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Abstract. The distribution of lipid biomarkers and their
stable carbon isotope composition was investigated on sus-
pended particles from different contrasting trophic environ-
ments at six sites in the South East Pacific. High al-
gal biomass with diatom-related lipids (24-methylcholesta-
5,24(28)-dien-3β-ol, C25 HBI alkenes, C16:4 FA, C20:5 FA)
was characteristic in the upwelling zone, whereas hapto-
phyte lipids (long-chain (C37-C39) unsaturated ketones) were
proportionally most abundant in the nutrient-poor settings
of the centre of the South Pacific Gyre and on its easter
edge. The dinoflagellate–sterol, 4α-23,24-trimethylcholest-
22(E)-en-3β-ol, was a minor contributor in all of the studied
area and the cyanobacteria-hydrocarbon, C17n-alkane, was
at maximum in the high nutrient low chlorophyll regime of
the subequatorial waters near the Marquesas archipelago.

The taxonomic and spatial variability of the relationships
between carbon photosynthetic fractionation and environ-
mental conditions for four specific algal taxa (diatoms, hap-
tophytes, dinoflagellates and cyanobacteria) was also inves-
tigated. The carbon isotope fractionation factor (εp) of the
24-methylcholesta-5,24(28)-dien-3β-ol diatom marker, var-
ied over a range of 16‰ along the different trophic systems.
In contrast,εp of dinoflagellate, cyanobacteria and alkenone
markers varied only by 7–10‰. The low fractionation fac-
tors and small variations between the different phytoplank-
ton markers measured in the upwelling area likely reveals
uniformly high specific growth rates within the four phyto-
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plankton taxa, and/or that transport of inorganic carbon into
phytoplankton cells may not only occur by diffusion but also
by other carbon concentrating mechanisms (CCM). In con-
trast, in the oligotrophic zone, i.e. gyre and eastgyre, rela-
tively high εp values, especially for the diatom marker, in-
dicate diffusive CO2 uptake by the eukaryotic phytoplank-
ton. At these nutrient-poor sites, the lowerεp values for hap-
tophytes, dinoflagellates and cyanobacteria indicate higher
growth rates or major differences on the carbon uptake mech-
anisms compared to diatoms.

1 Introduction

The sustainability of phytoplankton growth in the world
ocean is basically controlled by three factors: nutrient abun-
dance, light availability and the response of phytoplankton to
these sources (Falkowski, 1984; Falkowski et al., 1998; Irwin
et al., 2006; Litchman et al., 2006). The variability of these
factors and their role in biogeochemical processes emerge
from the properties of the surface mixed layer. Hence, eu-
trophic areas, such as upwellings, with continuous nutrient
supply to the euphotic zone differ strongly from areas with a
permanently nutrient-depleted surface layer. In these areas,
e.g. oceanic gyres, a deep pycnocline prevents surface waters
from a supply with deeper, more nutrient-rich waters.

Photosynthesis is a major biogeochemical process where
carbon dioxide and water are converted into organic carbon
with the presence of light. The fate of this organic car-
bon is therefore intimately linked to the conditions of its
synthesis and depends strongly on the composition of the
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phytoplankton assemblages. Studying these issues provides
essential information for understanding the global marine
carbon cycle. In addition to the now widely used chloro-
phyll and pigment analysis (Barlow et al., 1993; Claustre et
al., 2004; Mackey et al., 1996), field data about phytoplank-
ton diversity might also be acquired by the distribution of
accessory lipid biomarkers. They provide important infor-
mation on the phytoplankton composition complementary to
that of algal pigments, as well as on the relative importance
of carbon sources from heterotrophic bacteria and other zoo-
plankton (Dijkman and Kromkamp, 2006; Pinturier-Geiss et
al., 2002; Tolosa et al., 2004).

Isotopic characterization of marine organic matter can pro-
vide insight into the conditions under which carbon fixation
occurs contributing to the understanding of the global ma-
rine carbon cycle. The carbon isotopic composition (δ13C)
of any photosynthetic product and its derived carbon iso-
tope fractionation factor (εp) reflects theδ13C of the carbon
source utilized and the modification by the processes and
environmental variables involved in its production: growth
rate, temperature, dissolved CO2, cell geometry, irradiance,
etc. (Burkhardt et al., 1999a, b; Eek et al., 1999; Hayes,
1993; Laws et al., 1997; Popp et al., 1998b; Rau et al.,
1996). For example, high growth rates of the phytoplank-
ton are linked to highδ13C values, i.e. they are enriched in
13C (Bidigare et al., 1999; Laws et al., 1995). However, they
become depleted in13C with increasing concentration of dis-
solved CO2 (Burkhardt et al., 1999a; Riebesell et al., 2000).
This latter linkage seems to be limited in its extent, and dif-
ferences ofδ13C higher than 1–2‰ cannot be explained any
more by the change in the CO2 concentration, but they are
rather accounted for by differences in the growth rates of the
phytoplankton and in the carbon uptake mechanisms (Bidi-
gare et al., 1997; Burkhardt et al., 1999b, Benthien et al.,
2007). Since particulate organic carbon (POC) is a com-
plex mixture of autotrophs, heterotrophs, and detritus, poten-
tially clearer relationships betweenδ13C values and environ-
mental conditions can be obtained using specific biomarkers
derived from particular species or taxonomic groups (Bidi-
gare et al., 1999; Pancost et al., 1999; Pancost et al., 1997),
compared to theδ13C of the bulk POC (Rau et al., 2001;
Woodworth et al., 2004). This has become possible with
compound-specific isotope-ratio mass spectrometry (Free-
man et al., 1990; Hayes et al., 1990).

Our field study uses molecular and stable carbon isotopic
ratios of specific lipid biomarkers to evaluate their organic
sources and to explore variations in the biogeochemistry of
the particulate organic matter in different hydrodynamic and
trophic environments from the South East Pacific. These in-
clude the eutrophic upwelling area off the Chilean coast, the
mesotrophic and HNLC regions south of the equatorial cur-
rent and the oligotrophic South Pacific Gyre, which was the
major focus of this work. The major questions being ad-
dressed are:

1. What is the spatial distribution of lipid biomarkers
of phyto-, zooplankton and bacteria in the contrasting
trophic environments of the South East Pacific?

2. What is the variability of the carbon isotope fraction-
ation (εp) of different phytoplankton taxa in relation
to different environmental conditions characterized by
nutrient and dissolved inorganic carbon concentrations,
and by productivity regimes? We discuss these results
with respect to the processes of carbon uptake and as-
similation within the different phytoplankton groups.

2 Materials and methods

2.1 Sampling

Sampling and hydrographic observations were carried on
board R/V “L’Atalante” between October and December
2004 and were organized within the framework of the
BIOSOPE (Biogeochemistry & Optics South Pacific Exper-
iment) project which is part of the French JGOFS oceano-
graphic programme PROOF. The main hydrodynamical and
trophic features for the different zones are described in
Claustre et al. (2008).

Samples were taken at six different sites, so called “long
stations”, between Tahiti and the Chilean coast (Table 1).
The different explored zones exhibited contrasting trophic
environments. First, a mesotrophic area downstream of the
Marquesas Islands (MAR) and a high nutrient low chloro-
phyll zone (HNL) upstream of the Islands. Second, an ex-
tremely oligotrophic area, very poor in nutrients, located
in the centre of the South Pacific Gyre (GYR) and a less
oligotrophic site in the east of the gyre (EGY). At the end
of the transect, we studied a eutrophic zone highly enriched
in nutrients and associated to the upwelling off the Chilean
coast (UPW and UPX). UPW station was farther from the
coast than UPX and exhibited a more important water strati-
fication.

