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Abstract. The terrestrial-aquatic interface is a crucial en-
vironment in which to consider the fate of exported terres-
trial carbon in the aquatic system. Here the fate of dissolved
organic carbon (DOC) may be controlled by nutrient avail-
ability. However, peat-dominated headwater catchments are
normally of low nutrient status and thus there is little data on
how DOC and nutrient export co-varies. We present nutri-
ent and DOC data for two UK catchments dominated by peat
headwaters. One, Whitelee, is undergoing development for
Europe’s largest windfarm. Glen Dye by comparison is rel-
atively undisturbed. At both sites there are significant linear
relationships between DOC and soluble reactive phosphorus
and nitrate concentrations in the drainage waters. However,
inter-catchment differences exist. Changes in the pattern of
nutrient and carbon export at Whitelee reveal that landscape
disturbance associated with windfarm development impacts
the receiving waters, and that nutrient export does not in-
crease in a stoichiometric manner that will promote increase
in microbial biomass but rather supports aquatic respiration.
In turn greater CO2 efflux may prevail. Hence disturbance of
terrestrial carbon stores may impact the both the aquatic and
gaseous carbon cycle. We suggest estimates of aquatic car-
bon export should inform the decision-making process prior
to development in ecosystems and catchments with high ter-
restrial carbon storage.
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1 Introduction

Lower-order drainage systems at the terrestrial-aquatic in-
terface represent the first aquatic environment in which
terrestrially-exported carbon can be recycled and are partic-
ularly interesting as they tend to be more hydrologically re-
sponsive and less-well buffered chemically than larger sys-
tems. Increasing freshwater dissolved organic carbon (DOC)
export has been observed by many (Roulet and Moore,
2006), the cause of which has been debated (e.g., Evans et
al., 2002), but globally is strongly correlated with a decrease
in atmospheric acid deposition (Monteith et al., 2007).

Freshwater bodies connect terrestrial C losses with the at-
mospheric carbon cycle through degassing of soil-derived
CO2 in headwaters (e.g., Hope et al., 2004), and CO2 pro-
duction from heterotrophic respiration (e.g., Lennon, 2004)
and uv-oxidation (e.g., Osburn et al., 2001) of exported
DOC, resulting in CO2(aq) over-saturation and efflux (Cole
et al., 2007). Catchment drainage systems are thus impor-
tant sources of atmospheric CO2 (Cole et al., 2007) and
greater [DOC] can fuel higher CO2 efflux. For example, res-
piration from freshwater microbial communities over a 3 to
16.8 mg C/L DOC gradient increased linearly with increased
[DOC] regardless of differences in the source (and thus in-
ferred quality) of the DOM (Lennon and Pfaff, 2005). Con-
temporaneous nutrient availability will influence the connec-
tion of terrestrial and atmospheric C cycle: ecological stoi-
chiometric theory predicts that the potential for DOC to be
respired to CO2 is strongly influenced by availability of P
and N. The latter are requisite for biomass production; with-
out such nutrients, maintenance respiration is more likely.
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This is a simplistic summary as the interaction of carbon and
nutrient in surface waters is more complex – for example,
bacterial production is additionally influenced by community
structure and environmental conditions, such as temperature
(Lennon and Pfaff, 2005) - but ultimately nutrient availabil-
ity will influence the fate of exported carbon. Few studies
of DOC export have considered contemporaneous nutrient
availability, yet assessing this in drainage systems may reveal
why a system is net heterotrophic or autotrophic, a trophic
classification for lotic systems recently proposed necessary
(Dodds, 2006). Our first aim is to assess if relationships ex-
ist between DOC and nutrient export from two contrasting
Scottish field sites draining soils rich in carbon: Whitelee, a
partially-forested peat and peaty podzol ridge, now undergo-
ing development to host Europe’s largest on-shore windfarm
(status at planning approval in summer 2006); for compari-
son, Glen Dye, a peaty-podzol dominated moorland with no
trees, and comparatively little landscape management.

At Whitelee, the peatland is in the catchment headwa-
ters and thus can be distant from sampling locations; Glen
Dye sampling points are more intimately placed in the peat-
land and peaty podzols and attenuation of headwater imports
should be less. The hydrological control is important and
thus we hypothesise that if the catchment C and nutrient
loads are derived from the same source, or share similar ex-
port pathways, then the concentrations should be positively
correlated; if they are derived from different source or share
different export pathways, such positive correlation will not
exist.

Soil disturbance and extensive deforestation are required
for the windfarm construction. Despite best practice
(Forestry Commission, 1993), clear-felling of forest and the
peat disturbance, compaction and dewatering arising from
turbine and road construction can impact run-off and nutrient
dynamics. Timber-felling on peaty-mineral soils generally
leads to an increase in streamwater [DOC] which may persist
for a few years, especially at a local scale (e.g., Neal, 2004;
Neal et al., 2004a, b); when clear-felled (vs. phased-felling),
nitrate concentrations in run-off can be higher for several
years after deforestation (Neal et al., 2004a); increases in
phosphorus (P) appear more localised (Neal, 2004), except
where, as with the some Whitelee catchments, gley (Neal
et al., 2004b) or peat soils (Cummins and Farrell, 2003) are
present. The inability of peat soils to retain P has led to
significant pollution of streams draining clear-felled peat-
land soils (Cummins and Farrell, 2003). Whilst immedi-
ate and localised impacts can arise from necessary devel-
opment activities e.g., deforestation (Neal et al., 2004a, b;
Kortelainen et al., 2006), how far these impacts propagate
to the larger catchment scale is unknown, but important to
discern (e.g., Cummins and Farrell, 2003). Thus our second
aim is assess whether disturbance of the terrestrial carbon
and nutrient stores can be detected in catchment drainage
systems outwith the immediate area of disturbance. Addi-
tionally, a topographic ridge splits Whitelee into north- and

south-draining catchments (hereafter termed N-catchments
and S-catchments respectively) with the N-catchments less
disturbed than S-catchments. We hypothesise the impact of
disturbance should be more apparent in the S-catchments.

