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Abstract. An inverse of a combination of atmospheric trans-
port and flux models was used to optimize the Carnegie-
Ames-Stanford Approach (CASA) terrestrial ecosystem
model properties such as light use efficiency and temperature
dependence of the heterotrophic respiration separately for
each vegetation type. The method employed in the present
study is based on minimizing the differences between the
simulated and observed seasonal cycles of CO2 concentra-
tions. In order to compensate for possible vertical mixing
biases in a transport model we use airborne observations of
CO2 vertical profile aggregated to a partial column instead
of surface observations used predominantly in other param-
eter optimization studies. Effect of the vertical mixing on
optimized net ecosystem production (NEP) was evaluated by
carrying out 2 sets of inverse calculations: one with partial-
column concentration data from 15 locations and another
with near-surface CO2 concentration data from the same lo-
cations. We confirmed that the simulated growing season net
flux (GSNF) and net primary productivity (NPP) are about
14% higher for northern extra-tropical land when optimized
with partial column data as compared to the case with near-
surface data.

1 Introduction

Accurate estimation of the global distribution of CO2 flux
is important not only for making a basis for imposing the
emission restriction of CO2 gases on each country under in-
ternational agreement, but also for understanding both natu-
ral and anthropogenic processes controlling the CO2 fluxes.
One common approach for estimation of CO2 flux is to use
atmospheric transport inversions (Gurney et al., 2002; Ro-

Correspondence to:S. Maksyutov
(shamil@nies.go.jp)

denbeck et al., 2003). With increasing number of CO2 ob-
servation data becoming available recently, the use of atmo-
spheric transport inversion will produce more reliable results
(Maksyutov et al., 2003). Equally important in increasing
the reliability of the atmospheric transport inversions is to
increase the reliability of the background CO2 fluxes that are
used to derive the a-priori values of CO2 concentration fields
for solving the inverse problems.

Fluxes of CO2 due to net ecosystem production (NEP) of
terrestrial ecosystem, fossil fuel combustions, biomass burn-
ing, and exchange with ocean are major contributors to the
seasonal cycle of CO2 in atmosphere. Among all of these
fluxes, NEP makes the largest contribution to variability in
CO2 in the atmosphere although it is very close to neutral
over the course of a year (Tucker et al., 1986). To better un-
derstand the carbon cycle in the terrestrial ecosystem, several
models have been developed to date. For example, Potsdam
Model Intercomparison study compared a total of 17 global
terrestrial biogeochemistry models, and analyzed these mod-
els from several aspects such as the simulated net primary
productivities (NPP), using the common input data (Cramer
et al., 1999).

Methods to optimize terrestrial ecosystem models with at-
mopsheric CO2 seasonal cycle vary from a model to model.
One way is to adjust the model parameters one by one until a
simulated physical quantity is close enough to the observed
value. On the other hand, statistical approaches are com-
monly used to adjust model parameters. Fung et al. (1987)
optimized temperature sensitivity of the ecosystem respira-
tion globally to get a better fit of the simulated northern hemi-
spheric CO2 seasonality to the observations, and achieved
quite reasonable results for the amplitude of seasonal cy-
cle although with some problems in the phase. Later, Ran-
derson et al. (2002) simultaneously optimized parameters
of the Carnegie-Ames-Stanford Approach (CASA) terres-
trial ecosystem model by incrementally varying the values of
two parameters and constructing a three-dimensional plot of
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a cost function describing the weighted difference between
modeled and observed CO2 concentrations. In their study,
they used the Goddard Institute for Space Studies tracer
transport model to simulate the atmospheric CO2 concentra-
tions from CASA fluxes with different values of parameters
(Randerson et al., 2002). Kaminski et al. (2002) simulta-
neously optimized 24 parameters of the Simple Diagnostic
Biosphere Model (SDBM) by assimilating seasonal cycles of
CO2 concentrations from 41 observing sites. Further, Rayner
et al. (2005) elaborated on the carbon cycle data assimilation
system developed by Kaminski et al. (2002) and simultane-
ously optimized 57 parameters of Biosphere Energy Trans-
fer Hydrology Scheme (BETHY) using the observed data of
CO2 for 1979 to 1999.

