
Biogeosciences, 6, 1591–1601, 2009
www.biogeosciences.net/6/1591/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Biogeosciences

Using satellite-derived backscattering coefficients in addition to
chlorophyll data to constrain a simple marine biogeochemical model

H. Kettle

The School of GeoSciences, University of Edinburgh, Edinburgh, UK

Now at: Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The Kings Buildings, Edinburgh, UK

Received: 31 March 2009 – Published in Biogeosciences Discuss.: 16 April 2009
Revised: 27 July 2009 – Accepted: 2 August 2009 – Published: 10 August 2009

Abstract. Biogeochemical models of the ocean carbon cycle
are frequently validated by, or tuned to, satellite chlorophyll
data. However, ocean carbon cycle models are required to ac-
curately model the movement of carbon, not chlorophyll, and
due to the high variability of the carbon to chlorophyll ratio in
phytoplankton, chlorophyll is not a robust proxy for carbon.
Using inherent optical property (IOP) inversion algorithms it
is now possible to also derive the amount of light backscat-
tered by the upper ocean (bb) which is related to the amount
of particulate organic carbon (POC) present. Using empiri-
cal relationships between POC andbb, a 1-D marine biogeo-
chemical model is used to simulatebb at 490 nm thereby al-
lowing the model to be compared with both remotely-sensed
chlorophyll orbb data. Here I investigate the possibility of
usingbb in conjunction with chlorophyll data to help con-
strain the parameters in a simple 1-D NPZD model. The pa-
rameters of the biogeochemical model are tuned with a ge-
netic algorithm, so that the model is fitted to either chloro-
phyll data or to both chlorophyll andbb data at three sites
in the Atlantic with very different characteristics. Several
inherent optical property (IOP) algorithms are available for
estimatingbb, three of which are used here. The effect of the
differentbb datasets on the behaviour of the tuned model is
examined to ascertain whether the uncertainty inbb is sig-
nificant. The results show that the addition ofbb data does
not consistently alter the same model parameters at each site
and in fact can lead to some parameters becoming less well
constrained, implying there is still much work to be done on
the mechanisms relating chlorophyll to POC andbb within
the model. However, this study does indicate that including
bb data has the potential to significantly effect the modelled
mixed layer detritus and that uncertainties inbb due to the
different IOP algorithms are not particularly significant.
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1 Introduction

Quantifying the global carbon cycle is crucial for predict-
ing our future climate. The oceans play an important role
in the carbon cycle as they absorb CO2 from the atmosphere
enabling the transport of carbon to the deep ocean through
physical and biological processes. Physical processes enable
CO2 rich waters from the ocean surface to sink downwards
possibly resurfacing up to hundreds of years later. However,
biological processes can also cause particulate organic car-
bon (POC) to sink below the thermocline (a process termed
as “export production”). Thus for climate change prediction
it is crucial to quantify the amount of CO2 that is transferred
from the atmosphere to the ocean through the air-sea inter-
face (the air-sea CO2 flux) and the amount of carbon that is
subsequently exported to the deep ocean. Ideally, validation
of ocean carbon cycle models would involve comparison of
the simulated air-sea CO2 flux and export production with
measured data. Unfortunately these data are not available
at the time and space scales necessary. However, chlorophyll
concentrations inferred from satellite ocean colour data (Chl)
are available globally at an adequate time-space resolution.
Chl gives an indication of the amount of living phytoplank-
ton in the ocean. This is useful since it is algal photosyn-
thesis that removes CO2 from the water allowing more CO2
from the atmosphere to enter the ocean. Ideally, to model the
carbon cycle, we need to know the amount and rate of car-
bon fixed by phytoplankton but these are not directly related
to the amount and rate of change of chlorophyll since the
carbon to chlorophyll ratio (C:Chl) within phytoplankton is
highly dynamic (Geider et al., 1997). Therefore, chlorophyll
is not a robust proxy for carbon unless there are also data on
phytoplankton physiology (C:Chl). Thus it is perfectly pos-
sible to correctly predict chlorophyll concentrations without
correctly predicting carbon concentrations.