Finally, as carbon trading markets grow, carbon se-
questered naturally – “carbon landscapes” – will gain im-
portance and the discipline of carbon geomorphology will
emerge from cross-disciplinary research to form a coher-
ent subject (Kelly, 2007). Aquatic C loss from undisturbed
peatland systems can equal net gaseous atmospheric C loss
(Rivers et al., 1998; Waddington and Roulet, 2000; Billett
et al., 2004) and is likely to be exacerbated by activities as-
sociated with peatland development. Ultimately, such an-
thropogenic activity may shift the “delicate” (Rivers et al.,
1998) C balance to one of net peatland carbon loss rather
than generally gain. We must assess how easily this balance
is tipped. Initiatives that allow the sensitivity of a natural
carbon store to be assessed have value, particularly for sup-
porting decision-making processes that involve disturbance
of these often slow-forming terrestrial C stores. Thus a third
aim of this research is to construct budgets for organic car-
bon and P export from Whitelee, providing a case study from
which to consider the sensitivity of landscapes, important in
carbon sequestration and as source of atmospheric CO2, to
disturbance.

2 Materials and methods

2.1 Study sites and sampling strategy

2.1.1 Whitelee

The following description of the Whitelee wind farm has
been sourced from the Environmental Impact Statement
(EIS) prepared by Scottish Power for planning consent for
the windfarm (CRE Energy, 2002). The wind farm will com-
prise 140 turbines erected over a 176 km2 partially-forested
moorland plateau (55◦40′24 N, 4◦16′00 W), in central Scot-
land (Fig. 1). Land use is predominantly forestry, with rough
grazing on open moorland, and more improved pasture and
arable land on the northern lower slopes. The windfarm is
mostly located in areas of peat, underlain by a clay seal and
weakly permeable igneous or moderately permeable sedi-
mentary rocks. Peat depth, measured at 161 locations, ranges
from five to over 500 cm, mean depth of 190 cm (±1 S.D.
134.7 cm).

All of the peatlands in the development area are blanket
bog, but in some locations have features associated with in-
termediate bogs. Here the peat is>4.5 m deep and there are
several largesphagnum-dominated pools and lawns. This
contrasts with the surrounding drier, heather-dominated, less
species-richCalluna vulgaris-Eriophorum vaginatumvege-
tation.
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Fig. 1. The Whitelee site showing proposed turbine location, planned deforestation and the nine-subcatchments sampled. The area of each
catchment is as follows: WL13: 9.4 km2; WL14: 14.4 km2, WL15: 13.4 km2, WL1: 29.4 km2; WL1632: 30.0 km2; WL456: 11.7 km2;
WL9A: 7.9 km2; WL9D: 11.6 km2; WL17: 34.5 km2.

Only 35 ha (3.5%) of the unforested blanket bog is primary
natural bog. The remainder has been impacted, mostly due
to the Whitelee forest, a first rotation plantation of 5917 ha of
mainly Sitka spruce, established between 1962–1992 and at
altitude from 220 to 376 m. Within the forest, most of the bog
exhibits varying degrees of surface damage and drying. Un-
der canopy closure, bog vegetation has generally been highly
modified or lost completely. Outwith the forest and unmodi-
fied peatland, acid grassland habitat dominates.

Turbine construction will require excavation of
300 000 m3 of peat, road construction (and thus drainage)
and felling of 3041 ha of forest. In October 2006 construc-
tion of the E-W spine road commenced. Deforestation
commenced in winter 2006, but in adherence to Forest and
Water guidelines for best practice (Forestry Commission,
1993), is being undertaken as isolated coups. Deforestation
required for immediate turbine operation occurred until the

end of 2007, with continued management of the forest (to
avoid air flow impedence) and non-windfarm related defor-
estation beyond the end of construction. Quarrying on-site
for hardcore created borrow pits in which peat excavated
during construction will be stored until later landscaping.
The windfarm is proposed to be fully operational in summer
2009.

We commenced sampling of the receiving waters from
Whitelee windfarm after planning approval had been an-
nounced (May 2006). Figures 3 to 7 include data collected
prior to disturbance of surface soils associated with construc-
tion. We divided the Whitelee ridge into nine drainage catch-
ments (Fig. 1, catchment sizes given in the legend), with
only two catchments nested (WL9D and WL9A are nested in
WL17), and four draining north and five draining south. To
assess the downstream impact of the development, the catch-
ment sampling points were outwith the site development
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boundaries. All catchments were sampled within five hours,
approximately every three weeks. Negligible colonisation by
algal communities was observed during sampling trips.

2.1.2 Glen Dye

Glen Dye (56◦56′27 N, 2◦36′00 W), a headwater sub-
catchment of the River Dee in NE Scotland, is predominantly
upland in character, with an altitude range from 100–580 m.
Detailed diagrams of topography and sampling points, soil
coverage, geology and landuse of the Glen Dye catchment
are available (Waldron et al., 2007).