To our knowledge, these studies which used the observed
CO2 concentrations to optimize parameters of terrestrial
ecosystem model relied upon available CO2 data which are
dominated by surface level measurements. However, more
recent studies have revealed that the vertical mixing biases in
transport models result in bias in the optimized fluxes. For
example, Stephens et al. (2007) suggested that a number of
transport models compared in the TransCom-3 study (Gur-
ney et al. 2002) do have vertical mixing biases which were
revealed by comparing optimized concentration fields with
observed vertical profiles not used in the inversion. Models
with both too step and too shallow vertical gradients were
present. Similarly, Yang et al. (2007) used ground-based
FTS and aircraft measurements to suggest that use of CO2
concentration data in boundary layer in the atmospheric in-
versions can bias the estimated fluxes, and pointed to a weak
vertical mixing bias on average in a number of the transport
models of TransCom-3. They implied that the use of CO2
column data could be more relevant for the reliable optimiza-
tion of terrestrial ecosystem models. Mean weak mixing bias
in TransCom-3 models by (Gurney et al., 2002) can be at-
tributed to using mostly offline models with missing or sim-
plified physical process parameterizations such as shallow
and penetrative cloud convection and boundary layer turbu-
lence. Some of more recent transport models, such as com-
pared by Law et al. (2008) involve complete online transport
schemes and are expected to do better in vertical mixing.

In the present study, we optimized CASA with partial
column data of CO2 obtained by aircraft measurements,
and separately, with near-surface data of CO2 for compari-
son. We applied the atmospheric transport inversion method,
which is widely used to estimate regional fluxes of CO2 (e.g.
Gurney et al., 2004), to estimate two parameters of the CASA
flux model (light use efficiency and temperature dependence
of the heterotrophic respiration) independently for each of
the 11 vegetation types. By analyzing the vertical profiles of
simulated and observed CO2, it was found that the transport
model used in this study has a weak vertical mixing espe-
cially in the northern mid latitude during winter and this inac-
curacy of the mixing led to the underestimation of NEP sea-
sonality when near-surface data was used exclusively. The

optimization with partial column data of CO2, on the other
hand, is less affected by mixing scheme of a transport model
and expected to result in more accurate optimization of sea-
sonal cycles of NEP field.

2 Methods

In this section, we first present the overall description of the
inversion method used for the CASA parameter optimiza-
tion, followed by the detailed description of each part of the
optimization process as well as the models used in this study.

2.1 Carbon cycle model

We used the Carnegie-Ames-Stanford Approach (CASA) to
simulate terrestrial biosphere. Specifically, the CASA de-
scribed by van der Werf et al. (2003) was used with follow-
ing modifications. The fire activities in CASA were turned
off by setting the burned fraction to zero at every grid cell of
CASA for all times. This is because we are only interested in
the seasonal cycle of NEP in the present study, and the inter-
annual variability of the forest fire activities is too erratic to
account for in the average seasonal cycle (van der Werf et al.,
2006). As input data for CASA, we used the same dataset as
described by van der Werf et al. (2003) except for monthly
normalized difference vegetation index (NDVI). We used
NDVI data from Pathfinder AVHRR Land dataset (Agbu and
James, 1994) for 1981 to 2001, and derived the monthly cli-
matology of NDVI following the method described by Ran-
derson et al. (1997). Figure 1 shows the distributions of the
vegetation types in CASA as well as the abbreviation for
each vegetation type of CASA used throughout the rest of
this paper. We used CASA with spatial resolution of 1◦ lati-
tude× 1◦ longitude and monthly time step. In the rest of this
sub section, the algorithms of CASA used to derive NPP and
flux of carbon due to heterotrophic respirationRh are briefly
introduced since the parameters that control these two quan-
tities were optimized in this study.

The net ecosystem exchange (NEE) in CASA is obtained
as a difference between the net primary productivity (NPP)
and the sum of fluxes due toRh, fuel wood burnings, and
consumptions of plants by herbivores. In CASA, the NPP at
a grid cellg and timet is given by

NPP(g,t) = IPAR(g,t)ε(g,t) (1)

where IPAR is intercepted photosynthetically active radiation
andε is light use efficiency. The value of IPAR in Eq. (6) is
a function of NDVI and proportional to photosynthetically
active radiation PAR (Bishop and Rossow, 1991). On the
other hand,ε is a production efficiency of an ecosystem for a
given IPAR and is expressed as