“Challenger Oceanics” in-situ pumps were used to filter
large volumes (400 to 900 liters) of water in the upper 300 m
of the water column, to collect suspended particles through
a Nitex screen of 70µm and a precombusted (550◦C) Mi-
croquartz filter (QMF, Sartorius) of 1µm pore size. Only the
size fraction collected on the microquartz filter (1–70µm)
was analysed.

2.2 Bulk measurements

Table 2 summarizes the bulk biochemical parameters of the
suspended particulate matter along the transect Marquesas
Islands-Chilean coast.

Total CO2 (CT ) and total alkalinity (AT ) of water sam-
ples were measured by potentiometry (Azouzi et al., 2007) at
all sites except UPW. The dissolved CO2 concentration was
calculated from CT , alkalinity, temperature, salinity and the
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Table 1. Sampling sites.

DATE Lat.(◦ S) Long. (◦ W) ACRONYM Brief description

28/10/2004 8.4 141.3 MAR Marquesas Islands characterized by high nutrients high chlorophyll
1/11/2004 9.0 136.8 HNL High nutrient low chlorophyll area east of the Marquesas Islands
12/11/2004 25.6. 114.0 GYR Center of the South Pacific Gyre
28/11/2004 31.8 91.4 EGY Eastern border of the Gyre
6/12/2004 34.0 73.3 UPW Upwelling area situated above the abyssal plain
10/12/2004 34.5 72.4 UPX Upwelling area situated above the continental shelf

Table 2. Selected environmental parameters from the six sites at the sampled depths.

locations-
depth (m)

T
0C

density
Kg m−3

Aa
T

µmol
Kg−1

Cb
T

µmol
Kg−1

[CO2](aq)
µmol
Kg−1

NO3
µmol
l−1

PO4
µmol
l−1

SiOH4
µmol
l−1

POC
µmol
l−1

Chl a
µg
l−1

tcp
hours

PARd

(%)

mar3-50 m 27.7 22.9 2363 2024 11.3 1.59 0.28 1.03 1.96 0.41 12.4 2.7
mar3-100 m 26.9 23.2 2356 2052 13.1 3.81 0.39 1.73 0.90 0.21 0.55
mar3-300 m 11.3 26.6 2313 2225 34.7 8.83 0.61 2.66 0.28 0.05

hnl2-75 m 27.3 23.2 2353 2009 11.0 1.69 0.37 1.18 1.60 0.30 12.4 2.0
hnl1-100 m 26.8 24.5 2382 2097 14.3 1.04 0.50 1.88 0.90 0.26 0.64
hnl2-300 m 11.2 26.6 2319 2238 37.2 31.6 2.39 14.45 0.23 0.05

gyr2-0 m 22.0 24.6 2364 2048 11.9 0.00 0.12 0.88 0.39 0.03 13.3 100
gyr2-75 m 21.9 25.1 2369 2055 11.8 0.00 0.14 1.04 0.51 0.06 7.5
gyr2-125 m 20.7 25.2 2363 2051 11.7 0.00 0.12 0.96 0.49 0.13 2.5
gyr2-150 m 20.3 25.3 2358 2057 12.1 0.00 0.12 0.71 0.48 0.18 0.97
gyr2-175 m 19.6 25.4 2347 2074 13.3 0.10 0.14 0.71 0.49 0.20 0.32
gyr2-200 m 18.7 25.5 2333 2075 14.1 1.11 0.19 0.79 0.36 0.17
gyr2-300 m 13.9 26.0 2299 2099 17.2 8.06 0.81 1.93 0.12 0.04

egy4-70 m 16.5 25.4 2294 2033 12.9 0.53 0.21 1.34 0.95 0.19 13.9 3.6
egy2-200 m 14.5 25.8 2271 2071 16.6 2.96 0.41 1.50 0.25 0.04
egy4-300 m 10.0 26.4 2267 2119 21.8 15.4 1.07 3.99 0.23 0.03

upw1-40 m 12.8 25.9 13.0 0.91 8.00 6.92 2.50 14.3 0.15
upw1-100 m 10.8 26.4 28.1 2.6 20.8 1.83 0.07
upw2-300 m 8.7 26.8 39.0 2.8 33.0 1.03 0.08

upx3-40 m 12.0 26.0 2274 2197 37.4 22.8 2.02 10.7 3.28 0.79 14.4 0.52
upx2-100 m 10.5 26.4 2294 2258 52.4 23.2 2.32 24.4 1.25 0.11
upx2-300 m 10.0 26.7 2307 2281 56.0 35.3 3.5 27.9 0.56 0.07

a Total alkalinity;b Total CO2; c day length;d normalised underwater irradiance

concentrations of silicate and phosphate using the CO2SYS
program developed for CO2 system (Lewis and Wallace,
1998). This program is based on equations of the seawa-
ter CO2 system (DOE, 1994) and the dissociation constants
of Goyet and Poisson (1989).

Nutrient concentrations (nitrate, phosphate and silicate)
were determined onboard using an autoanalyzer (Raimbault
et al., 2008). Analysis of organic carbon was done with a
“Vario EL” elemental analyser (© elementar Analysensys-
teme GmbH) after acidification of the filter subsamples fol-

lowing the procedure described in Miquel et al. (1994). The
photosynthetically active radiation (PAR) in water was mea-
sured using a calibrated hyperspectral profiling radiometer
(HyperPro, Satlantic, Inc).

2.3 Lipid extraction

Filters containing the suspended particles were spiked with
internal standards (n-C24D50, anthracene-d10, pyrene-d10,
perylene-d12, friedeline, 5α-androstan-3β-ol and cholanic
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acid), and extracted by microwave oven with 40 ml of a mix-
ture with CH2Cl2/MeOH (3:1) at 70◦C for 15 min. Isola-
tion of the neutral and acid lipid fractions were done follow-
ing the method of Tolosa and de Mora (2004). Extractable
lipids were saponified using 1 ml KOH 6% in methanol/water
(80:20) plus 1 ml of Milli-Q water (80◦C, 1 h). Then the
neutral fraction was recovered withn-hexane and subject to
fractionation by HPLC on a normal phase column (Nucle-
osil column, 20 cm×0.4 cm i.d. 5µm) to isolate the aliphatic
hydrocarbons (F1), polycyclic aromatic hydrocarbons (F2),
ketone compounds (F3) and sterol and alcohol fraction (F4).
Saponified solutions were acidified with 1 ml HCl 6 N to
pH 2 and the fatty acids obtained by hydrolysis of wax es-
ters, triacylglycerols, steryl esters and phospholipids were
extracted with hexane:ethyl acetate 9:1.

2.4 Gas chromatography

The sterol fraction was treated withbis-(trimethylsilyl)-
trifluoroacetamide (BSTFA) (200µl, 70◦C, 1 h) to convert
the alcohols and sterols to their corresponding trimethylsilyl
ethers. The acid fraction was derivatised by transesterifying
the lipid extract with 500µl of 20% BF3 in methanol at 80◦C
for 1 h.

Gas chromatography (GC) was performed with a Hewlett
Packard HP5890 series II equipped with a flame ionization
detector and split/splitless injector. Two fused silica capillary
columns were employed: (A) a DB-5 fused silica capillary
column (30 m×0.25 mm i.d.; film thickness 0.25µm) for
neutral compounds and fatty acids and (B) a BPX-70 (SGE,
60 m×0.32 mm×0.5µm) for the fatty acids. Helium was the
carrier gas (1.2 ml min−1). The oven temperature for the DB-
5 was programmed from 60◦C (0.5 min hold) to 290◦C at
6◦C min−1. The GC oven for the BPX-70 column was pro-
grammed from 60◦C (0.5 min hold) to 250◦C at 6◦C min−1.
Injector and detector temperatures were 270◦C and 320◦C,
respectively.