The Water of Dye drains a granite-dominated area. The
catchment is characterised by extensive plateaux areas on the
interfluves above 450 m that are dominated by peats (up to
5 m deep) and peaty podzols (<1 m deep). The most freely-
draining humus iron podzols (<1 m deep) occur only on
the more incised catchment slopes and the main river valley
bottoms generally have freely draining alluvial deposits and
soils. Regular burning of small areas of moorland may have
contributed to some peat degradation and hagging (Thomp-
son et al., 2001) and in places erosion extends to the organo-
mineral interface. A high density of ephemeral drainage
channels cover the peat, connecting it to the perennial stream
channel network.

Data presented are for samples collected from two nested
catchment scales within the Water of Dye: at 1.3 km2 from
Brocky Burn, a second-order river system draining the hills-
lope peats and at 41.7 km2 on the Water of Dye. Brocky Burn
is a tributary of the Water of Dye (Dawson et al., 2001). The
samples were collected approximately monthly from June
2003–August 2004, including event flow (Waldron et al.,
2007). The Water of Dye at Charr flume is a 4th-order chan-
nel with riffles and pool habitats, circa 10 m wide. Bracken
co-exists with heather and there is little riparian vegetation.

At low flows, sampling site depth is usually less than
50 cm, the water is less coloured, and the particulate load
is low (3.0±0.3 mg/L C, n=42, Waldron, unpublished data).
Light penetration supports diatom and algal community
growth on bedrock and boulders in the river channel (Wal-
dron et al., 2007).

2.2 Stoichiometric and isotopic characterisation of [DOC]
and [POC]

The need for stoichiometric characterisation of the DOM
pool has been described in the introduction; isotopic anal-
yses have been undertaken to offer insight to the source of C
in the drainage systems.

One litre water samples were collected in polyethy-
lene bottles, and stored cool until freezing (usually within
24 h). For analysis (usually within one week), each sample
was defrosted, filtered through a pre-combusted GF/F filter
(0.7µm), and reduced to a concentrate by rotary evaporation
(at 50◦C, and 50 mbar). Where carbonate was present (con-

sidered likely if pH was greater than 5), the filtrate was acid-
ified to pH 4 with 0.1 M H2SO4 prior to rotary evaporation.
The concentrate was subsequently freeze-dried andδ13C, wt.
% C and wt. % N assayed by analysis of circa 2 mg of pow-
der on a Costech C/N/S analyser, linked to a ThermoFinnigan
continuous flow mass spectrometer. DOC and total dissolved
nitrogen concentrations, [DOC] and [TDN], were calculated
from the volume of sample filtered, mass of solid residue and
wt% C and N. [POC] was calculated by assuming 60% of
the loss on ignition (MAFF, 1986) after ashing of oven-dried
(105◦C) filter papers at 375◦C for 16 h was carbon. Graphite
targets (Slota et al., 1987) for14C analysis at the SUERC
AMS Laboratory were prepared by cryogenic separation of
CO2 from DOM combusted in sealed quartz tubes (Boutton
et al., 1983).14C results were normalised toδ13C of −25‰
(δ13C of CO2 subsamples having been measured) and ex-
pressed as absolute % modern (Stuiver and Polach, 1977).
Overall analytical precision forδ13C and14C is 0.1‰ and
3.5‰ respectively.

2.3 Nutrient analysis

A second aliquot of samples was stored at 4◦C until and
during analyses. Samples were analysed for soluble reac-
tive phosphorus (SRP) and total phosphorus (TP) concentra-
tions. Additionally from the Whitelee samples only, nitrate
and nitrite were characterised. SRP was the priority analyte
on return from the field. N species were measured afterwards
(usually the next day). As TP required complete sample di-
gestion and vapour losses are not an issue, this was carried
out later (for some samples up to one year after collection).
Gaps exist in SRP and nitrate time series due to a number of
reasons e.g., samples not analysed within two days were re-
jected as we were insufficiently confident the measured con-
centrations were broadly representative of field concentra-
tions.

Samples for TP were digested without filtration. For all
other nutrient assays samples were filtered through a 0.2µm
Supor membrane filter. All analyses were carried out colori-
metrically using a Technicon Autoanalyser II system adapted
for low level analysis. SRP was measured using an ammo-
nium molybdate-ascorbic acid method with a limit of quan-
tification of 1µg P/L. TP was digested using a potassium
persulphate-sulphuric acid mixture in an autoclave at 121◦C
for 30 min (Clesceri et al., 1998) prior to analysis by the SRP
method.

Total oxidised nitrogen was analysed using a Cu-
Hydrazine reduction method to reduce nitrate to nitrite, sub-
sequently measured by the Griess Ilosvay method. Nitrite
was measured directly on a second sample aliquot, using the
Griess Ilosvay reaction and nitrate calculated by subtraction.
Limits of quantification for nitrate and nitrite were 10µg N
per litre and 1µg N per litre respectively. Nitrite data is not
presented here.
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Fig. 2. Specific discharge from the nearest catchment to the
Whitelee development currently gauged, the River Irvine at
Newmilns, catchment area 72.8 km2. Sampling dates indicated by
the crosses.

The significance of nutrients to the fate of exported DOC
was not considered at the time of Glen Dye sample collec-
tion, and thus for Glen Dye samples, nutrient analyses were
carried out on waters of known [DOC] by redissolution of
the freeze-dried sample residue in distilled water. The DOM
powder aliquots used for nutrient analyses were chosen to
span the range of flow conditions (cf. the hydrographic pro-
file in Waldron et al., 2007).