ε(g,t) = FT (g,t)FW (g,t)Emax (2)
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Fig. 1. Map of vegetation types in CASA. TRF: tropical rainforests,
BDF: broadleaf deciduous forests; BNF: broadleaf and needleleaf
forests; NEF: needleleaf evergreen forests; SVN: savannas, GSL:
perennial grasslands, BSB: broadleaf shrubs with bare soil, TUN:
tundra, DST: desert, AGR: agriculture. Red squares on the map
indicate the locations of the vertical profile data used for this study
(see Table 1).

where factors FT and FW are dependent on temperature and
soil moisture and account for stresses induced by tempera-
ture and soil water availability, respectively, andEmax is a
maximum light use efficiency. To our knowledge,Emax has
been taken as a universal constant common to all ecosystem
types in the original CASA (e.g. 0.5 gC (MJ PAR)−1 as used
by van der Werf et al., 2003).

Likewise, conditions of soil moisture and temperature
dominate the control overRh. The effect of temperature on
Rh is expressed as FR which is an exponential function of a
factorQ10:

FR(g,t)= Q
{T (g,t)−30}/10
10 (3)

whereT (g, t) is a surface temperature. In this study, we
simultaneously optimizedEmax andQ10 of each vegetation
type; that is, the size of parameter vectorp is 22 (i.e. 2
parameters× 11 vegetation types). Furthermore, we used
0.5 gC (MJ PAR)−1 and 2.00 as the initial values ofEmax and
Q10, respectively, and 0.25 gC (MJ PAR)−1 and 0.30 as the
prior uncertainty ofEmax andQ10, respectively.

2.2 Formalism of the parameter optimization

In this study, we optimized a set of the CASA parameters,
p, using the Bayesian inversion in which the weighted mis-
matches between the modeled and observed concentrations
of atmospheric CO2 concentrations are minimized. This is
equivalent to minimizing the cost functionJ

J = (4)

(x −M(p))T C−1
x (x−M(p))+(p−p0)

T Cp0
−1(p−p0)

wherex is a matrix consisting of the observed CO2 concen-
trations,M is a transport model which mapsp to simulated

concentrations of CO2, p0 is the initial values ofp, andCx
andCp0 are the covariance matrices ofx andCp0, respec-
tively. The operatorM consists of atmospheric transport
model (A) and CASA (B), i.e. M (p) = A B (p). As shown
in the following section,B is nonlinear whileA is linear, so
in order to minimize Eq. (4) we expandedB aroundp0 in
Taylor series and approximated it up to the 1st-order term:

M = A[B(p0)+G(p−p0)]. (5)

whereG is the first derivative ofB(p) with respect top at
p= p0. We evaluatedG(p − p0) numerically assuming a lin-
ear relationship between the first derivative andp for a small
change inp. Furthermore, the solutions ofp which mini-
mizes Eq. (1) is

p = p0+[GT C−1
x G+Cp0

−1
]
−1GT C−1

x [x−Gp0] (6)

and the associated covariance matrix ofp is

Cp = [Cp0
−1

+GT C−1
x M ]

−1. (7)

The detailed derivations of Eqs. (6) and (7) were previ-
ously shown, for example, by Enting (2002) and Bousquet
et al. (1999). In this study, the minimization ofJ was done
iteratively since we used the linear approximation in Eq. (5).
Throughout the iterative process, the values ofp0 andCp0

were fixed at the values described in the following section.
Note that, because Eq. (5) is not exact, neitherp nor Cp ob-
tained by Eqs. (6) and (7) are exact solutions to minimizeJ.
Thus, to assign the measure of the improvements in the simu-
lation, we calculatedχ2 which is the mean-square mismatch
between the observed and simulated concentrations:

χ2
= N−1

obs

Nobs∑
n

(xnn −(M(p)nn))
T C−1

x (xnn −(M(p)nn)) (8)

whereNobs is the number of observations (i.e. the size ofx),
andM (p) is in its exact form.

