is considered less useful for these studies as
our results show that the ET is overestimated by 58% when
compared to the EC method (Fig. 5a). Additionally, when
looking at the correlation between ET and the meteorologi-
cal variables, the estimates for the CI method show a negative
relation with temperature, VPD andRg. These odd findings
can be explained by the presence of a different autocorrela-

tion structure in the chloride time series from soil solution
chemistry compared to throughfall chemistry. Additionally,
the start and end of the sampling dates varies too much to
allow a robust intercomparison on monthly basis.

Highly significant relations were found between ecosys-
tem ET and meterological variables (VPD,Tair andRg) for
all approaches on monthly basis. Several studies reported
similar findings where evapotranspiration on seasonal basis
was strongly related to VPD (Dolman et al., 2004; Ohta et
al., 2001). In contrast to the monthly time scale, few signif-
icant relations were found between annual ET and the me-
teorological variables. Similar conclusions were reported by
Ohta et al. (2008) in a seven year water balance study on
a larch forest in Siberia. They suggested that interpretation
of the major factors controlling evapotranspiration may vary
according to the temporal scale used in the analysis. The sig-
nificant relations between meteorological variables and ET
at the monthly timescale could be confounded by factors that
change on an annual basis such as LAI, length of growing
season and varying understorey. Furthermore, the relations
on annual basis could also be diluted by weaker correlations
occurring during the long dormant season. In contract, all
approaches, except CI, show a significant relation between
yearly precipitation and drainage. These strong relations
could be explained by the fact that the variation in ET is lim-
ited compared to that of precipitation. Consequently, all the
excess water is leached out of the ecosystem.

Since our study site is located in a region with ample sup-
ply of water, the ET is clearly related to the atmospheric
demand (e.g. VPD) and not to water supply (Teuling et al.,
2009). Overall, despite the method, the interannual variabil-
ity in ET over an extensive period of seven year is rather
limited. To the authors knowledge only three recent studies
have reported long term annual sums of ET measured with
eddy covariance. Granier et al. (2008) measured 10 years
of ET over a beech forest in Hesse (France), Grünwald and
Bernhofer (2007) reported nine years of ET measured over
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Table 5. Coefficients for the linear regression analyses between pre-
cipitation (mma−1) and drainage (mma−1) for the five approaches
(SECRETS, ORCHIDEE, WATBAL, eddy covariance [EC] and
conservative ion [CI]). Included in the table are estimates of the co-
efficient of determination (r2) and thep-values for each regression
analysis.

b a r2 p-value

SECRETS −16.6 0.65 0.71 0.002
ORCHIDEE −60.9 0.72 0.74 0.002
WATBAL −174.8 0.67 0.55 0.014
EC −194.3 0.85 0.70 0.012
CI 63.4 0.33 0.17 0.232

a spruce forest (Picea abiesL.) in Tharandt (Germany) and
Ohta et al. (2008) measured ET for seven years over a larch
forest (Larix cajanderiMayr.) in Siberia. All studies find
a low interannual variability in ET with mean annual sum
and standard deviation of 334± 62 mm and 475± 45 mm
and 196± 19 mm, respectively.

Uncertainties and future improvements for different ap-
proaches:
Eddy covariance:
Uncertainty of eddy covariance fluxes can be divided into
two categories: random error and systematic error or bias
(Richardson et al., 2006). The first category was calculated
and amounted on average to 22% of the annual total (Ta-
ble 6). Within our approach the standard deviation within a
cluster is a measure for variation caused by other drivers than
those included in the Self-Organizing Maps (i.e. leaf area in-
dex) and the random error of the measurement. In the ab-
sence of systematic errors, our error estimates most likely
overestimate the uncertainty of the latend heat observations.
Systematic errors, however, are more difficult to estimate. In
the past years a lot of research has focused on the problem
of the energy balance closure for eddy covariance measure-
ments (Foken, 2008; Oncley et al., 2007; Wilson et al., 2002).
Recently Foken (2008) published a review which suggested
that the lack of energy balance closure is mainly a problem
of scale. The energy balance can only be closed at the land-
scape scale: firstly, due to differences in footprints between
the EC measurements and the other energy balance compo-
nents and secondly because the eddy covariance is missing
contributions from larger eddies. Foken (2008) proposed as
a first guess and temporary method to correct the latent fluxes
according to the Bowen ratio. However, it is clear that this is
not an equivocal method to correct for a possible underesti-
mation of latent heat fluxes measured by eddy covariance and
that future research on the energy balance closure is needed
to come to a final solution.