Satellite ocean colour data are simply measurements of the
amount of sunlight (at certain wavelengths) that is scattered
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back out of the ocean (known as the water leaving radiance).
Water leaving radiance can be used to estimate the inher-
ent optical properties (IOPs) of the ocean surface waters –
these include the absorption coefficient,a (m−1), and the
backscattering coefficient,bb (m−1). The total backscatter-
ing coefficent is the sum of the particulate backscattering co-
efficient (bbp) and the backscattering due to seawater (bbw).
There are a number of algorithms available to calculatebb or
bbp from the water leaving radiance, e.g.,Loisel and Poteau
(2006), Smyth et al.(2006), the QAA (Lee et al., 2002), and
the GSM (Garver and Siegel, 1997; Maritorena et al., 2002;
Siegel et al., 2002). Furthermore,bbp derived from satellite
data has been empirically related to the amount of POC in
the surface waters (e.g.Loisel et al., 2001, 2002; Stramski
et al., 1999). POC is a combination of the amount of carbon
contained within living phytoplankton (CP ) and biological
detritus (CD). Other possible products from ocean colour
data are the IOPa (absorption coefficient) and the apparent
optical propertyKd (attenuation coefficient for downwelling
light). However, in the open ocean variations ina andKd

will be strongly related to Chl so it is unlikely that there is
significantly different information here to constrain the mod-
els much beyond simply using Chl.

In this study, the potential to use satellitebb data in addi-
tion to satellite Chl data to calibrate a simple 1-D open ocean
biogeochemical model is investigated. The model consists
of the Hadley Centre Ocean Carbon Cycle model (HadOCC;
Palmer and Totterdell, 2001) coupled to the 1-D General
Ocean Turbulence Model (GOTM,Burchard et al., 1999).
HadOCC is a simple nutrient-phytoplankton-zooplankton-
detritus (NPZD) plus carbonate chemistry model that is used
in climate prediction models such as HadCM3. The model
is applied to three sites in the Atlantic ocean that have very
different physical and biological characteristics. The model
parameters are tuned, independently for each station, to co-
incident satellite Chl andbb data using a genetic algorithm to
search the parameter space. The hypothesis is that by using
satellitebb to validate the POC in global 3-D climate predic-
tion models, the detrital and phytoplankton components of
the model may be better constrained than when simply us-
ing Chl. Since there are several IOP algorithms available for
estimatingbb the model is tuned to each of these different
datasets to assess whether the uncertainty in thebb data in-
validates the hypothesis.

2 Sites

Three sites in the Atlantic are chosen due to the availability of
observed data at these locations (seehttp://www.noc.soton.
ac.uk/animate). They are: the Central Irminger Sea (CIS) at
60◦ N, 40◦ W, the Estacion Europea de Series Temporales del
Oceano, Islas Canarias (ESTOC) at 29◦ N, 15.5◦ W and the
Porcupine Abyssal Plain (PAP) at 49◦ N, 16◦ W. These sites
have diverse characteristics, as demonstrated by SeaWiFS
satellite measurements of their photosynthetically active ra-
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Fig. 1. Comparing PAR (SeaWiFS), chlorophyll (SeaWiFS) and
bb(490) (LP algorithm) at the three different sites in the Atlantic.

diation (PAR), chlorophyll concentrations and backscattering
coefficients (Fig.1) thereby providing a range of conditions
over which to test the hypothesis.

3 Satellite data

The ocean colour data were downloaded fromftp://oceans.
gsfc.nasa.gov/SeaWiFS/Binned/8Day/. These datafiles con-
tain binned normalised water leaving radiances,nLw (at
wavelengths 412, 443, 490, 510, 555 and 670 nm and
chlorophyll-a data (from the OC4v4 algorithm), averaged
over 8 days intervals. The remote sensing reflectance (Rrs)
is computed fromnLwusing

Rrs(λ) =
nLw(λ)

F0
(1)

whereF0(λ) are 173.00, 190.15, 196.47, 188.16, 183.01,
151.14.

4 Methods

4.1 Deriving the particulate backscattering coefficient,
bbp(490)

bbp can be derived fromnLw or Rrs using a variety of
IOP inversion algorithms. Herebbp at 490 nm (required for
relating to POC) is obtained using the following four IOP
algorithms:

LP (Loisel and Poteau, 2006; Loisel and Stramski, 2000;
Loisel et al., 2001.) bb(490) obtained from this
algorithm is converted tobbp(490) using

bbp(490) = bb(490) − bbw(490) (2)
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wherebbw(490)=0.001581378 m−1 is the backscatter-
ing coefficient due to water.

GSM (The Garver-Siegel-Maritorena semi-analytical algo-
rithm; Garver and Siegel, 1997; Maritorena et al., 2002;
Siegel et al., 2002.) This algorithm givesbbp(443)
which is converted tobbp(490) using

bbp(490) = bbp(443)

(
490

443

)−γ

(3)

where

γ = −0.855∗ log(Chl) + 1.259 (4)

for Chl in mg m−3 (Loisel et al., 2006).