Aliphatic hydrocarbons, ketones, sterols and fatty acids
were quantified by internal standards (C24D50,friedeline, 5α-
androstan-3β-ol, and cholanic acid, respectively). Confirma-
tion of peak identity was obtained using GC with mass spec-
trometric detection (GC-MS) (Hewlett-Packard 5889B MS
“Engine”) operated in the electron impact at 70 eV.

2.5 Compound-specific isotope analysis

The lipid biomarkers were analyzed for their stable carbon
isotope composition using an HP 5890 GC equipped with a
HP 7673 autoinjector and interfaced through a combustion
furnace with a FINNIGAN MAT Delta C isotope ratio mass
spectrometer (GC/C/IRMS).

The GC/C/IRMS was equipped with a 100%
methylpolysiloxane fused silica column (Ultra-1,
50 m×0.32 mm i.d.; 0.5µm film thickness) pre-connected
with a press-fit connector (Supelco, France) to a 0.32 mm

i.d. deactivated fused silica capillary retention gap of 5 m.
Injections of 2µl in isooctane were made via an on-column
injector. The GC oven was programmed from 60 to 100◦C
at 10◦C min−1, then to 310◦C at 4◦C min−1 and maintained
at 310◦C for 40 min. Values reported were determined by
at least in triplicate to calculate the average and standard
deviation. All δ13C values are reported in the delta notation
relative to the Pee Dee Belemnite (PDB) standard as follows:

δ13C = [(13C/12C)sample/(
13C/12C)PDB − 1] × 103 (1)

Corrections for the isotopic change introduced in the
derivatisation of sterols, fatty alcohols, and fatty acids were
determined through derivatisation of standards of known iso-
topic composition and applying the equation of Jones et
al. (1991). Cholesterol, methanol, 18:0 fatty acid and 18:0
FAME of known isotopic carbon composition (measured by
elemental analyser coupled to isotope ratio mass spectrome-
ter), were used to calibrate the GC/C/IRMS and correct the
isotopic change introduced by the derivatisation. The sur-
rogate standards, 5α-androstan-3β-ol, cholanic acid and the
GC internal standard friedelin of known isotopic composi-
tion served as internal isotopic standards.

The precision (standard deviation) for most analytes
with GC-C-IRMS signals higher than 0.5 V (m/z 44) was
comparable to the instrument specifications (0.5‰). As it
is illustrated in Appendix A, the major compound 24-
methylcholesta-5,24(28)-dien-3β-ol (C281

5,24(28)) stenol
was integrated together with their minor stanol pair com-
pound (24-methyl-5α-cholest-24(28)-en-3β-ol) to yield a
single δ13C value for both compounds, because of incom-
plete chromatographic separation.

2.6 Calculations of carbon isotope fractionation (εp) and
sensitivity study

Molecular εpwas determined following the general Eq (2)
outlined in Freeman and Hayes (1992):

εp = [(δ13CO2 + 1000)/(δ13Cpp + 1000) − 1] × 103 (2)

where CO2 is its dissolved phase in the water column and
Cpp the primary photosynthate.

In this study, direct measurement ofδ13CO2 was not
available. Thereforeδ13CO2was calculated according to the
Eq. (3) of Mook (1974):

εb =[(δ13CO2+1000)/(δ13b+1000)−1]×103
=24.12−9866/T (3)

whereεb is the temperature-dependent carbon isotope frac-
tionation of dissolved CO2 with respect to bicarbonate,T is
the absolute temperature in Kelvin, and the reference value
of δ13 for bicarbonate (b) in sea surface water was taken as
+1.5‰ (Quay et al., 2003). We adopt this constant value of
δ13 bicarbonate for all sites and depths based on (a) the low
variability of δ13DIC reported for the surface waters of the
global ocean, including Pacific (1.55‰), Atlantic (1.56‰)
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an Indian Ocean (1.37‰) (Quay et al., 2003), (b) the major
contribution of bicarbonate in the total DIC pool (90% of the
total) and c) the low variability ofδ13DIC in the upper wa-
ter column (Kroopnick, 1985). Although meridionalδ13DIC
variability is generally greater than zonal variability, surface
δ13DIC in the Pacific ocean varied only by 0.3‰ over the lat-
itudes of the studied area. However, field data ofδ13C DIC in
the Peru upwelling region ranged from –0.65 to 0.81‰ (Pan-
cost et al., 1997, Bidigare et al., 1997) whereas in the other
areas of the Pacific, it ranged from 1.20 to 1.85‰ (Bidigare
et al., 1997). Based on the upper and lower bound values of
δ13DIC, εp might have a maximum range variation of 2‰
whereas a typical variation of±0.5‰ results in a variation
of ±0.7‰ for εp. Therefore,δ13DIC do not seem to have
major influence on the changing isotopic compositions of or-
ganic matter in the upper water column of the ocean, and the
likely lower δ13DIC values for the upwelling site would only
accentuate the differences between the trophic environments,
providing lowerεp values for the upwelling sites.

δ13Cpp (primary photosynthate) for eukaryotic organisms
was calculated by using a constant isotopic fractionation of
4.2‰ between photosynthetic lipids and algal biomass. This
value has been provided by Popp et al. (1998a) for alkenones
and has been used by other authors (Bidigare et al., 1997;
Benthien et al., 2002; Harada et al., 2003; Benthien et al.,
2005; Popp et al., 2006a). Similarly, we adopted this value
for the isoprenoid compounds, e.g. phytol and sterols, used
in previous papers (Pancost et al., 1997; Pancost et al., 1999;
Bidigare et al., 1999), thus allowing a comparison ofεp cal-
culated in the present study. However, the offset inδ13C val-
ues for common lipids relative to theδ13C value of biomass
might vary considerably between microalgal species, biosyn-
thetic pathways, the site of reactions in the cell (Schouten
et al., 1998; Hayes 2001), and by variations in the relative
amounts of the major biochemicals in the cell (i.e., proteins,
carbohydrates, and lipids) which in addition have different
δ13C values. Thus, lower isotopic offsets between lipids and
total biomass are expected to occur in nutrient limited en-
vironments where higher cellular lipid contents relative to
proteins and carbohydrates are found (Livne and Sukenik,
1992). This variability might accentuate the range ofεp

between the trophic environments, with higherεp values in
low-nutrient waters compared to high-nutrient environments.
Potential variations of±1‰ in the isotopic shift between
the algal biomass and lipids might result inεp variations of
±1‰.

Culture studies of haptophytes have identified an isotopic
shift ranging from 3.1 to 5.3‰ between primary photosyn-
thate and alkenone biomarkers (Laws et al., 2001; Riebe-
sell et al., 2000; Jasper and Hayes, 1990; and Popp et al.,
1998). In contrast to alkenones, the isotopic offset between
algal biomass and other eukaryotic lipid biomarkers is less
constrained with reported offsets ranging from –2 to 8 ‰
for different cultures of phytoplankton taxa (Schoulten et al.,
1998; Hayes, 2001). If we consider the upper and lower

bound values of offsets found for phytol (–0.8 to 4.2‰) and
diatom sterols (0.6 to 6.4‰) in marine diatom cultures, the
extreme values ofεp for phytol and diatom sterols differ by
5 and 6‰ respectively. One reported culture of dinoflag-
ellate exhibited an isotopic fractionation between dinosterol
and algal biomass of 4.5‰ (Schouten et al., 1998).

For prokaryote, δ13Cpp was estimated from then-
heptadecane assuming a constant isotopic fractionation be-
tween photosynthetic lipids and algal biomass of 8.4‰ re-
ported by Sakata et al. (1997).