2.3 Atmospheric transport model

The NIES transport model (Maksyutov and Inoue, 2000) was
used to simulate the global distributions of CO2 resulting
from a given surface CO2 flux. It is an off-line model and
uses National Centers for Environmental Prediction (NCEP)
reanalysis meteorology (Kalnay et al., 1996). The model
has a resolution of 2.5◦ latitude× 2.5◦ longitude, 15 verti-
cal levels (from∼0.15 to 20 km in altitude), and the time
step of 15 min. The advection scheme is semi-Lagrangian
with tracer mass adjustment for the conservation of tracer.
The monthly climatological day-time mean planetary bound-
ary layer (PBL) height, derived from the GEOS-1 reanalysis
(Schubert et al., 1995), was used to define the PBL height in
the model. The detailed description of the model’s scheme
for vertical mixing can be found in Appendix A of Ishizawa
et al. (2006). For this study, the transport model was run for 3
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model-years with the meteorology of 1997–1999 and appro-
priate background fluxes (described below), and the result
from the 3rd year was used to represent the seasonal cycle of
the CO2 concentration for a given surface flux. Annual an-
thropogenic carbon fluxes for 1990 (Andres et al., 1996) and
1995 (Brenkert, 1998) and monthly oceanic flux (Takahashi
et al., 2002) were used as the background fluxes. The lin-
ear trend of the simulated CO2 concentration at each station
was subtracted from each station data to prepare a detrended
seasonal cycle at each station. The propagation of response
functionG (see Eq. 5) in the atmosphere was simulated with
the NIES transport model and used to evaluate Eqs. (6) and
(7).

2.4 Observed data of CO2

We used data of vertical profiles of CO2 concentration from
GLOBALVIEW-CO2 (2007). The locations of the 15 vertical
profiles used in this study are shown in Fig. 1, and the vertical
coverage at each data point is listed in Table 1. The error of
each seasonal cycle was obtained using the method described
by Kaminski et al. (2002). The discrete vertical profiles were
converted to a partial column concentration, assuming that
the each data point represents a concentration of CO2 in a
column of atmosphere having a thickness of 1000 m centered
at the altitude at which the data was taken (see Table 1). We
used weighted mean of the uncertainty of each data point
in the vertical profile to obtain the uncertainty of the partial
column concentration. In addition to the dataset of partial
column concentrations, the CO2 concentrations at the lowest
level of each vertical profile were collected to prepare the
“near-surface” dataset of the CO2 concentrations.

3 Results and discussions

In this section, we first describe the values of optimized pa-
rameters and the changes in their uncertainties. Then, the re-
sults of the seasonal cycles obtained from the partial column
data and near surface data will be compared from several as-
pects.

3.1 Optimized parameters

The values of bothQ10 andEmaxstabilized after five iterative
calculations to minimize Eq. (4) with the observed seasonal
cycles of partial column data. However, the values ofQ10
andEmax fluctuated quite significantly throughout the opti-
mization with near-surface data. Thus, we chose to use the
results which resulted in the smallest value ofχ2 since we
derivedχ2 without any approximations. We found that the
value ofχ2 decreased from 1.84 to 0.60 after optimization
with the partial-column data, while it decreased from 2.60 to
1.67 after optimization with the near-surface data.

The optimization with partial-column data resulted in an
averageEmax of 0.54 gC (MJ PAR)−1 andQ10 of 1.81 for

 

 

  

 
Fig. 2. (a)Emax (b) Q10 and of each vegetation type optimized with
partial column concentrations of CO2 and near-surface CO2 con-
centration. The dotted and dashed lines represent the initial value
and its uncertainty of respective parameter, respectively.

11 vegetation types with standard deviations of±0.20 gC
(MJ PAR)−1 and 0.29, respectively; while the optimization
with near-surface data resulted in averageEmax of 0.49 gC
(MJ PAR)−1 and Q10 of 1.81 with standard deviations of
±0.27 gC (MJ PAR)−1 and 0.27, respectively. The opti-
mized values ofEmax andQ10 for each vegetation type are
shown in Fig. 2. The value ofEmax optimized with partial-
column CO2 were greater than or approximately equal to the
Emax optimized with the near-surface CO2 data for all veg-
etation types except for BNF. Moreover,Emax of BNF was
more tightly constrained by the near-surface data than by the
partial-column data (Fig. 3). On the other hand, near-surface
and partial-column inversions resulted in the values ofQ10
that are significantly different from each other for AGR and
NEF, although these two vegetation types had the opposite
trends inEmax andQ10 (Fig. 2). Interestingly, near-surface
data of CO2 used in this study constrainedEmax more than
partial-column CO2 data while the trend was vice versa for
Q10 of all vegetation types except for AGR (Fig. 3).