2.4 Flux estimates and statistical analyses

The Whitelee catchments are currently ungauged. However,
a Scottish Environment Protection Agency gauging station
records discharge on the River Irvine at Newmilns (circa
3 km west of WL1). Whitelee is sufficiently small that the
flow regimes of the ungauged catchments are broadly sim-
ilar to the River Irvine. From this proxy of sub-catchment
discharge, it is apparent that sampling was carried out during
both base flow and wetter periods (Fig. 2).

From almost bi-monthly time series of nutrient export and
the following assumptions we can estimate total fluxes for
DOC, POC and TP for each Whitelee catchment:

1. that mean specific discharge (Fig. 2) for the nearest
gauging station, scaled for each catchment, describes
discharge in each of the study catchments;

2. that the change in the determinant of interest between
sampling periods is linear.

Assuming linear change may over-estimate concentration,
but this will be somewhat balanced by missing detail of en-
hanced concentrations occurring with event flow (e.g., Jor-
dan et al., 2007). Further, preliminary spatial survey of
WL1632 and WL1 showed either constant [DOC] (at high
flow), or a decrease by 5 to 40 mg C/L from the head of the
catchment to sampling (Ross, 2008). Thus, using the lower
catchment outlet concentration to be representative of losses
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Fig. 3. [DOC] (panel A) and [POC] (panel B) in Whitelee N- and
S-draining catchment waters. Each sample point is the mean±1 SD
of the four N- or five S-catchments sampled on the same day.

throughout, will generally under-estimate loss. As such,
whilst the above assumptions will not always be valid, our
approach is conservative and sufficiently robust for prelimi-
nary flux estimates.

With the additional following assumptions, estimates of
DOC and P flux allows prediction of maximum CO2(aq) pro-
duction for each catchment outflow:

1. all P is available and all C in excess of the micro-
bial biomass stoichiometric composition is available for
conversion to CO2;

2. the concentrations of both N and P are sufficiently high
that the system is not nutrient limited.

3. whilst only the N-catchments have excess N, these sys-
tems are P- more than N-limited and thus calculations
of excess C are on the basis of excess C:P.

This estimate is for CO2 production from respired organic
matter. There will be a separate contribution to CO2(aq) from
catchment soil dissolved inorganic carbon export (e.g. Wal-
dron et al 2007), not detailed here as not measured.

Statistical analyses were carried using Minitab V 15, based
on general linear models, under the assumption of normality,
which was tested.
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3 Results

Given our hypothesis that S-catchments will be more im-
pacted, we present the data as pooled N- or S-catchments.

3.1 DOC and POC data

Whitelee [DOC] ranges from 3.5 mg C/L (WL9A, 5th Febru-
ary 2007) to 40.1 mg C/L (WL15, 17 July 07) (Fig. 3a).
Brocky [DOC] ranges from 7 to 29.9 mg C/L (Fig. 5a) for
the samples from which nutrient concentrations are available,
although it can be higher than this (unpublished data, Wal-
dron; Dawson et al., 2004). Whilst each sample is a “snap-
shot” of DOC export and there may be considerable varia-
tion between samples depending on hydrological conditions
(Grieve, 1994), this seasonal pattern of changing concentra-
tions is observed elsewhere (e.g., Billett et al., 2004; Worrall
et al., 2006), with highest concentrations in catchment out-
flow at the end of summer, after peak terrestrial productiv-
ity and strongly influenced by increased hydrological export
(Tipping et al., 2007). Early summer 2007 was particularly
wet in the UK (Fig. 2) and thus increased [DOC] commences
earlier. For all sampling occasions, [DOC] in S-draining
Whitelee catchments is greater than the N-catchments.

Whitelee [POC] ranges from 0.41 mg C/L (WL15, 19th
February 2007) to 23.66 mg C/L (WL15, 4th September
2007) (Fig. 3b). [POC] shows similar seasonality with en-
hanced export at times of high [DOC] export likely reflecting
a hydrological control. Until June 2007, [POC] is compara-
ble in N- and S-catchments. After June 2007, there is separa-
tion between N- and S-catchments, with [POC] higher in the
S-catchments than the N-catchments.

3.2 Nutrient data

[TP] ranges from 2µg P/L (WL9D, 23rd March 2007) to
165µg P/L (WL17, 5th September 2006) (Fig. 4). Whitelee
[TP] shows a similar pattern as [DOC], with higher con-
centration in the summer months, but offset in [TP] be-
tween N- and S-catchments occurs less often. As defined
by [TP], the trophic status of the Whitelee drainage waters
varies from mesotrophic (10–≤35µg/L), to eutrophic (>35–
≤100µg/L) or hypertrophic (>100µg/L). [TP] for Brocky
samples is generally oligotrophic: 4.0 to 12.7µg P/L, me-
dian [TP] of 7.4µg P/L. However, unlike Whitelee, [TP] has
been measured from 0.7µm filtered sample residues. If the
relationship between filtered and non-filtered samples ob-
served in Whitelee occurs at Brocky, [TP] may be up to 50%
greater, and trophic status now straddles the oligotrophic-
mesotrophic boundary.

All field sites display statistically significant relationships
between [DOC] and [SRP] (Figure 5A), which are catchment
specific, with more SRP exported for a given [DOC] in
N-draining Whitelee, than S-draining Whitelee, than Brocky.
Statistically significant relationships exists between [DOC]
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Fig. 4. [TP], µg P/L, in Whitelee drainage waters. Each sample
point is the mean±1 SD of the four N- or five S-catchments sampled
on the same day.

and [TP] for Whitelee (the difference in sample matrix
for Brocky precludes such comparison): Whitelee north:
[TP]=3.35[DOC]+3.98,R2=0.219, F1,82=24.26, p<0.0001;
Whitelee south: [TP]=1.77[DOC]−0.03, R2=0.298,
F1105=46.03, p<0.0001. The lower statistical significance
for [DOC]-[TP] than [DOC]-[SRP] likely reflects a POM
contribution in the TP, not present in the DOC.