2.7 Estimations of growth rates and intracellular carbon de-
mand in haptophytes assuming purely CO2 diffusion
uptake

Carbon isotopic fractionation for phytoplankton (εp) which
obtain CO2 by passive diffusion is summarized by the ex-
pression of Popp et al. (1998b):

εp = εf − β
µ(V/S)

[CO2]
(4)

whereεf is the fractionation associated with the enzyme-
catalyzed carbon fixation step,β is a constant,µ is the spe-
cific growth rate,V andS are the volume and surface area
of the alga cells and [CO2] is the concentration of dissolved
CO2 external to the algal cell. Sinceβ and (V/S) are prac-
tically constant for haptophyte taxa, we can transform this
constant to the variable b-value (‰µmol), which serves as
a proxy for growth rate and reflects the intracellular carbon
demand. This b-value was calculated following the Eq. (5)
of Bidigare et al. (1997):

b = (εf − εp) × [CO2]aq (5)

with εf values of 25‰ for eukaryotic algae utilizing Ru-
bisco andβ-carboxylase enzymes (Bidigare et al., 1997) and
[CO2]aq calculated as described in Sect. 2.2.

Specific growth rates (µ, (d−1)) of alkenone produc-
ing haptophytes were estimated with the following equation
found by Bidigare et al. (1997) in laboratory chemostat cul-
ture experiments of Emiliania huxleyi:

µcc = (25− εp)[CO2]/138 (6)

and applying the corrections for the effects of day length and
respiration on growth rate

µ = [µcc/(24/tp)]0.8 (7)

whereµ is the 24-h average growth rate,tp is day length or
photoperiod in hours, and the factor 0.8 adjusts the growth
rate for dark respiration.

3 Results and discussion

The analytical scheme used in this study identified and quan-
tified ∼60 individual compounds in the neutral lipid frac-
tion and∼40 compounds in the acid fraction. A summary
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Table 3. Summary of the lipid biomarkers discussed in this study.

ACRONYM COMPOUND NAME(S) Main diagnostic (and minor) sources References

Phytol 3,7,11,15-tetramethyl-2-
hexadecen-1-ol

Phototrophic organisms (Baker and Louda, 1983)

C281
5,24(28) 24-methylcholesta-5,24(28)-

dien-3β-ol
Diatoms (flagellates) (Volkman and Hallegraeff, 1988)

C25 HBI Highly branched isoprenoids of
C25

Diatoms (flagellates) (Volkman et al., 1994)

C16:4 FA 6,9,12,15-hexadecatetraenoic
acid (C16:4(n-1))

Diatoms (Dijkman and Kromkamp, 2006)

C20:5 FA 5,8,11,14,17-eicosopentaenoic
acid (C20:5(n-3))

Diatoms (flagellates) (Dijkman and Kromkamp, 2006;
Volkman et al., 1989)

Total alkenones Long-chain (C37-C39) unsatu-
rated ketones

Haptophytes/Prymnesiophycea (Conte et al., 1995;
Volkman et al., 1995)

C301
22,(dinosterol) 4α-23,24-trimethylcholest-

22(E)-en-3β-ol
Dinoflagellates (Robinson et al., 1984)

n-C17 C17 n-alkane Cyanobacteria (green algae) (Han and Calvin, 1969;
Winters et al., 1969)

n-alcohols n-alkanols, mainlyn-C14,n-C16
andn-C18

Zooplankton and marine invertebrates
(algae)

(Sargent et al., 1977).

C20:1 +C22:1 FA Long-chain monounsaturated
C20:1 and C22:1 FA

Herbivorous mesozooplankton (Lee et al., 2006)

Branched FA iso and anteiso branched fatty
acids in the carbon number range
15-19.

Heterotrophic bacteria (Kaneda, 1991)

C271
5,(cholesterol) Cholest-5-en-3β-ol Zooplankton (algae) (Volkman, 1986)

Phytosterols Includes:
27-nor-24-methylcholesta-
5,22(E)-dien-3β-ol;
cholesta-5,22(E)-dien-3β-ol;
24-methylcholesta-5,22(E)-dien-
3β-ol;
C281

5,24(28);
24-ethylcholesta-5,22(E)-dien-
3β-ol;
24-ethylcholest-5-en-3β-ol and
C301

22

Eukaryotic phototrophic organisms (Muhlebach and Weber, 1998;
Tolosa et al., 2003)

of selected lipid biomarkers discussed in this study together
with their main sources is shown in Table 3. In particular,
we focus on the long-chain unsaturated methylketone (C37:2
alkenone) which is a marker for certain haptophyte algae
(Conte et al., 1995, Volkman et al., 1995), the C281

5.24(28)

sterol and HBI which are major components in many diatom
(Volkman and Hallegraeff, 1988, Volkman et al., 1994), the
dinosterol mainly derived from dinoflagellates (Robinson et
al., 1994) and then-C17 alkane derived from cyanobacte-
ria and green algae (Han and Calvin, 1969, Winters et al.,
1969). We note, however, that HBIs are not markers for all
diatom species since they are mainly synthesized by centric
(Rhizosoleniaspecies) and pennate diatoms (Haslea, Navic-
ula andPleurosigma), whereas C281

5,24(28) sterol has also
been found in some dinoflagellates and green algae (Volk-
man, 1986). Therefore, there might be an offset between the

diatom sterols and the HBIs depending on the diatom species
composition. In a similar way, all diatoms do not produce
the C281

5.24(28) sterol, and dinosterol can also be present
in certain diatoms (Volkman et al., 1986). Considering that
the particle size fraction studied was 1–70µm, a certain dis-
crimination of bacterial, diatom and zooplankton biomark-
ers compared to coccolithophorid and dinoflagellate markers
might have occurred. Concentrations of the selected lipid
biomarkers are summarized in Table 4 and their concentra-
tions normalized to the POC are shown in Appendix B1.
The individual carbon isotope ratio for some of the selected
lipid biomarkers are shown in Appendix C1. The complete
data set of concentrations andδ13C values is available on
the BIOSOPE Database:http://www.obs-vlfr.fr/proof/vt/op/
ec/biosope/bio.htm
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Table 4. Selected lipid biomarkers concentrations (ng l−1) in suspended particles from the South Pacific Ocean.

locations-
depth (m)

phytol C281
5,24(28) C25 HBI C16:4

FA
C20:5
FA

Total
alkenones

C301
22 n-C17 n-

alcohols
C20:1+C22:1
FA

Branched
FA

C271
5

mar3-50 m 31 20 2.32 33 98 6.5 4.4 0.13 6.7 2.8 22 13
mar3-100 m 7.0 4.7 0.02 18 36 3.7 0.0 0.04 35 6.7 31 6.7
mar3-300 m 0.60 3.0 0.00 0.0 9.7 0.0 0.0 0.00 9.5 9.3 2.1 1.1

hnl2-75 m 25 30 0.80 29 62 16 5.7 0.25 7.3 2.3 19 13
hnl1-100 m 21 15 0.07 22 54 8.8 4.0 2.3 16 1.7 3.4 24
hnl2-300 m 0.60 1.1 0.00 0.0 5.5 0.0 0.4 0.00 10 0.47 1.2 3.8

gyr2-0 m 1.7 1.9 0.21 1.4 8.2 14 1.6 0.00 12 0.00 4.6 3.7
gyr2-75 m 2.3 1.9 0.02 1.4 7.2 18 1.7 0.13 4.0 0.52 2.5 2.7
gyr2-125 m 5.6 3.2 0.03 2.4 16 23 2.0 0.26 4.2 0.79 3.2 4.5
gyr2-150 m 9.6 3.8 0.15 5.9 25 16 1.1 0.29 7.5 0.46 4.6 5.7
gyr2-175 m 9.9 4.0 0.18 3.8 16 13 0.8 0.32 7.4 0.33 5.2 3.5
gyr2-200 m 12 6.5 0.41 3.9 21 6.9 1.5 0.19 9.8 0.87 5.3 7.0
gyr2-300 m 0.60 0.3 0.00 0.0 2.2 0.0 0.1 0.00 1.6 0.11 0.7 0.9