PML (Plymouth Marine Laboratory;Smyth et al., 2006.)
This is a semi-analytical model using empirically de-
rived spectral slopes between neighboring wavebands in
combination with a radiative transfer model. This gives
bbp(490) which is used directly.

QAA (The Quasi-Analytical Algorithm,Lee et al., 2002.)
This givesbbp(490) which is used directly.

Where the solar zenith angle is a necessary input
(e.g., for LP and PML) it is set to 0◦. The code
for computing the LP and QAA algorithms was ob-
tained fromhttp://www.ioccg.org/groups/software.htmland
the algorithms were driven by eight-day averages of
nLw or Rrs (Eq. 1) from SeaWiFS. The results of the
GSM (v4) algorithm for bbp(443) (using SeaWiFS 5.2)
were downloaded fromhttp://www.science.oregonstate.edu/
ocean.productivity/inputBbpGsmData.php. And finally, the
PML algorithm results were kindly provided by Tim Smyth.

The different IOP algorithms can give quite different val-
ues ofbbp(490) as shown in Figs.2 and 3. In Fig. 3 it is
clear that the QAA and LP results agree very well (Fig.3c)
but there is considerably less agreement between the other
algorithms, with the largest discrepancies between PML and
GSM (Fig.3e). However, the intention here is not to com-
pare these algorithms but rather to investigate whether thebb

data produced by the different algorithms are similar enough
to each other to constrain the ocean biogeochemical model
in a consistent way.

4.2 Biogeochemical model

The biogeochemical model used here is the NPZD Hadley
Centre Ocean Carbon Cycle model (HadOCC;Palmer and
Totterdell, 2001) coupled to the 1-D General Ocean Turbu-
lence Model (GOTM,Burchard et al., 1999) (henceforth de-
noted GOTM-HadOCC). For further details and model equa-
tions please refer toKettle and Merchant(2008). The differ-
ence in the model used here is the calculation of C:Chl, for
which the empirical equation ofCloern et al.(1995) is used
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Fig. 2. Satellite-derivedbbp(490) at each site using 4 different IOP
inversion algorithms.
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Fig. 3. Comparing IOP inversion algorithms forbbp(490) (m−1):
(a) Loisel and PML,(b) QAA and PML, (c) Loisel and QAA,(d)
GSM and QAA,(e) GSM and PML,(f) Loisel and GSM for CIS
(blue), ESTOC (green) and PAP (red).

rather than that ofGeider et al.(1997). The Cloern equa-
tion was used because it uses both physical and biological
properties (further details are given in Sect. 4.2) and so is
not as highly dependent on biological parameter values as
the Geider equation. In this application, underwater light
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and photosynthesis are modelled using 6 wavebands, with
the downwelling attenution coefficient modelled according
to Morel and Maritorena(2001) and the absorption of light
by phytoplankton fromBricaud et al.(1998) (seeKettle and
Merchant, 2008 for more detail). The remineralisation of
detritus (D) back to nutrient (not described byKettle and
Merchant, 2008) is computed as follows: below 100m the
amount of detritus remineralised isγdepthD (see Table2 for

γ ); above 100 m is it fixed at 0.1D (mmol N m−3 d−1). The
model is driven with ERA-40 reanalysis meteorological data
from ECMWF at 6 hourly resolution and the physical model
(GOTM) is tuned to reproduce the observed temperatures in
the ANIMATE dataset (seeKettle and Merchant, 2008). At
CIS the shortage of satellite data caused by its high latitude
means it was necessary to tune the model to 2 years of data
(2003–2004), but at ESTOC and PAP the model is only tuned
to 2003 data due to computation time constraints.

4.2.1 Model set-up

The initial profiles of inorganic nutrient are taken from the
Levitus climatology (Levitus et al., 1993) and concentra-
tions of phytoplankton and zooplankton are both initialised
at 0.01 mmol N m−3 and detritus is started at zero. Since for
parameter optimisation the model must be runs thousands of
times, the vertical grid is reduced to 25 layers with geometri-
cal zooming towards the surface so that the surface layer has
thickness 5 cm, there are 10 levels above 10 m and 16 levels
above 100 m, eventually going to thicknesses of 900 m at
abyssal depths. The vertical grid is constant in time and is
the same at each location. GOTM-HadOCC requires some
“spin-up” time to remove sensitivity to the initial conditions
so the model is run for 12 months before the results are com-
pared with the satellite data. The driving data for the spin-up
year is simply a copy of the 2003 data.