Whitelee [NO−

3 ] ranges from 0.1 mg N/L (multiple sites
on multiple dates) to 1.9 mg N/L (WL9A, 5th February 2007)
(Fig. 5b). [NO−

3 ] mostly remains distinct between Whitelee
N- and S-catchments, but the trend is reversed in compari-
son to [DOC], with [NO−

3 ] greater in N- than S-catchments.
The statistically significant relationships between [DOC] and
[NO−

3 ] show inverse correlation (Fig. 5b). [NO−3 ] data does
not exist for Brocky.

3.3 Aquatic stoichiometry

Whilst nitrate and SRP are immediately available to bacteria
without any extracellular processing, when orthophosphate
is limiting all osmotrophic organisms can efficiently hydrol-
yse DOP (Lovdal et al., 2007) and use organic nitrogen as a
metabolic source (Lennon and Pfaff, 2005). For these rea-
sons, our stoichiometric ratios are shown as TOC vs. TP and
TDN pools, including both biologically available inorganic
and organic components. The availability of DOP from hu-
mic materials typical of peat export can vary (e.g., He et al.,
2006) and C:P estimates reflect maximum P availability.

Figure 6 reveals considerable temporal variability in mo-
lar C:P, ranging from 227 (WL9A, 20th February 2007) to
6678 (WL1, 4th April 2007), and molar C:N from 3 (multi-
ple sites, multiple dates) to 50 (WL15, 12th October 2006).
Spatial variability between the N- and S-catchments is less
marked, although C:P is generally lower in the S- than N-
catchments. These stoichiometric ratios are similar to values
in Finnish catchments also with varying % peatland (Korte-
lainen et al, 2006). The seasonal export pattern apparent in

Biogeosciences, 6, 363–374, 2009 www.biogeosciences.net/6/363/2009/



S. Waldron et al.: Organic carbon and nutrient export from disturbed peatlands 369

S[SRP] = 0.966x + 2.743

R2 = 0.572, F1,66=90.57, 
p<0.00001
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p<0.0001
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Fig. 5. Interaction between [DOC] (mg C/L) and [SRP] (panel
A, µg P/L) and [NO−

3 ] (panel B, mg N/L). The legend for the N-
and S-catchments is the same in Fig. 4; in panel A Brocky samples
are represented by the shaded grey circles.

[DOC], and to a lesser extent [TP], is not discernible. Catch-
ment specific differences are maintained with C:N, with the
S-catchments always greatest; both catchments show lowest
C:N is spring. Both C:P and C:N are shown relative to mi-
crobial biomass stoichiometric composition, which can range
from 5–370:1 for C:P and 2.9–7.6:1 for C:N (Cross et al.,
2005) but here estimated median value of 59.5:1 for C:P and
5.5:1 for C:N have been used. We have chosen a bacterial
stoichiometric composition over the Redfield ratio as there
was little visible evidence of in-stream primary production.
The trend for increasing C:P from June 2006 reverses after
May 2007 to compositions that are more similar to microbial
stioichiometric requirements. In comparison, there is a sus-
tained difference in C:N between N- and S-catchments, with
N-catchments having compositions comparable to bacterial
stoichiometry.

3.4 Isotopic data

δ13CDOC shows little intra-site variation (Whitelee:
−29.1±0.3, n=208, Brocky: −27.7±0.3‰, n=21), but
inter-site differences exist. The more13C-enriched DOC in
Glen Dye drainage water may reflect peat sources of greater
humification (Kalbitz and Geyer, 2002), or differences in
sourceδ13C e.g., in Whitelee conifer litter may contribute to
the DOM pool. However,δ13CDOC from both sites is within
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Fig. 6. Molar C:P (panel A) and molar C:N (panel B) for the N-
and S-draining Whitelee catchments, relative to microbial biomass
(Cross et al., 2005). Each sample point is the mean±1 SD of the
four N- or five S-catchments sampled on the same day. Molar C:P
was calculated from combined DOC and POC, with respect to TP. It
was assumed that, as insufficient P is available to meet microbial re-
quirements, particulate P may be used, and thus particulate C would
also be available. TDN is from the dissolved pool only, thus molar
C:N was calculated using only DOC.

the range typical of terrestrially-derived carbon, suggesting
that the DOC is of dominantly allochthonous origin.

Samples of the Water of Dye, into which Brocky drains
circa one km downstream, taken in 2004 on the falling limb
of a hydrological event shows the DOC exported is young
(Table 1): 14CDOC indicates a modern composition, either
organic sources deposited circa 1996, or mixing of older car-
bon with post-1950s carbon, such that by mass balance, the
pool signature is modern.

3.5 Flux estimates

DOC and POC export range from 6.9–20.6 g C m−2 yr−1 and
4.3–6.7 g C m−2 yr−1 respectively (total exports are given
in Table 2). Summed this loss is similar to smaller peat-
dominated headwater catchments (cf. Dawson and Smith,
2007). We have no evidence that a significant component of
the DOC is autochthonous, thus assuming that Whitelee OC
export primarily represents loss from the terrestrial catch-
ment is reasonable. Annual TP flux ranges from 22 to
37 mg P m−2 yr−1. With the assumption that all DOC in
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Table 1. 14CDOC from the Water of Charr, the mainstem river into which Brocky Burn discharges, collected during event flow. The average
age of the DOC is approximately 8 years (110 absolute % modern is equivalent to 1996, Levin and Kromer 2004) although the 09:15 a.m.
sample is significantly different and indicates carbon with an average age of 11 years.