egy4-70 m 16 20 1.40 17 57 20 2.8 1.2 12 1.7 10 15
egy2-200 m 2.0 2.8 0.00 0.0 13 1.5 0.6 0.67 9.6 0.27 4.7 7.3
egy4-300 m 0.60 1.4 0.00 0.0 9.4 0.5 0.6 0.00 7.0 0.00 3.1 5.6

upw1-40 m 103 55 3.69 139 379 27 9.7 0.23 34 15.8 114 36
upw1-100 m 24 15 0.09 15 106 7.0 3.9 0.28 34 2.5 30 20
upw2-300 m 2.8 2.5 0.00 0.0 24 2.0 0.8 0.08 41 1.1 10 13

upx3-40 m 79 33 2.29 26 143 12 6.1 0.18 90 7.8 57 55
upx2-100 m 26 15 0.75 8.0 101 2.3 3.8 0.16 10 1.4 30 16
upx2-300 m 5.7 5.2 1.73 16 72 1.1 1.0 0.00 215 2.6 9.4 23

3.1 Distribution of phytoplankton, zooplankton and bacte-
rial markers in different trophic environments

Concentrations of phytol, a non-specific marker for pho-
totrophic organisms, if compared at the depth of chlorophyll
and POC maxima, were highest at the upwelling sites with
102 ng l−1 at UPW and 78 ng l−1 at UPX. The mesotrophic
sites, MAR and HNL, exhibited intermediate phytol concen-
trations of 25 to 31 ng l−1. The lowest values were measured
at the oligotrophic sites, EGY (16 ng l−1) and in particular
at GYR (11 ng l−1), where maximum values of chlorophyll
and POC were at 175 m depth. Concentrations of diatom
biomarkers, e.g. (C281

5.24(28) sterol, C25 HBI alkenes, C16:4
FA, C20:5 FA), haptophytes biomarkers (total alkenones) and
dinoflagellates markers (dinosterol) exhibited a similar distri-
bution as phytol concentrations (Table 4), except in the Gyre
where alkenones and dinosterol peaked at shallower depths
than phytol and diatom markers.

Highest concentrations of long-chain C37 and C38
alkenones were measured at the eutrophic UPW site
(27 ng l−1) but also at the two gyre sites EGY (20 ng l−1)

and GYR (23 ng l−1). These peak values corresponded to
the depth of chlorophyll and POC maxima except for the
GYR site where the peak was situated at 125 m depth, above
the chlorophyll maximum but within maximum POC con-
centrations. A much lower concentration (6.5 ng l−1) was

recorded at the MAR site. These values are much lower than
those reported for suspended particles from the Bering Sea
after blooms ofEmiliania huxleyiand ranging from 0.15 to
3.12µg l−1 (Harada et al., 2003), but similar to concentra-
tions observed in suspended particles collected under non-
bloom conditions in the surface waters of the North Atlantic
and Nordic Sea (Sicre et al., 2002), in the western Sargasso
Sea (100 ng l−1) (Conte et al., 2001) and in the oligotrophic
North Pacific subtropical gyre (0.5–15 ng l−1)(Prahl et al.,
2005).

The C17 n-alkane, which is produced by aerobic photo-
synthetic bacteria and green algae (Han and Calvin, 1969;
Winters et al., 1969) exhibited a maximum concentration
of 2.3 ng l−1, below the chlorophyll and POC maxima at
the HNL site and of 1.2 ng l−1 at the same depth (70 m)
as chlorophyll and POC maxima at the EGY site. The
other sites showed concentration levels below 0.5 ng l−1 (Ta-
ble 4). These concentrations were consistent with the abun-
dance distribution of prokaryotic phototrophic organisms,
with high abundances at the HNL and EGY sites (Grob et
al., 2007).

In all samples, then-alkanols were dominated by the short-
chain fatty alcohols of even carbon number (n-C14, n-C16
and n-C18), which are associated to zooplankton markers
(Sargent et al., 1977). With the exception of the two gyre
sites (GYR and EGY), maximum concentrations of linear
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Fig. 1. Percentage contribution of selected lipid biomarkers and bio-
chemical indices:(a) percentage of phytol relative to total neutral
lipid concentrations,(b) percentage of 24methylcholesta5,24(28)-
dien3βol relative to total neutral lipids concentrations;(c) percent-
age of total alkenones relative to total neutral lipid concentrations;
(d) Ratio of 24methylcholesta5,24(28)dien3βol to total alkenones
to evaluate the relative contribution of diatoms vs. haptophytes.

alcohols were found below the depth of chlorophyll and POC
maxima, at the upwelling sites (UPW, UPX) at 300 m and at
the Marquesas sites (MAR, HNL) at 100 m depth. In the
Gyre, maximum concentrations ofn-alcohols coincided with
the phytol maximum, though another peak (11.6 ng l−1) was
registered at the surface of the GYR site. The fatty acids
C20:1 and C22:1, typical markers of herbivorous mesozoo-
plankton (Graeve et al., 1994, Dalsgaard et al., 2003, Lee
et al., 2006), exhibited the highest concentrations at the up-
welling sites (UPW, UPX) at the depth of chlorophyll and
POC maxima, but also below the euphotic zone (300 m) at
the MAR and UPX sites.

Similar to the phytol distribution, the concentrations of
bacterial biomarkers, such as branched fatty acids, were
highest at the UPW site (Table 4), whereas the concentra-
tions of zooplankton markers, such as cholesterol andn-
alcohols exhibited higher abundance at UPX. In general,
heterotrophic bacterial populations seemed to be associated
to diatom biomass, which is supported by the positive corre-
lation between theδ13C of the branched fatty acid (i-C15 FA)
and theδ13C of the C20:5 FA (r=0.81,p<0.05).

Some more insight into the phytoplankton distribution
may be gained by comparing the relative contribution of
the biomarkers within the total neutral lipids, or normaliz-
ing their concentrations to the POC content (Appendix B1).
Since both approaches provided similar trends, we used the
first approach for our discussion illustrated in Fig. 1. The per-
centage of phototrophic biomarkers generally followed the
chlorophyll and POC distribution except at UPX, where phy-
tol and diatom markers peaked at 100 m depth. Also at HNL,
phytol showed relatively high percentages i.e. was enriched
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Fig. 2. Values of selected biochemical indices to elucidate the dom-
inant sources in the suspended particles from the different sites.(a)
Cholesterol/phytosterolsa ratio to evaluate the relative contribution
of zooplankton vs. algal.(b) % Bacterial fatty acid indicator is the
sum of alliso andanteiso- branched chain fatty acids expressed as
percent of total fatty acids.(c) Phytosterols/phytol ratio to eluci-
date the degradation state of the phytoplankton material.(d) % C16
PUFA is the polyunsaturation index of C16 fatty acids to evaluate
the ecophysiological state of the marine diatoms.
a Phytosterols are listed in Table 3.

in the POC, down to 100 m depth. This may be related to
the highest relative importance of diatom sterol observed in
the euphotic layer (Fig. 1b) and to the presence of diatoms
which formed “balls of needles” or clusters (Gómez et al.,
2007). In contrast to the diatom biomarkers, the percent-
age of total alkenones was by far highest in the gyre espe-
cially above the chlorophyll maximum (Fig. 1c), where also
the concentrations were among the highest of all sites (Ta-
ble 4). Prymnesiophytes were likely to be the major con-
stituents of eukaryotic phytoplankton in the gyre, suggest-
ing that haptophytes are well adapted to the low nitrate con-
centrations prevailing in the oligotrophic zone of the Pacific
Gyre. Although the lipid content and composition of mi-
croalgae can be affected by changes in environmental con-
ditions such as nutrient status, light intensity and tempera-
ture (Shifrin and Chrisholm, 1981; Reitan et al., 1994), the
C281