4.2.2 Computing Chl within GOTM-HadOCC

Chlorophyll concentration (mg m−3) is computed using

Chl =
MC(C : N)P

C : Chl
Phyto (5)

where Phyto is the concentration of nitrogen in the phyto-
plankton compartment (mmol N m−3), MC is the molar mass
of carbon (12.01 g mol−1), and (C:N)P is the molar C:N ra-
tio in phytoplankton (6.625 mol C (mol N)−1). The C:Chl
(mass) ratio, is computed using physical variables and the nu-
trient limitation on growth (Nlim) according toCloern et al.
(1995):

C : Chl =
(
0.003+ 0.0154e(0.05TM−0.059(IM ))Nlim

)−1
(6)

where TM is the temperature (◦C) of the mixed layer
and IM is the mean daily irradiance in the mixed layer
(mol photons m−2 d−1) (the expression is inverted asCloern

et al.(1995) use Chl:C). Below the mixed layer C:Chl is set
to 40. The nutrient limitation on growth is given by:

Nlim =
N

Knit + N
(7)

whereN is inorganic nutrient (nitrogen) andKN is the half
saturation parameter (see Table2).

4.2.3 Computingbbp(490) within GOTM-HadOCC

The scattering of underwater light is affected by the amount
of POC in the water. In GOTM-HadOCC, POC (mg m−3) is
calculated by adding together the carbon in the phytoplank-
ton and detrital compartments:

POC= MC((C : N)P Phyto+ (C : N)DD) (8)

whereD is the nitrogen concentration (mmol N m−3) in the
detritus compartment and (C:N)D is the C:N ratio in detritus
(set to 7.5). Note here that POC is assumed not to include
zooplankton however, it is possible that small zooplank-
ton (< ∼0.5 cm) may be included in field measurements
of POC. Since the zooplankton compartment in GOTM-
HadOCC contains all sizes of zooplankton, it was omitted
here but future work could be to look at the difference in the
results if some fraction of the zooplankton compartment was
also included as POC.

POC is then used to simulatebbp(490) through the follow-
ing series of equations.

The scattering coefficient due to POC,bPOC(490) (m−1),
is estimated from POC using a simple linear relationship:

bPOC(490) =
POC

400
(9)

(Loisel et al., 2002; Claustre et al., 1999). This is converted
to the backscattering coefficient due to POC by

bbPOC(490) = 0.0096bPOC(490)Chl−0.253 (10)

for Chl in mg m−3 (Twardowski et al., 2001). The total par-
ticulate backscattering coefficient is then assumed to be the
sum ofbbPOC and a background value (bbBG) which is un-
related to biological activity and set to 0.17×10−3 m−1 (see
Fujii et al., 2007for more details), such that:

bbp(490) = bbPOC(490) + bbBG. (11)

Thus the minimum value forbbp(490) predicted by GOTM-
HadOCC is 0.17×10−3 m−1 which is just slightly higher
than the minimums shown by the satellite data for the three
sites (Fig.2).

4.2.4 Optical weighting

In order to compare depth-resolved model variables with the
equivalent remote sensing variable, the vertical profile must
be weighted according to its contribution to the light leaving
the water. Since the light must travel down through the water
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and back out again, the diminishing factor is exp(−2Kd(z))
(assuming the attenuation of upwelling and downwelling ir-
radiance is the same) whereKd is the attenuation coefficient
for downwelling light. Thus for a variableX its remotely
sensed equivalent,Xrs is computed here using:

Xrs =

∫ z90
0 X(z)g(z)dz∫ z90

0 g(z)dz
(12)

where

g(z) = exp(−2
∫ z90

0
Kd(z′)dz′)

(Gordon and Clark, 1980), whereKd is spectrally averaged
andz90 is the first attenuation depth (the depth above which
90% of the light received by the satellite originates – this
varies with changing Chl concentration).

4.3 Tuning model parameters

Eleven of the model parameters are tuned, based on a re-
cent sensitivity analysis of the model byScott et al.(2008).
Table 2 shows the tuning parameters and their range of
possible values. Given the similarity between the LP and
QAA bb(490) datasets it was deemed unnecessary to tune
the model to both datasets and so the QAA dataset was omit-
ted from the following work. Thus GOTM-HadOCC is tuned
independently at each site to the following four datasets:

C Chlorophyll

L Chlorophyll andbb(490) from LP

G Chlorophyll andbb(490) from GSM

P Chlorophyll andbb(490) from PML

For a given parameter set, GOTM-HadOCC outputs Chlrs

and bbrs which are then compared to the observed dataset
using the cost function:

cost=
1

J
6J

j=1
1

Njσ
2
j

6
Nj

n=1(obsjn − modjn)
2 (13)

wherej is the data type (i.e., Chl orbb), J is the number of
datatypes (i.e., 1 or 2),Nj is the number of observations of
typej , σ 2

j is the variance of the observed data for the given
site over the entire time period (see Table1) and modj is an
8 day moving average of the 6-hourly model output. When
there is more than one type of observation, i.e., both Chl and
bb, they are adjusted to each have the same number of data
points.