Date and time collected Publ. code 14C enrichment δ13CDOC‰
(Absolute % modern)

Charr 24/6/04 12:55 SUERC 7242 110.05±0.34 −28.1
Charr 24/6/04 17:30 SUERC 7243 110.25±0.30 −28.2
Charr 24/6/04 22:40 SUERC 7244 110.05±0.45 −28.3
Charr 25/6/04 02:25 SUERC 7245 110.38±0.34 −28.2
Charr 25/6/04 09:15 SUERC 7246 112.57±0.34 −28.3
Charr 25/6/04 12:40 SUERC 7248 111.04±0.30 −28.3

Mean (±1 SD) 110.72±0.97 −28.2±0.1

Table 2. Annual flux estimates of DOC, POC and TP export for one calendar year beginning 3 July 2006. The potential contribution to
CO2(aq) through respiration of DOC and POC in stoichiometric excess of P consumption can be calculated. *WL17 does not include the
nested catchments of 9D and 9A, thus total flux at sampling point 17 is the sum of 9A, 9D and 17.

WL13 WL14 WL15 WL1 WL1632 WL456 WL9A WL9D WL17*

Area (km2) 9.4 14.4 13.4 29.4 30.0 11.7 7.9 11.6 15.1
6DOC (Mg) 183 246 300 431 541 120 82 86 120
6POC (Mg) 51 88 71 213 178 69 43 54 71
Export g C m−2 yr−1 23.1 21.5 25.5 20.3 22.1 14.9 14.8 11.2 11.7
6TP (kg) 257 484 319 1018 701 453 226 359 597
Export mg P m−2 yr−1 25.2 31.2 21.9 32.0 21.6 35.7 26.6 28.7 36.6
Potential CO2(aq) (Mg) 177 234 292 408 525 110 77 78 106

excess of TP can be converted to CO2, maximum CO2 efflux
ranges from 6.7–18.9 g C m−2 yr−1 across the catchments
(Table 2).

4 Discussion

Here we focus on Whitelee, with respect to the three aims
and associated hypothesis outlined in the introduction, but
compare when appropriate, with Brocky, the more pristine
peatland.

4.1 The interaction between DOC and nutrient export

The statistically significant, [P]-[DOC] relationships support
our hypothesis that if the P source is closely linked to the
DOC source, and/or they share the same export mechanism
they will be positively correlated. The inverse [DOC]-[NO−

3 ]
linear relationship suggests this is not true for nitrate. In
addition to denitrification under anaerobic conditions (not
likely in the drainage systems where we have continuously
measured high % DO, but possible in anaerobic soils prior
to export to the drainage waters), increased rock outcrop and
steeper slope can positively influence nitrate concentrations

in stream waters (Smart et al., 2005). These landscape char-
acteristics are not conducive to peat formation, which posi-
tively influences [DOC] in drainage waters (e.g., Kortelainen
et al., 2006), thus an inverse relationship between nitrate and
[DOC] is unsurprising. A limited supply of nitrate diluted
by high [DOC] run-off during higher flow, could give rise
to negative linear relationships. However, the N-catchments,
which have less peat and more farmland than forest, have
consistently higher [NO−3 ] in drainage waters (Fig. 5b), sug-
gesting this negative relationship reflects catchment specific
differences in baseline [NO−3 ] rather than dilution of a fixed
source.

The linear [DOC]-[P] relationships indicate that DOC and
P export increase together, although inter-catchment differ-
ences exist: for a given amount of C, Brocky, the most
peat-rich catchment, exports least P, whilst in the Whitelee
N-catchments, where there is least peatland, more P is ex-
ported. Observing nutrient-DOC interaction across three dif-
ferent geographic regions suggests similar responses may be
found elsewhere. Kortelainen et al. (2006) observed highly
significant relationships between TOC and TP and TN (par-
ticularly TON) export, but not the inverse relationship with
N found here.
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Although the trophic status of the Whitelee receiving wa-
ters is high (Fig. 4), DOC is in excess to microbial require-
ments (Fig. 6) and thus [DOC] increase may enhance respi-
ration. Temporal variation in the stoichiometry of Whitelee
waters may similarly cause temporal variation in CO2 ef-
flux. For example, in the S-catchments increase in [TP] but
decrease in [DOC] (reflected by a decrease in molar C:P)
since 17th June 2007 may result in lower CO2 efflux. For
Whitelee the inferred stoichiometric influence on CO2 efflux
suggests larger intra-catchment variation than exists between
the pooled N- and S-catchments.

Understanding why [DOC], [P] and [N] co-vary would be
easier if the source of nutrients was known. Aerial deposi-
tion can occur, but Whitelee is sufficiently small that this is
broadly similar across the catchments, and intra-catchment
differences thus indicate run-off is more important in nu-
trient delivery. Flow pathways from terrestrial reservoirs
to drainage waters have complexities of scale, from mi-
cropores to peatland piping (e.g., Holden, 2005), thus in
catchment-scale studies, pin-pointing the exact source of an
allochthonous analyte is challenging. The positive correla-
tions with [DOC] and [P] and the negative correlation with
[NO−

3 ] suggest DOC and P share a common source, indi-
cated byδ13CDOC to be dominantly of allochthonous origin.
However DOC and NO−3 do not share a common source.