At the same time, it has to be emphasized that the opti-
mizations of other parameters could have led to the com-
parable reduction inχ2 and thus the physical meanings of
the optimized parameters shown in Fig. 2 need to be care-
fully interpreted. Moreover, the available data on seasonal
cycles of vertical profiles of CO2 are quite limited at this
point, and thus the results of this study are strongly biased
toward the location of the available data as shown in Fig. 3
which shows that some of the vegetation types which have
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Table 1. Locations and amplitudes of the CO2 vertical profile data used for this study. The data were obtained from GLOBALVIEW-CO2
(2007).

Code Descriptive Name Latitude Longitude Altitudes (m)

BNE Beaver Crossing, Nebraska (USA) 40.80◦ 97.10◦ W 500, 1500, 2500, 3500, 4500, 5500, 6500
CAR Carr, Colorado (USA) 40.37◦ 104.30◦ W 3000, 4000, 5000, 6000, 7000, 8000
DND Dahlen, North Dakota 48.38◦ 97.77◦ W 500, 1500, 2500, 3500, 5000
ESP Estevan Point, Canada 49.58◦ 126.37◦ W 500, 1500, 2500, 3500, 4500, 5500
HAA Hawaii (USA) 21.23◦ 158.95◦ W 500, 1500, 2500, 3500, 4500, 5500, 6500, 7500
HFM Harvard Forest, Massachusetts (USA) 42.54◦ 72.17◦ W 1500, 2500, 3500, 4500, 5500, 3500, 7500
EPT Estevan Point, Canada 49.38◦ 126.55◦ W 500, 1500, 2500, 3500, 4500, 5500
HFM Harvard Forest, Massachusetts (USA) 42.54◦ 72.17◦ W 500,1500, 2500, 3500, 4500, 5500, 3500, 7500
HIL Homer, Illinois (USA) 40.07◦ 87.91◦ W 500, 1500, 2500, 2500, 3500, 4500, 5500
LEF Park Falls, Wisconsin (USA) 45.93◦ 90.27◦ W 500, 1500, 2500, 2500, 3500, 4500, 5500
NHA Worcester, Massachusetts (USA) 42.95◦ 70.63◦ W 500, 1500, 2500, 2500, 3500, 4500, 5500
ORL Orleans, France 47.80◦ 2.50◦ W 500, 1500, 2500, 3500
PFA Poker Flat, Alaska (USA) 65.07◦ 147.29◦ W 1500, 2500, 3500, 4500, 5500, 6500, 7500
RIA Rowley, Iowa (USA) 42.40◦ 91.84◦ W 1000, 3000, 5000, 7000
TGC Sinton, Texas (USA) 27.73◦ 96.86◦ W 50, 1500, 2500, 3500, 4500, 5500, 6500, 7500
THD Trinidad Head, California (USA) 41.05◦ 124.15◦ W 500, 1500, 2500, 3500, 4500, 5500, 6500, 7500
ZOT Zotino, Russia 60.00◦ 89.00◦ E 500, 1500, 2500, 3500

Table 2. NPP and GSNF of each vegetation type after CASA optimizations with near-surface and partial columns of CO2. The global totals
are also shown (note the unit change).

NPP, gC m−2 y−1 GSNF, gC m−2 y−1

Vegetation type Near-surface Partial-column Near-surface Partial-column
TRF 434.4 (±14.7) 492.4 (±14.6) 82.1 (±1.6) 92.2 (±1.6)
BDF 295.9 (±14.7) 332.1 (±14.9) 80.9 (±2.7) 90.7 (±2.7)
BNF 919.9 (±5.9) 728.9 (±8.1) 328.1 (±2.7) 229.6 (±2.24)
NEF 238.2 (±1.9) 378.2 (±2.2) 66.2 (±0.6) 147.6 (±1.0)
NDF 183.8 (±3.5) 278.5 (±4.2) 55.2 (±1.2) 78.1 (±1.4)
SVN 698.5 (±6.7) 802.2 (±7.3) 185.8 (±1.1) 223.3 (±1.2)
GSL 49.3 (±4.9) 126.5 (±5.2) 18.2 (±1.1) 45.9 (±1.1)
BSB 55.4 (±1.5) 54.2 (±1.5) 19.6 (±0.4) 19.2 (±0.4)
TUN 112.3 (±1.5) 103.5 (±1.6) 29.9 (±0.6) 26.8 (±0.6)
DST 5.4 (±0.2) 5.2 (±0.2) 2.2 (±0.1) 2.2 (±0.1)
AGR 108.1 (±1.4) 148.4 (±1.6) 52.7 (±0.5) 54.9 (±0.5)
Global total (PgC y−1) 36.7 (±0.6) 42.5 (±0.6) 10.6 (±0.1) 12.4(±0.1)