4.3.1 Optimisation using a genetic algorithm

To search through the parameter space to find the optimum
parameter set (i.e., the one which minimizes the cost function
(Eq. 13)), a genetic algorithm (GA) is employed (following

Table 1. Variances of observed data.

Site Chl mg m−3 bb(490)×10−7 m−1

LP GSM PML

CIS 0.0819 9.47 3.82 17.9
EST 9.5 x 10−4 0.935 0.502 1.24
PAP 0.0364 9.36 8.54 18.9

Schartau and Oschlies, 2003). This approach has also been
recently tested byWard et al.(2006) for a 1-D marine ecosys-
tem model and was found to give results comparable to those
for optimisation using the variational adjoint method. A GA
is simply a search/optimisation technique based on Darwin’s
theory of natural selection (for an good introduction to GAs
seeGoldberg, 1989). The basic idea is that a set of model
parameters is viewed as an “individual” whose fitness,F , is
determined by

F =
1

cost
. (14)

A number of individuals make up a “population” within
which the individuals “reproduce” to make a population of
new individuals (the next generation). Whether or not at-
tributes from a certain individual are transferred to the next
generation depends on whether the individual is allowed to
reproduce, which in turn depends on its fitness. Individu-
als with high fitness levels are more likely to reproduce than
those with low fitness (survival of the fittest). The offspring
from two individuals is a new individual (parameter set) with
characteristics from each parent. To bring in new informa-
tion, mutation may be used to make small modifications to
some of the children. Thus, the procedure produces succes-
sive generations of parameter sets that give models whose
output is a better match to the observed data, eventually
converging to the parameter set that gives the best possible
model fit.

Here a micro-genetic algorithm (µGA) coded and pub-
lished by Carroll (1996) and made freely available at
http://cuaerospace.com/carroll/ga.htmlis used. Details of the
µGA are given byKrishnakumar(1989). TheµGA is based
on the same operations as a general GA but it does not con-
tain mutation and gives greater influence on elitism princi-
ples thereby assuring that the best individual (parameter set)
is transferred to the next generation. As soon as all the in-
dividuals of one generation show less than 5% difference
between each other, a new random population is generated
(although the best individual is retained).

Here, each parameter in the set of 11 tuneable parameters
(Table2) is represented by a 6 digit binary string thus en-
abling each parameter to take 64 possible values (the result-
ing parameter increments are given in Table2). The string
for each individual (i.e. parameter set) is thus 66 (11×6)

www.biogeosciences.net/6/1591/2009/ Biogeosciences, 6, 1591–1601, 2009

http://cuaerospace.com/carroll/ga.html


1596 H. Kettle: Using backscattering data to constrain an ocean biogeochemical model

digits long and the population is chosen to comprise of
11 individuals. The optimisation is run for 2000 generations
(11×2000 model runs for each dataset and site) to ensure
convergence.

5 Results

5.1 Model fit to data

At each site GOTM-HadOCC is tuned in turn to the C, L, G
and P datasets (defined in Sect.4.3). In most cases the GA
has achieved the optimum fitness after∼1000 generations
(see Fig.4). Figures5 and 6 show the model outputs of
Chlrs andbbrs (from here on simply referred to as Chl and
bb) when run with the optimised parameter sets, compared
with the appropriate satellite data. The fits are remarkably
good given GOTM-HadOCC is only 1-D with no accounting
for advection. Broadly speaking, tuning also tobb data in-
creases the magnitude of both modelled Chl andbb (Figs.5
and6). Table3 gives the RMSEs for the different model fits.
Note the number of observed data points varies between IOP
algorithms as some of the algorithms produce more invalid
values than others (e.g. negative numbers). In general, and
as expected, adding inbb data causes an increase in Chl er-
ror. Somewhat surprisingly Table3 shows that in some cases
thebb RMSE is actually smaller when the model is not tuned
to bb (e.g., at CIS and PAP tuning to dataset P gives a larger
bb RMSE than tuning to dataset C; at ESTOC tuning to L and
P are worse than tuning to C). This has to do with the way
the errors are calculated whereby the models tuned to dataset
C are compared with the mean of the observedbb datasets,
whereas the models tuned to a particularbb dataset are then
compared with that dataset. The combined RMSE results
show that GOTM-HadOCC produces the best fit to dataset
G which implies that the SeaWiFS chlorophyll data and the
GSM bb data are related in a way that is the most consistent
with the mechanisms contained within GOTM-HadOCC.