5.24(28) sterol/alkenones ratio may provide us with an
overview on the relative contribution of C281

5.24(28) sterol-
producing diatoms to alkenone-producing prymnesiophytes.
Highest ratios were obtained at the UPX site, and in par-
ticular below the euphotic zone. Alkenone-producing hap-
tophytes predominated over diatoms at the GYR site, espe-
cially above the chlorophyll maximum whereas the diatom
signal showed a deeper maximum at 175 m corresponding
to the maximum of both phytol and chlorophyll-a. Dinos-
terol showed overall low percentages (<3%) or concentra-
tions normalized to POC (<0.37 mg g−1C), which indicated
a minor contribution of dinoflagellates in the algal mixture
of these Pacific waters. The highest dinosterol values were
recorded in the HNL as it was also confirmed by pigment
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analyses (Ras et al., 2008).
Figure 2 illustrates other diagnostic biomarkers indices to

evaluate the relative dominance of zooplankton and bacterial
sources within each site as well as the state of the particu-
late material in the different zones. Although cholesterol is
also present in many classes of algae, it is considered a typ-
ical marker for zooplankton derived organic matter supply
because its concentration becomes enriched after passing the
organisms in relation to the algal diet (Harvey et al., 1987).
Therefore, the relative abundance of cholesterol over phy-
tosterols has been used as a relative indicator of zooplank-
ton over phytoplankton abundance (Muhleback and Weber,
1998; Tolosa et al., 2003). Here, the cholesterol/phytosterol
ratio increased with depth at all sites, and in particular at
UPX. This was consistent with the substantial concentrations
of n-alcohols and zooplanktonic C20:1 and C22:1 fatty acids
found at 300 m depth. At most of the sites, the relative im-
portance of bacterial fatty acids was higher below than at the
depth of chlorophyll maximum. A contrasting image was
observed at UPX where this relative importance was lower.
In fact, high bacterial production and a negative net com-
munity production were reported from the euphotic zone of
UPX (Van Wambeke et al., 2008), which suggests rather “de-
composing” conditions compared to “productive” conditions
at UPW. At all sites, the ratio of phytosterols/phytol indi-
cated more degraded phytoplankton material at depths below
the chlorophyll maximum, but at the gyre site, this was also
the case above the maximum. The ratio showed a slightly
more degraded material in the euphotic zone of the UPX site
as compared to UPW but, at 300 m depth, fresher material
was found at UPX.

The polyunsaturation index of C16 fatty acids (PUFA %
of C16) is an indicator of the ecophysiological state of ma-
rine diatom populations because storage lipids, mainly C16:0
and C16:1 FA, are synthesized during senescence, rather than
during logarithmic growth (Shin et al., 2000). The high in-
dices observed in the euphotic zone of the UPW site and
at 300 m depth of UPX suggest that these PUFA originated
from diatoms at logarithmic growth. Moreover, the car-
bon isotope ratios of lipid biomarkers in the euphotic zone
were generally more enriched at UPW compared to UPX
(Fig. 3), likely indicating higher growth rates at UPW than
at UPX. However, below the euphotic zone of UPX,δ13C
values identified higher growth rates at depth compared to
the surface. All these parameter point out that post-bloom
conditions with high concentrations of animal-derived detri-
tus prevailed at the surface of the UPX site, whereas the im-
portant signal of zooplankton and diatom markers below the
euphotic layer indicated the presence of zooplankton feeding
on phytoplankton produced during bloom conditions. These
findings are supported by the highest particle flux measured
at UPX compared to the UPW site (Miquel et al., 2006)
and the high concentration of detritus and senescent colo-
nial diatoms observed by microscope in samples from the
euphotic zone at the UPX site (Gómez, personal commu-
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Fig. 3. Carbon isotope ratios (δ13C) for selected lipid biomarkers
in the upwelling zone.

nication). These conclusions contrast, however, with those
derived from pigment biomarkers (Ras et al., 2008) where
UPW site was characteristic of a typically mature bloom of
diatoms and the phytoplankton at site UPX was probably at
an early stage of development. Also, much higher nutrient
concentrations at the surface of UPX site indicated a recent
upwelling of deep water. Overall, these contrasted observa-
tions might be accounted for by the different turnover and
lability between pigment and lipid compounds which repre-
sent different pools of the particulate matter. Pigments are
relatively more labile and associated with the living material.
In contrast, lipids are included in both the living and detrital
particulate pools of the matter.

3.2 Vertical distribution of biomarkers in the center of the
gyre

Depth profiles of selected accessory lipid biomarkers in sus-
pended matter from the center of the Gyre are presented
in Fig. 4. Phytol concentrations showed very low surface
values and they were increasing progressively with depth,
with maximum concentration at 150–200 m depth. Rel-
atively high concentrations ofn-alcohols, cholesterol and
branched fatty acids at the surface indicated an important
heterotrophic activity in the upper waters. At higher depths
(>75 m), both alcohols and cholesterol showed similar pro-
files as phytol, likely indicating that here, these biomark-
ers were mainly phytoplanktonic-derived or that zooplank-
ton biomass was strongly associated with the phytoplank-
ton abundance. Branched fatty acids which are derived from
heterotrophic bacteria exhibited the maximum concentration
between 150 and 200 m depth, following the same trend as
planktonic biomass. This feature indicates that the bacterial
population is associated with the major planktonic biomass.

Other more specific phototrophic biomarkers, such as
sterol markers for diatoms exhibited a similar profile as phy-
tol with two maximum at 150 and 200 m depth. Only few
macro diatom species, such asNitzschiaandDactyliosolen
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Fig. 4. Depth distribution of selected lipid biomarkers in the suspended particles from the gyre.

19'HF (mg m-3)

0.00 0.01 0.02 0.03 0.04 0.05

D
E
P
T
H
 (
m
)

0

50

100

150

200

250

300

C37 alk (ng/l)
0 2 4 6 8 10 12

19' HF

C37 alk

Fig.5
Fig. 5. Profiles for total C37 alkenones concentrations (C37 alk)
and 19hexanoyloxyfucoxanthin pigment (19’HF) with depth in the
suspended particles from the gyre.

were observed between 200 and 300 m depth and a signifi-
cant number ofBacteriastrumassociated to a cyanobacteria
symbiont was also observed around 140 m depth (Gómez,
personal communication). In contrast, the sterol marker for
dinoflagellates exhibited a uniform distribution from surface
to 125 m depth and a deeper maximum concentration at
200 m depth. Small dinoflagellates were observed in the sur-
face waters of the Gyre center (Gómez, personal communica-
tion). Then-alkane C17, which is produced by cyanobacteria
and other eukaryotic algae, increased with depth showing a
maximum concentration between 125 and 175 m. This co-
incides with the maximum abundances ofProchlorococcus
and picoeukaryotes recorded between 100 and 200 m depth
(Grob et al., 2007).