Table 6. Random error estimates (δ) for evapotranspiration mea-
sured by eddy covariance (EC), all expressed as mma−1.

Year EC δ

1997 336 59
2000 319 93
2001 313 56
2002 283 57
2004 288 74
2005 383 84
2006 326 77

Process based models (ORCHIDEE and SECRETS):
Uncertainty in biogeochemical process model simulations
can arise from multiple sources, ranging from a disparate
spectrum of possibilities. This includes potential bias and
sampling error in the parameter estimates that drive the em-
pirical and mechanistic processes (e.g., photosynthesis and
respiration, inconsistent or erroneous conceptual structure of
the linked processes being modeled, and data (Medlyn et al.,
2005). To this list we would include errors or misrepresen-
tation in the process algorithms (the code itself) and scale-
dependencies of the processes being investigated (Jarvis and
McNaughton, 1986). Therefore, uncertainty of model simu-
lations made by process based models could be reduced by
limiting the uncertainty of the model parameters in addition
to evaluation of outputs against long term datasets.

Empirical model (WATBAL):
The uncertainty of the empirical model WATBAL can be at-
tributed to two major causes: firstly, WATBAL uses a Kc fac-
tor to convert potential evapotranspiration from well-watered
grassland to the potential evapotransiration of a forest. This
factor accounts for the coupling of the ecosystem to the at-
mosphere. Normally forests have a better coupling to the
atmosphere than grasslands and thus a Kc factor higher than
1. However, very few values for the Kc factor have been
published in literature. We decided to use the values pub-
lished by Meiresonne et al. (2003) as the best approximation
however concerning the fact that the stand has a rather low
LAI, this Kc factor might be too high. An introduced uncer-
tainty of 10% on the Kc values resulted in a 6% uncertainty
of the simulated ET (data not shown). Secondly, WATBAL
uses a Jensen-Haise model to simulate potential ET or more
specifically alfalfa reference crop ET values. This model is
based on available radiation and is not as sophisticated as the
process based models, which take into account a few other
factors such as wind speed, VPD, temperature, CO2 concen-
tration, LAI, etc. WATBAL is thus a useful model to estimate
ET over a forested ecosystem when only limited set of data is
available for a site. However, one must be aware of the high
sensitivity of the model to the Kc factor, which could lead to
a significant over-or underestimations of ET.
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Conservative Ions:
Chloride proved to be a nearly inert tracer for long-term com-
putations of downward water fluxes. Unlike sodium (weath-
ering) and sulphate (sorption) it is considered as a conser-
vative ion, although some exchange may occur with the or-
ganic molecules (Oberg and Sanden, 2005). The chloride
budgets are therefore often used as possible check of results
from hydrological models where no water flux measurements
are available to partition the precipitation inputs into ET and
drainage (De Vries et al., 2001, 2003). Long-term chloride
budgets may be expected to be close to zero (De Vries et al.,
2001, 2003) and allow therefore for assessing a possible bias
in the output from hydrological models. In this case the Cl−

budgets have been calculated for one decade and give there-
fore some indication whether the order of the magnitude is
realistic. For short term calculates of water fluxes from the
chloride budget is probably less appropriate because there is
a time lag between the Cl− coming in and going out of the
soil system. One solution would be to correct for storage of
Cl− in the rooting zone in addition to more frequent sampling
intensity.

5 Conclusions

Although there are several methods to estimate forest water
balance, our results suggest that the approach used, and the
component examined, must both be considered when choos-
ing a method for study. In this study we compared five com-
monly used approaches to estimate site water balance. Eddy
covariance (EC) estimates of ET are often considered a stan-
dard for which to compare alternate approaches. Our results
suggest that process model simulations from SECRETS and
ORCHIDEE corresponded well to the EC estimates, both on
an annual basis and for intra-annual comparisons. Yearly and
seasonal patterns were maintained for both models although
the models both slightly underestimated annual ET. This un-
derestimation was within the estimated uncertainty ranges of
the EC measurements. The Conservative Ion method (CI)
and WATBAL both overestimated ET compared to the EC
estimates even if the EC fluxes are corrected for energy bal-
ance closure.

On monthly scale, good relations could be found between
ET and the meteorological variables (i.e., VPD, Air temper-
ature and global radiation). In contrast few significant rela-
tions were found on annual time scale. Additionally, small
interannual variability in total yearly ET was observed. Con-
sequently, drainage fluxes were highly correlated with annual
precipitation for all approaches examined, except CI.
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