5.2 Optimised parameter values

Table 4 shows the optimised parameter values for each
dataset at each of the three sites. Using a student t-test it is
possible to test whether the parameters in the model tuned to
dataset C are significantly different (i.e., outside the 95th per-
centile) to those obtained whenbb data are also used (datasets
L, G and P) – this is shown by the line labelled “significant”
in Table4. Also, to see how well constrained the optimised
parameters are, it is useful to look at the sensitivity of the
model fitness to variations in each of the parameters when the
other parameters are at their optimum values (Fennel et al.,
1995) – this is shown in Fig.7. Well constrained parameters
are evident by a well defined curve whose gradient changes
from positive to negative at the optimum parameter value,
e.g.,Pm for dataset C at CIS (Fig.7). Note that optimised pa-
rameters occuring at the bounds of their predefined range are
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Fig. 5. Comparing Chl from optimised models (8-day running
means) with observed satellite data.

considered to be unconstrained by the optimisation. Looking
at Table4 and Fig.7 together allows the real difference in
the model parameter values caused by adding inbb data to
be determined.

At CIS, KN , Pm, φ, R andV are found to be significantly
altered by adding inbb data (Table4). However, Fig.7 shows
that the model is virtually insensitive to changes inKN , and
for thebb datasets,R andV are at the lower bounds of their
predefined ranges. Thus of the parameters that show a sig-
nificant and consistent shift in value due tobb data, onlyPm

andφ are well constrained. Alternatively, the parametersµ1,
Kf andgmax are reasonably well constrained but their values
are not significantly and consistently altered by adding inbb

data. Thus, it can be concluded that at CIS, adding inbb data
causes onlyPm andφ to each change towards a different and
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Table 2. Parameters of the NPZD model. Note the fixed parameters are shown in Table 2 inKettle and Merchant(2008) with the exception
thatFth is set to 0.01 mmol N m−3 at all sites.

Parameter for variation Symbol Units Lower bound Upper bound Interval

Half saturation constant of N uptake KN mmol N m−3 0.01 0.85 0.0133
Max. photosynthetic rate Pm d−1 0.1 5.1 0.0808
Yield φ mol C mol quanta−1 0.01 0.12 0.0018
Respiration rate R d−1 0.005 0.095 0.0014
Conc. dependent specific mortality m0 d−1(mmol N m−3)−1 0.008 0.25 0.0038
Constant specific mortality (zoo.) µ1 d−1 0.03 0.2 0.0027
Zoo-dependent specific mortality µ2 d−1(mmol N m−3)−1 0.03 0.57 0.0086
Half saturation constant for Z grazing Kf mmol N m−3 0.4 1.0 0.0095
Max. Z grazing rate gmax d−1 0.06 2.0 0.0308
Detrital sinking rate V m d−1 3.0 32.0 0.4603
Deep remineralisation rate γ m d−1 3.8 13.36 0.1518

well constrained value. At ESTOC,Pm, µ1 andKf are sig-
nificantly different whenbb data are added (Table4) but only
Kf is well constrained (the others have values at the bounds
of their ranges). Figure7 shows that, at ESTOC, very few pa-
rameters are well constrained indicating that there are large
uncertainties associated with the model simulations at this
location. At PAP,KN , m0, andV are significantly different
whenbb data are added but onlym0 is within its bounds and
is well constrained. Thus the information added by including
bb data does not consistently constrain the same parameters
at each site. In fact, at all of the sites there are some parame-
ters that are much better constrained when only Chl data are
used (e.g., at CIS:φ, µ1, Kf ; at ESTOC:Pm, Kf , and at
PAP: KN , R, m0, µ1 andKf ). This implies that the way
bbp(490) is generated by GOTM-HadOCC needs significant
refinement (i.e. Eqs.9–11) in order that the mechanisms re-
lating Chl andbbp(490) are consistent with the satellite data.