In tracing source, particularly in a site subject to distur-
bance,14CDOC may reveal if C export is from older, deeper,
terrestrial stores. Unfortunately, we do not have14CDOC for
Whitelee, or the Glen Dye sites with nutrient data. However,
stream14CDOC from Brocky (Glen Dye), sampled twice in
1998, was dominated by young carbon (Palmer et al., 2001),
similar to DOC in the larger catchment post a hydrological
event (Table 1). DOC from other peat drainage streams under
non-baseflow conditions also is ‘modern’ (Evans et al., 2007;
Billett et al., 2007), with a similar age range between low
and high flow samples as between Brocky sampled in 1998
(Palmer et al., 2001) and its receiving stream under high flow
in 2004 (Table 1). DOC exported from C-rich landscapes of-
ten appears younger than the soil C, much of it comprising C
assimilated since 1950s (Evans et al., 2007). Thus whilst we
do not have14CDOC of the samples which were analysed for
nutrients, the similarity of14CDOC from different UK peat-
land streams sampled over considerable temporal and spatial
scales offers a more generic interpretation: although translo-
cation of DOC within peatlands can yield young DOM in
pores of older (deeper) peats (Chasar et al., 2000), the DOM
pool exported largely derives from younger and shallower
peats.

Given this, and linear relationships between P and DOC
export for all sites, we infer that the P and DOC are also from
shallow soils. Consequently soil disturbance may change
concentrations of carbon and nutrient export (as a larger sur-
face area may be exposed). However, unless older layers
which contain more recalcitrant C and have stoichiometri-

cally higher C:P (or C:N) are disturbed, there may not be
much change in the quality of the DOM.

4.2 Is the impact of disturbance of the terrestrial carbon and
nutrient stores detectable outwith the immediate area of
disturbance?

If the difference in [DOC], [POC] and [P,N] in the run-off
waters from N- and S-catchments is due to differences in
catchment characteristics, then if all remained equal between
catchments, the offset should also remain broadly equal with
time. This is not what we observe. As hypothesised, the
S-catchments show increased C and P loads.1 [DOC] be-
tween N- and S-catchments starts increasing around April
2007 (Fig. 3a); a similar response is observed in1 [POC]
from July 2007 (Fig. 3b). Additionally, although both N-
and S-catchments periodically exhibit hypertrophic P status,
the trend since June 2007 when S-draining now surpassed N-
catchments in [TP] (and [SRP], time series data not shown),
is consistent with a projected steady increase in [TP]. We do
not observe the same switch in relative nitrate export. The
stoichiometry of the export waters suggests the DOM pool
is more limited in P than N, thus consumption of [NO−

3 ]
is unlikely to be the primary cause for lack of concomitant
increase in [NO−3 ]. The lack of change in [NO−3 ] further
supports an interpretation that the soil profiles disturbed by
development and / or new flow pathways that promote the
increase in C and P export, are less important to nitrate de-
livery.

Whilst the time series we present here are short, the change
suggests changes in flow pathways, perhaps through decom-
posing organic mulches or soil horizons previously less ac-
cessible, such as would occur after deforestation/peat distur-
bance. These changes are detectable downstream of the zone
of disturbance. The lag in impact on the receiving waters
with respect to the Whitelee development may reflect contin-
ued disturbance propagating downstream with time as buffer-
ing capacity upstream decreases or simply greater hydrolog-
ical connectivity with wetter conditions.

In Whitelee we have not sampled headwater drainage sys-
tems nor targeted event export, yet [DOC] is significantly
higher than many other non-headwater UK drainage systems
(e.g., Worrall et al., 2004; Evans et al., 2007; Baker et al.,
2008). [DOC] in S-catchments is comparable to that ob-
served in smaller headwater catchments intimately connected
with the peat landscape (e.g., the Brocky data; Dawson et al.,
2004; Worrall et al., 2006; Dawson and Smith, 2007), but
not as high as [DOC] in drainage waters from Auchencorth
Moss: mean of 38.6 mg C/L (Billett et al., 2004). Auchen-
corth is a 3.5 km2 lowland ombotrophic raised bog only
25 km ENE from Whitelee. The catchment is smaller than
the Whitelee catchments and slope gradient is shallower, thus
water residence time may be longer. Both these differences
may result in higher [C] in drainage waters. Auchencorth is
also subject to disturbance, with peat harvest in 8% of the
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catchment and the extent to which this influences [DOC] ex-
port is unknown (Billett et al., 2004).

4.3 Using export budgets to consider the sensitivity of car-
bon landscapes (sequestration and CO2 efflux) to dis-
turbance

Enhanced DOC export due to disturbance may reflect re-
duced capacity of a landscape to sequester carbon. Thus,
where combined hydrographic and concentration data exist,
it is valuable to convert flux measurements to budgets to
create a better understanding of landscape carbon balance.
There is little data for catchments the size of Whitelee (see
Dawson and Smith, 2007 for a summary); research in this
area tends to focus on headwaters catchments or large river
basins, and study few meso-scale basins. For similar sized
catchments for which there is data, only Moorhouse in the
Pennine Hills of northern England, with 90% peat cover and
considered to be an eroding peat catchment (where POC ex-
ports most carbon loss, Evans et al., 2006) exports more car-
bon than the Whitelee sites. [DOC] can increase with % peat
coverage (e.g., Kortelainen et al., 2006), and thus the smaller
OC export from Whitelee may reflect proportionally less peat
in the catchment. This interpretation is further supported by
the difference in C export between N and S draining catch-
ments, and /or less erosion than Moorhouse.