The C37 alkenones, which are specific markers for some
algae of the classHaptophyceae/Prymnesiophyceae, includ-
ing coccolithophorid species such asEmiliania huxleyi, ex-
hibited the maximum concentration above the deep chloro-
phyll maximum, at 125 m depth. Cell densities of different
coccolithophorid taxa showed, however, different depth pro-
files, with a maximum peak between 150–200 m forEmil-
iania huxleyiwhereas other taxa peaked at shallower depths
(∼100 m) (Beaufort et al., 2007). These findings indicate
that (i) other non-calcifying haptophytes might synthetize
alkenones at shallower depths, (ii) that alkenones are not as-
sociated with the integrity of coccospheres and/or (iii) that
cellular alkenone concentrations varied with the physiolog-
ical status and species composition of the coccolithophorid
assemblage. Furthermore, the concentration of alkenones
and the accessory carotenoid 19’Hexanoyloxyfucoxanthin
(19’HF) (Ras et al., 2008), characteristics of prymnesio-
phytes, also exhibited different depth distributions (Fig. 5).
Such discrepancy reflects that alkenone-producers in these
waters are minor contributors to the 19’HF stock, and that
the habitat of alkenone synthesizers diverges from that of
the major phytoplankton taxa contributing to the 19’HF dis-
tribution. An analogous feature was observed at station
ALOHA from the oligotrophic North Pacific Subtropical
Gyre (Prahl et al., 2005) and other studies showed that 19’HF
abundance was generally not tightly correlated with that of
coccolithophorids (Dandonneau et al., 2006). Figure 6 il-
lustrates the carbon isotope composition of the diunsatu-
rated alkenone together with the total concentrations of C37
alkenones. More enrichedδ13C values were obtained for
alkenones measured at the depth of the chlorophyll maxi-
mum, whereas the higher concentrations of alkenones found
at 125 m depth were associated to lowerδ13C values. Change
in irradiance could also partially explain the abrupt change
of the carbon isotope composition of the alkenones, since
lower photon flux density leads to a lower13C discrimination
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increasing theδ13C values (Rost et al., 2002; Thompson and
Calvert, 1995). As it is shown in Table 2, the % PAR val-
ues at depths higher than 125 m were lower than 1%, which
would mean that haptophytes were light-limited at these high
depths. Consequently, the more enrichedδ13C values of the
alkenone markers at the depth of the chlorophyll maximum
might infer that haptophytes are under limited light condi-
tions.

The unsaturation index (UK
′

37) which is widely used as a
proxy of sea surface temperature (Prahl and Wakeham, 1987)
was calculated as the relative proportion of di-and triunsatu-
rated C37 alkenones. This index was converted to a mea-
sure of temperature by the commonly used empirical cali-
bration equationT =(UK′

37–0.039)/0.034 (Prahl et al., 1988).
The derived temperatures (Fig. 7) were 2 to 3 degrees higher
than the measured (CTD) temperatures in surface waters.
Discrepancies between the alkenone-calculated and observed
temperatures might be caused by stress due to nutrient and
light limitation and to differences in the stage of the growth
cycle (Conte et al., 1998; Epstein et al., 1998; Yamamoto
et al., 2000; Prahl et al., 2003), which result in variable
alkenone synthesis. Similar observations were reported in
winter at ALOHA station (Prahl et al., 2005). They were
explained by simply biogeographical variations observed in
the alkenone vs. temperature relationship in natural waters,
which may reflect differences in genetic and physiological
status of the local alkenone-synthesizing populations. Since
haptophytes have a low inorganic phosphorous requirement
(critical concentrations of 0.2µmol l−1), nitrogen limitation
seems likely since inorganicN concentrations at the Gyre
stations were well below the half-saturation constant (Ks , the
concentration supporting an uptake rate one-half the maxi-
mum rate) determined forE. huxleyi(≤0.5µmol l−1) (Ep-
pley et al., 1969). Overall and according to batch cultures
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Fig. 7. Profile for CTD temperature and plot for UK′

37derived water
temperature estimates (see text for details) from suspended particles
in the gyre.

of haptophytes (Epstein et al., 1998), the observed increase
in the UK′

37 values with the consequent overestimation of the
temperatures, might indicate that this marine phytoplankton
taxon is under nutrient-limited “stationary growth” condi-
tions. Although other studies showed an overestimation of
temperatures in light-limited cultures (e.g. Prahl et al., 2003),
we exclude light limitation as the reason for our overestima-
tion. The light levels measured down to 125 m depth were
above light limitation level (Table 2). This overestimation
can also be explained by a change in haptophyte ecology to-
wards a dominance of alkenone-producing algae (Prahl et al.,
2005; Popp et al., 2006b). Other reasons may be autoxida-
tion of alkenones in these highly irradiated waters (Rontani
et al., 2006), and/or degradation of alkenones by aerobic
heterotrophic bacteria (Rontani et al., 2008), especially when
residence times of particles are long.

3.3 Biogeochemical implications from carbon isotope frac-
tionation

Stable carbon isotope differences between the inorganic car-
bon source and that of organic carbon synthesized by au-
totrophic organisms known as photosynthetic carbon frac-
tionation (εp), can assist in distinguishing between the
different CO2 fixation pathways (Table 5). Maximum car-
bon isotope fractionation of photoautotrophic organisms us-
ing the Calvin cycle, like micro-algae and cyanobacteria is
in the range of 20 to 27‰ (Popp et al., 1998b; Sakata et
al., 1997). However, theεp expected for biomarkers derived
from eukaryotes can vary between 5 and 25‰ depending ba-
sically on [CO2], growth rate and the ratio of cellular surface
area to volume (Bidigare et al., 1997a; Popp et al., 1998). In
contrast,εp for prokaryotes (cyanobacteria) ranges between
16 and 22‰ because the large surface-to-volume ratio guar-
antees a large CO2 supply relative to the cellular demand.
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Table 5. Carbon isotope fractionation of CO2 aq with respect to bicarbonate (εb), δ13CO2 (dissolved in the water column), different carbon
isotope fractionation associated with photosynthetic carbon fixation using molecular specific lipid biomarkers (εp of biomarkers) and b-value
(‰ µmol kg−1) and specific growth rate for alkenone synthesizers.

locations- εb δ13 CO2 εp(‰) εp(‰) εp (‰) εp(‰) εp(‰) b (‰µmol kg−1) µ (d−1)
depth (m) (‰) (‰) phytol C281

5,24(28) alkenone C301
22 n-C17 alkenone alkenone

mar3-50 m –8.7 –7.2 17.9 21.7 15.6 15.5 16.7 105 0.3

hnl2-75 m –8.7 –7.2 16.8 23.2 16.0 14.5 18.4 99 0.3
hnl1-100 m –8.8 –7.3 19.1 23.2 15.7

gyr2-0 m –9.3 –7.8 18.7 75 0.2
gyr2-75 m –9.3 –7.8 18.7 18.2 74 0.2
gyr2-125 m –9.5 –8.0 18.1 18.6 17.8 17.6 83 0.3
gyr2-150 m –9.5 –8.0 22.0 15.3 17.4 9.5. 117 0.4
gyr2-175 m –9.6 –8.1 17.9 25.5 15.7 124 0.4
gyr2-200 m –9.7 –8.2 18.7 23.4 15.8 19.9 129 0.4

egy4-70 m –10.0 –8.5 20.0 25.4 12.8 18.0 7.6 158 0.5
egy2-200 m –10.2 –8.7 21.4 12.2 16.9
egy4-300 m –10.7 –9.2 19.7

upw1-40 m –10.4 –8.9 10.4 9.1 10.4 11.9 9.3
upw1-100 m –10.6 –9.1 10.0 7.2 10.7 9.5
upw2-300 m –10.9 –9.4 10.0

upx3-40 m –10.5 –9.0 18.8 14.2 11.9 12.7 11.2 488 (365)a 1.7 (1.2)a

upx2-100 m –10.7 –9.2 18.2 9.3 12.2 9.9
upx2-300 m –10.7 –9.3 10.8 8.0 10.0

a calculated with the [CO2] at the surface

Others pathways, apparently restricted to other bacteria, such
as anoxygenic phototrophic bacteria, are the reversed tri-
carboxylic acid cycle and the 3-hydroxypropionate pathway,
both of which are characterized by significantly smaller iso-
tope effects (εp of 2–14 ‰)(van der Meer et al., 2001).