5.3 Model behaviour

Given that the optimised parameter values may show a range
of values for the different tuning datasets, it is perhaps more
informative to examine the actual model outputs to ascer-
tain the real effect of includingbb data. Figure8 shows the
modelled nutrient, phytoplankton, zooplankton and detritus
within the mixed layer for each site for each optimised pa-
rameter set. Results vary considerably between sites with all
of the differently optimised models having very similar be-
haviour at CIS, very different behaviour at ESTOC and dif-
ferences which depend on the model compartment examined
at PAP. At ESTOC, it is clear that the satellite data do not
have sufficient dynamical range to constrain the model be-
haviour. At all of the sites, however, the models tuned to
datsets G and L show very similar behaviour implying that
thebb data from these 2 algorithms are not significantly dif-
ferent. At CIS and PAP the models tuned to dataset P (dotted

Table 3. RMS errors between the tuned-model output and the satel-
lite data. Notebb output from models tuned to dataset C are com-
pared with the mean of the 3bb datasets whereas the others are com-
pared with thebb datset they were tuned to. The combined error is
computed by scaling the two RMSEs by the mean for the 4 tuning
datasets and then adding the two scaled error values. The number of
observed data points is shown in brackets (note CIS covers 2 years).

Dataset C L G P

RMSE with observed Chl (mg m−3)

CIS 0.18 0.19 0.19 0.21
EST 0.025 0.026 0.026 0.026
PAP 0.13 0.14 0.15 0.16

RMSE with observedbb (10−4 m−1)

CIS 13.4 10.0 8.11 21.0
EST 2.41 2.88 2.11 3.21
PAP 11.5 9.24 7.14 16.32

Combined error (dimensionless)

CIS 1.94 (54) 1.77 (48) 1.61 (51) 2.67 (44)
EST 1.86 (45) 2.10 (43) 1.80 (45) 2.24 (38)
PAP 1.96 (38) 1.77 (33) 1.66 (36) 2.60 (28)

lines) have outputs which are generally similar to those for L
and G with the notable exception of the complete extinction
of zooplankton at PAP! At CIS the model tuned to dataset C
(the chlorophyll only dataset) shows slightly less phytoplank-
ton (and subsequently less nutrient uptake), and zooplankton
and detritus than the models that are also tuned tobb. At PAP,
the model tuned to dataset C shows similar concentrations of
nutrient and phytoplankton but significantly less detritus (the
zooplankton compartment is clearly not well constrained by
the satellite data).
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Table 4. Optimised model parameter sets for each tuning dataset at each site. Numbers in bold indicate the parameter value is at the bounds
of its predefined range. Significant: “yes” indicates that the parameter value for dataset C is outside of the 95th percentile for the other
3 datasets using the student t-test (i.e. adding inbb data changes the parameter value in a consistent way).

KN Pm φ R m0 µ1 µ2 Kf gmax V γ fitness

CIS

C 0.72 1.22 0.040 0.011 0.250 0.079 0.570 0.657 1.415 3.92 7.14 1.88
L 0.85 0.58 0.089 0.005 0.250 0.044 0.544 0.924 1.107 3.00 3.80 0.70
G 0.85 0.58 0.092 0.005 0.250 0.054 0.570 0.700 0.922 3.00 13.36 0.91
P 0.85 0.74 0.090 0.005 0.250 0.081 0.570 1.000 1.538 3.00 3.80 0.40
significant yes yes yes yes no no no no no yes no

EST

C 0.85 0.66 0.113 0.005 0.008 0.200 0.201 0.533 1.784 4.84 3.80 1.86
L 0.01 4.53 0.120 0.015 0.012 0.143 0.450 0.905 0.676 19.573.80 0.70
G 0.01 4.62 0.113 0.028 0.008 0.116 0.570 0.838 1.230 31.54 4.86 0.65
P 0.85 5.10 0.064 0.005 0.012 0.116 0.073 0.981 1.9383.00 3.80 0.70
significant no yes no no no yes no yes no no no

PAP

C 0.69 3.16 0.010 0.019 0.158 0.060 0.030 0.552 0.645 7.60 13.36 2.12
L 0.82 4.53 0.014 0.016 0.242 0.087 0.0900.400 0.553 3.00 13.36 0.89
G 0.85 0.66 0.057 0.062 0.223 0.041 0.253 0.533 0.3993.00 12.90 0.83
P 0.85 2.43 0.015 0.016 0.219 0.184 0.364 0.486 1.9693.00 4.10 0.47
significant yes no no no yes no no no no yes no
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Fig. 6. Comparingbb(490) from optimised models (8-day running
means) with observed satellite data (averge of all IOP algorithm
results).