Given the extent of UK peatland habitat, little data exists
on C sequestration rates. That which does shows a range of
approx 5–50 g C m−2 yr−1 (e.g., Dawson and Smith, 2007),
but with median values of closer to 25 g C m−2 yr−1 (Har-
greaves et al., 2003).210Pb dating of three cores within
peatland just outside the Whitelee development suggests C
sequestration rates of 18.7 g C m−2 yr−1 (MacKenzie pers.
comm.), close to the median estimate for UK peatland. If
this is representative of the Whitelee site, then aquatic export
alone (11.7–25.5 g C m−2 yr−1 is lost to the receiving waters)
approaches suggested sequestration rates. If gaseous emis-
sions and aquatic inorganic carbon export are included (the
latter requires differentiation of C derived from organic mat-
ter respiration and export from minerogenic sources, Wal-
dron et al., 2007), the budget for aquatic losses becomes
larger. Further, our estimates of C loss are constructed from
budgets that only latterly suggest an increase in OC export
from disturbance. The projected impact of increased distur-
bance is to increase OC (and possibly inorganic carbon) ex-
port. In an undisturbed landscape, aquatic export represents
one component of primary production that is not sequestered;
in a disturbed landscape, aquatic loss may increase (e.g., as
with Whitelee through enhanced POC export) and carbon se-
questration rates may decrease. Ultimately if the disturbance
if sufficiently large such sites may no longer act as a net car-
bon sink. Considered from the perspective of preserving a
terrestrial carbon store, whether catchments have the capac-
ity to buffer disturbance should be assessed.

Average annual TP export for Whitelee catchments
(28.8±5.5 kg P km−2 yr−1) is approximately six times higher
than Finnish catchments (Kortelainen et al., 2006); Whitelee
DOC export is almost three times higher than the Finnish
catchments. If all DOC is converted to CO2 the flux es-
timate ranges from 6.7–18.9 g cm−2 yr−1 across the catch-
ments. This is larger than CO2 efflux measured directly by
at Auchencorth Moss, 4.6 g C m−2 yr−1 (Billett et al., 2007)
or the estimated average of 4.1 g C cm−2 yr−1 for the rivers
of England and Wales (Worrall et al., 2007), but smaller than
the measured efflux of 35.8 g cm−2 yr−1 from rivers in the
NE European tundra (measured only during the ice free pe-
riod) considered to have come from the respiration of organic
matter and free CO2 leached from the catchment (Heikkinen
et al., 2004). It is likely that our estimate for potential CO2
efflux based on stoichiometric excess is greater than that ef-
fluxed from the system as not all DOC will be respired prior
to export from the catchment. However, DOC is consider-
ably in excess of P, such that even if only a proportion of the
DOC is processed, the system will likely be net heterotrophic
and a source of atmospheric CO2. From our improved under-
standing of the relationship between DOC and nutrient ex-
port (Fig. 5) further increases in [DOC] are unlikely to be ac-
companied by sufficient P (or N) to change the heterotrophic
state of the drainage waters.

5 Conclusions

The systematic interaction of C export with other ecologi-
cally important elements such as N and P observed here, sug-
gests that the terrestrial carbon cycle can be linked stoichio-
metrically to the atmospheric carbon cycle through aquatic
biogeochemical cycling. Characterisation of the carbon and
nutrient budgets is useful as it allows the rate at which carbon
is being exported from terrestrial reservoirs to be quantified,
and the link between terrestrial export of DOC to the atmo-
spheric carbon cycle to be explored through assessing the po-
tential for respiration. Future aquatic CO2 efflux studies may
wish to incorporate a stoichiometric perspective to deepen
the resolution such an approach can offer, with greatest inter-
pretative power offered by linked DOC-nutrient-aquatic res-
piration studies. Our knowledge of the capacity for smaller
catchments to emit CO2 is poor (Cole et al., 2007) and thus
the simple estimates we provide here have value in, for ex-
ample, identifying the most sensitive sites to study. However,
as CO2 efflux from respired DOC can be influenced by labil-
ity of the organic material (Lovdal et al., 2007), the concen-
tration and form of key nutrients (Lennon and Pfaff, 2005),
and to what extent these are recycled (Rubin and Leff, 2007),
greater advances will be made with a more detailed approach.

Whitelee is being developed for windpower and our study
suggests disturbance impact is detectable at the larger scale.
The consequence of changing nutrient stoichiometry of re-
ceiving waters on riverine carbon efflux is an aspect that
does not appear in environmental impact statements to be
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given consideration. This is due to paucity of data rather than
knowledge that such changes may not be of biogeochemical
significance. The preliminary data we present here revealing
temporal and spatial changes in stoichiometry of receiving
waters, and that of an undisturbed system for comparison,
contributes to the data framework required to develop such
understanding and thus assess the impact on stoichiometry
of receiving waters.

As the political importance of carbon geomorphology
gathers momentum, flux estimates should be more prevalent
in assessments of impact development on terrestrial carbon
stores. At the scoping stage for renewable energy devel-
opments long-term monitoring is often required e.g., eco-
logical surveys spanning one year. We suggest that future
EIS should incorporate estimates of C sequestration and pre-
development losses prior to planning decisions. However,
prior to using that knowledge in a decision-making capac-
ity to offer guidance upon the viability of development on
terrestrial carbon stores, we have an important question to
address: Is it better to disturb a landscape where net balance
approaches carbon loss, or it is better to disturb a site that
has a high capacity to sequester carbon as here the buffer-
ing capacity of the site to disturbance will be greater, and the
site may continue to sequester carbon? Answering this is not
possible without more data on the natural variation in carbon
fluxes and sequestration rates of terrestrial carbon stores, and
the impact of disturbance.
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