no nearby observation points have no significant reduction in
the parameter’s uncertainty. Therefore, increasing the num-
ber of the reliable vertical profile data is expected to improve
the confidence level of the resulting parameters.

3.2 Growing season net flux and NPP

To analyze the amplitude of seasonality of NEP of CASA
optimized in this study, we calculated growing season net
flux (GSNF) which is defined as the sum of NEP for the
months when NEP is positive (Randerson et al., 1997). The
use of GSNF is valuable in this study since CASA is de-

signed to have no annual net flux (i.e. zero annual NEP)
for each model grid, and so we can use GSNF as a mea-
sure of the productivity of ecosystem in CASA. The values
of GSNF were higher when CASA was optimized with the
partial-column CO2 data than with the near-surface data at
almost all latitudes except for around 40◦ to 45◦ (Fig. 4). We
compared the values of GSNF and NPP for each vegetation
type (Table 2), and found that GSNF decreased notably for
BNF when we changed the CO2 data for inversion from the
near-surface to partial-column data which account for the low
value of GSNF from partial-column inversion between 40◦

and 45◦. Except for BNF, GSNF and NPP of all vegetation

www.biogeosciences.net/6/2733/2009/ Biogeosciences, 6, 2733–2741, 2009
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Fig. 3. Uncertainty reduction (%) of(a) Emax and(b) Q10. Note
that here, we defined the “uncertainty reduction” as{1−CpCp0
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Fig. 4. Latitudinal distributions of GSNF obtained with partial-
column CO2 and near-surface CO2.

types obtained by inversion with the partial column data were
either approximately equal to or greater than those obtained
with the near-surface data, accumulating to 15.8% and 17.0%
increases in the total annual NPP and GSNF, respectively,
upon changing the data choice from near-surface to partial
column concentrations (Table 2). At the same time, Ran-
derson et al. (1997) predicted that the global sums of NPP
and GSNF for 1990 were 54.9 PgC y−1 and 13.6 PgC y−1,
respectively, and both of these values are slightly larger than
corresponding values obtained in this study (see Table 2).
Correctly identifying the cause of this discrepancy is out of
scope of the present study, since the datasets used for CASA
in their study are different from those in the present study.
Thus, directly comparing the results of these two studies
is difficult, and so we limit our discussion to the compar-
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Fig. 5. Seasonal cycles of CO2 partial column concentrations. Ob-
served values are plotted with the results of 2 cases of CASA opti-
mizations, as well as their prior values.

ison of our own results in this paper. Furthermore, using
column concentrations of CO2 observed by a ground-based
FTS, Yang et al. (2007) found that the actual GSNF north of
30◦ is approximately 28% larger than the GSNF predicted
by Randerson et al. (1997) using CASA. However, in their
study, Yang et al. (2007) did not directly evaluate the effects
of utilizing column or partial column concentrations of CO2
instead of boundary concentration data, and so no conclusion
was made on how much of this 28% is due to the weak verti-
cal mixing in transport models. In the present study, we can
directly compare these two cases. For example, our analysis
indicates that the use of near-surface data of CO2 resulted in
GSNF that was 14% less than the case with partial-column
data for north of 30◦N. At the same time, we note here that
this value (14%) can be expected to be slightly larger when
total column concentrations (e.g. from ground-based FTS
measurements) are used instead of partial columns used in
this study.