Interestingly at ESTOC the phytoplankton compartment
shows a wide range of values which implies the model is sim-
ulating very different phytoplankton physiology (C:Chl ra-
tios) since the chlorophyll concentrations are similar (Fig.5).
Figure9 shows C:Chl ratios in the mixed layer for each site.
At CIS they are virtually identical for the different models;
at PAP there are large differences when the model is tuned
to dataset P and small differences between the other models
in the latter half of the year. At ESTOC, however, there are

very large differences in C:Chl between the models. This
indicates that correctly simulating Chl at this location with
GOTM-HadOCC will not necessarily result in the correct
estimation of carbon fixation. Furthermore, the fairly large
differences between the models tuned to datasets withbb in-
cluded indicates that at this location (where there is no strong
seasonal cycle), the differences in thebb values from diffe-
rent IOP algorithms is significant. This is supported by the
values for mean column primary production predicted by the
models which are tuned to the datasets that includebb data
(Table5) – at ESTOC the values vary by up to 191%, at CIS
by up to 24% and at PAP by up to 54%.

The other important variable for climate prediction is the
export of detrital material below the thermocline (export pro-
duction). This is a balance between the rate at which the
material sinks and the rate at which it is remineralised back
to nutrient. In order to compare the effect of the different
parameter sets on export production, the amount of detri-
tus below 200m on the last day of the simulation is used.
The choice of depth level is arbitrary since the physics of
the models at each site are the same. Table5 shows that
the amount of detrital carbon below 200 m is highly vari-
able even for models that have very similar surface behaviour
(e.g., models tuned to datasets L and G at CIS). This is be-
cause it is highly sensitive to the remineralisation rate,γ

which is not well constrained since its effects are seen be-
neath the depth to which the satellite sensor can retrieve in-
formation.
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Fig. 7. Sensitivity of model fitness to variations in each parameter when the other parameters are at their optimised values for datasets C
(pale blue), L (black), G (dashed) and P (dotted). The optimum parameter values are marked by circles.

6 Conclusions

It has been shown here that satellite Chl andbb data are not
sufficient to fully constrain the parameters in a simple 1-D
biogeochemical ocean model. In fact includingbb data in-
creases the errors in the simulated Chl in the mixed layer and
causes a number of parameters to be less well constrained.
This implies that the mechanisms in the model that connect
Chl andbb are not consistent with the observations. This
implies one or more of the following:

1. Modelled phytoplankton carbon (which is a function of
phytoplankton physiology (C:Chl)) and detrital carbon
(and hence POC) are incorrect.

2. Equations9–12need refining.

3. bBG is incorrect and should have been included in the
optimisation procedure.

Table 5. Comparing results from the differently optimised
models for the mean primary production in the water column
(mg C m−2 d−1) and the amount of detrital carbon below 200 m
(g C m−2).

Tuning data: C L G P

Mean column primary production

CIS 152.4 181.0 182.5 224.5
EST 92.4 40.9 65.8 119.4
PAP 62.3 86.7 134.2 95.7

Detrital carbon below 200 m

CIS 0.42 2.12 0.09 2.62
EST 1.95 2.55 1.56 1.06
PAP 0.08 0.01 0.01 0.47
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Fig. 8. Modelled 8-day running means of mixed-layer nutrient, phy-
toplankton, zooplankton and detritus (all in mmol N m−3) produced
by the optimised models at each site. Thick pale blue lines repre-
sent the model optimised to dataset C, black lines are for datsets L
(solid), G (dashed) and P (dotted).
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Fig. 9. Modelled 8-day running means of mixed-layer C:Chl pro-
duced by the optimised models at each site. Thick pale blue lines
represent the model optimised to dataset C, black lines are for dat-
sets L (solid), G (dashed) and P (dotted).

4. Some fraction of zooplankton should be added to POC.

In addition to this, the possibility that some other model pa-
rameters, that were not included in the optimisation proce-
dure, are important should also be mentioned.

However, at two of the locations chosen (CIS and PAP) us-
ing the Chl andbb datasets togetheris sufficient to constrain
modelled outputs of nutrient, phytoplankton and detritus (but
not always zooplankton) within the mixed layer. Moreover,
includingbb data rather than simply using Chl significantly
and consistently alters the modelled detritus at PAP.

The differences inbb resulting from different IOP inver-
sion algorithms do not appear to be hugely significant as the
models tuned to the different datasets show fairly consistent
behaviour. However, using thebb data from the GSM al-
gorithm gives the best simultaneous fit of modelled Chl and
modelledbb to the satellite data at each site.

To conclude, incorporatingbb data into ocean carbon cycle
models has great potential to improve simulations of phyto-
plankton and detritus in the mixed layer but this is a relatively
new field of research and as this preliminary investigation
shows, there is still much work to be done.
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