3.3 Seasonal cycle and vertical profiles of CO2 with op-
timized CASA NEP

Using two sets of optimized CO2 flux field from CASA
along with background fluxes, we simulated seasonal cy-
cle of global CO2 concentration field. Figure 5 shows that
the optimized seasonal cycles of partial-column concentra-
tions resulted in the better fits to observations of partial col-
umn concentrations than those simulated with prior values of
Emax andQ10, for both cases of optimizations. Furthermore
consistent with the trend of GSNF and NPP, the seasonal
cycle of CO2 partial-column concentrations simulated with
CASA optimized with near-surface data had a smaller am-
plitude than those optimized with partial-column data (Fig. 5;
results for only selected locations are shown). We also com-
pared the vertical profiles of the observed and simulated CO2
concentrations, by averaging vertical profiles for Northern
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Fig. 6. Vertical profiles of the simulated and optimized CO2 concentrations at each location. The simulated profiles were made using the
CASA parameters obtained with partial column of CO2 and near surface CO2 data.

Hemisphere summer (July, August, and September) and win-
ter (January, February, and March) (Fig. 6). By compar-
ing the vertical profiles simulated with 2 cases of optimized
CASA, we found that the vertical gradients of their CO2 con-
centrations are almost identical while the amplitude of sea-
sonal cycle at a given altitude is greater for the CO2 concen-
tration simulated with CASA optimized with partial column
data. On the other hand, for both of these simulated vertical
profiles of many locations, the simulated vertical gradients
are too strong compared with the observed vertical gradients
especially in winter (Fig. 6). This indicates that the vertical
mixings in the transport model at these locations are not suf-
ficient. Moreover, similarly to what was suggested by Yang
et al. (2007) for the average of 12 transport models used in
TransCom-3, NIES transport model has insufficient rates of
vertical mixing both between the planetary boundary layer
and upper troposphere (Fig. 6). This weak vertical mixing
in the transport model is attributed as a cause of the GSNF
and NPP of CASA that was underestimated when CASA was
optimized with the near-surface data. That is, low (in sum-
mer) and high (in winter) concentrations of CO2 in boundary
layer, caused by the net flux of CO2 due to activities of terres-
trial ecosystem (i.e. photosynthesis and respiration), are not
effectively propagated to the higher altitudes due to the insuf-
ficient vertical mixing in the transport model, and this results
in artificially high amplitudes of seasonal cycle of CO2 con-
centration near surface even when the correct amount of CO2
flux from CASA is given to a transport model. Thus, when
only near-surface data of CO2 concentrations are used to op-

timize CASA, the amplitudes of seasonal cycles of NEP in
CASA are underestimated. On the other hand, when column
concentrations of CO2 are used, the optimization of CASA
is affected less by the inaccuracy of vertical mixing in the
transport model and more reliable results can be obtained
although other problems in the transport model as well as
other parameters of CASA may bias the results. Further-
more, since the method described in this paper can correct
the seasonality of CASA NEP without being much affected
by a scheme of vertical mixing in a transport model, it can
be used to prepare flux fields of CO2 which can be used as a
reference for tuning vertical mixing processes in a transport
model, and could be complementary to other widely used
vertical mixing tracers such as radon.

4 Summary

The seasonality of the CASA ecosystem model was opti-
mized using the vertical profiles of the observed CO2 concen-
trations and the inverse of transport model with CASA. We
found that the method employed in this study can effectively
optimize the seasonality of CASA NEP. Moreover, we found
that the CASA NEP simulated with the partial column con-
centrations of CO2 has larger seasonal amplitude than that
simulated with the near-surface data. Our analysis showed
that annual GSNF predicted with the partial column data was
14% larger than that predicted with the near-surface data.
Furthermore, the analysis of the vertical profiles showed that
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the low GSNF predicted with near-surface data is due to
the weak vertical mixing in the transport model used in this
study. In conclusion, optimization of an ecosystem model for
CO2 flux in conjunction with an atmospheric transport model
can be more reliably achieved with CO2 column concentra-
tions than only with the near-surface data, especially when a
vertical mixing scheme in a transport model is not accurate
enough. As a result, we arrived at the CO2 flux model which
fits CO2 column observations better and is less dependent on
the mixing properties of the transport model used in the pa-
rameter optimization process. Better fit to the partial column
average concentration can potentially improve a fit of the for-
ward model simulations to the observations of the CO2 by
ground based and space based remote sensing instruments.
Transport model tuning is left beyond a scope of this study
because the main purpose of producing correct NEP season-
ality is achieved by using partial CO2 column observations,
although it would be even more efficient to simultaneously
tune transport and surface fluxes, that would allow including
surface-only observation sites data consistently with vertical
profiles.
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