We observed higher taxonomic variations inεp for eu-
karyotic algae growing in the oligotrophic areas (variations
of ∼10‰) compared to the eutrophic sites of the upwelling
(variations of 3 to 7‰). The variation of the carbon iso-
tope fractionation for the diatom marker covered a range of
∼16‰ along the different trophic systems. In contrast,εp of
dinoflagellate and alkenone markers varied much less ca. 10
and 7‰, respectively.

Plots of the carbon isotope fractionation of the different
eukaryotic markers vs the three major nutrients in the eu-
photic layer showed similar trends. An example is given
in Fig. 8 for the nitrate concentrations, showing a negative
logarithmic curve for the diatom biomarker.εp values from
nutrient-rich waters at eutrophic sites were much lower com-
pared to those in the nitrate limited conditions of the Gyre.
However, in oligotrophic waters, the high scatter ofεp indi-
cates that other factors besides major nutrients are probably
affecting the carbon isotope fractionation. This is illustrated

by the small effect of nitrate concentrations on the carbon
isotope fractionation of the haptophytes (alkenones).

The carbon isotope fractionation of eukaryotic mark-
ers showed also a negative trend with [CO2]aq (Fig. 9).
These relationships deviate from the previously reported gen-
eral oceanic trend (Rau et al., 2001) and culture studies
(Burkhardt et al., 1999a) where carbon isotope fractionation
increases (δ13C decrease) when [CO2]aq increases. How-
ever, this apparent deviation has already been observed in
Peruvian upwelling waters where it was suggested that a
diatom carbon concentrating mechanism (CCM) was likely
the cause of the lowerεp of diatoms in these waters with high
[CO2]aq. In the present study, we also observed a small ef-
fect of [CO2]aq on isotope fractionation of alkenones, which
agrees with other studies that privileged potential changes of
εp due to growth rate and carbon uptake mechanisms inE.
huxleyi(Benthien et al., 2007; Bidigare et al., 1997). A simi-
lar trend was found between [CO2] and theεp of n-C17 (data
not shown) which is consistent with a previous work with
Popp et al. (1998b) who found forSynechococcusthat εp

is independent of the concentration of dissolved CO2, likely
because its cell geometry guarantees a large CO2 supply.
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Fig. 8. Carbon isotope fractionation factor of the eukaryotic mark-
ers vs. measured nitrate concentrations across the South Pacific
Ocean. Logarithmic curve fitting corresponds to diatom marker,
linear fitting for haptophytes is shown to illustrate the contrast be-
tween diatoms and haptophytes.

Overall, the lower isotope fractionation factors and smaller
variations between the different eukaryotic markers mea-
sured in the upwelling area might indicate uniformly high
growth rates for the three phytoplankton taxa, diatoms, hap-
tophytes and dinoflagellates and/or that phytoplankton may
employ carbon concentrating mechanisms (CCM) other than
diffusion, which actively transport inorganic carbon into
cells. Similar findings were reported by other authors (Pan-
cost et al., 1999; Pancost et al., 1997; Rau et al., 2001; Werne
and Hollander, 2004) who invoked that an active transport of
bicarbonate into the cell may play a role in the carbon isotope
fractionation by phytoplankon in upwelling areas with high
concentrations of CO2. Light is another factor which may
decrease the carbon isotope fractionation under low satura-
tion levels since it has opposite effects on theεp compared
to nutrient-limited conditions (Rost et al., 2002, Cassar et al.,
2006). However, despite light limiting conditions at 40 m,
phytoplankton sampled at theses depths are not necessarily
light limited. In hydrodynamically active zones like the up-
welling, it can be reasonably admitted that phytoplankton
cells produce under light conditions averaged over the mixed
layer and not encountered at the depths they were sampled.
Hence, it can be excluded that irradiance affected the isotopic
fractionation of the different phytoplankton taxa in the upper
mixed layer of the upwelling area.

In contrast, the GYR and EGY sites exhibited the high-
est carbon isotope fractionation factors for eukaryotic algae
and in particular for the diatom marker. Their values reached
25–26‰ which is close to the maximum isotope fractiona-
tion of eukaryotic algae utilizing Rubisco andβ-carboxylase
enzymes (Goericke et al., 1994; Laws et al., 1997). Such
high εp values cannot be obtained by bicarbonate uptake
and are indicative of diffusive CO2 uptake. Moreover, ac-
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Fig. 9. Carbon isotope fractionation factors of eukaryotic markers
vs. CO2 concentrations.

tive uptake of carbon in oligotrophic sites is rather unlikely
because of the higher metabolic energy required and CCM
may be inhibited by the low oceanic concentrations of cer-
tain trace metals (Morel et al., 1994). In these oligotrophic
sites, lowestεp values were measured for the haptophytes
and dinoflagellates, which might infer higher growth rates
for these organisms compared to diatoms.

In the mesotrophic areas of the Marquesas Islands (MAR
and HNL sites),εp values for alkenone producers and dinos-
terol were also lower than those for diatoms, but still higher
than those estimated in the upwelling area. The similarεp

values for alkenones measured in the poor-nitrated waters of
the Gyre and in the high nutrient waters of the HNL site sug-
gest that nitrogen and phosphate are not the limiting nutrients
affecting carbon isotope fractionation by the prymnesiophyte
algae. This finding contrasts with a study from the NE Pacific
where nitrogen starvation seemed to affect theεp values for
alkenones (Eek et al., 1999) and adds further support to the
“trace-metal-growth-rate” hypothesis (Bidigare et al., 1997),
which suggested that micronutrients control growth regard-
less of the concentrations of PO4. Overall, the relatively low
εp values for alkenones from the oligo- and mesotrophic wa-
ters seem to indicate the use of a CCM other than diffusion.
However, recent studies provided clear evidence that hap-
tophytes have developed an inefficient but regulated CCM,
with a direct uptake of HCO−3 (Rost et al., 2003). The high-
estεp for dinoflagellates at the GYR and EGY sites are likely
associated to lower growth rates and might be explained by
the low N:P ratios since optimum dinoflagellate growth oc-
curs at ratios ranging between 6 and 15 (Hodgkiss and Ho,
1997).

The carbon isotope fractionation derived fromn-C17
alkane reached the values of 17–19‰ in the mesotrophic wa-
ters of the HNL and MAR sites, which are within the range
of 16–22‰ reported for cyanobacteria biomass (Sakata et
al., 1997). In contrast, the low carbon isotope fractionations
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(8 to 12‰) obtained forn-C17 in the oligotrophic waters
of the GYR and EGY sites as well as in the eutrophic wa-
ters of the upwelling area are suggestive of microorganisms
which use CO2-concentrating mechanisms. Despite substan-
tial advances over the past few years, in the understand-
ing of the mechanism and genes involved in cyanobacte-
rial CCMs (Badger and Price, 2003), the induction of the
CCM mechanism remains to be determined (McGinn et al.,
2003; Woodger et al., 2005). Also, since similarεp values
were measured in the upwelling area for biomarkers derived
from eukaryotic plankton, it cannot be ruled out thatn-C17 in
the upwelling sites is mainly derived from some eukaryotic
source.

The b-values and growth rates for alkenone-producing
haptophytes measured in the euphotic layer varied almost
tenfold, ranging from 75 to 490‰µmol kg−1 and from 0.2
to 1.7 d−1, respectively. The highest growth rates were esti-
mated in the waters of the Chilean upwelling, followed by the
EGY (0.5 d−1), the GYR (0.4 d−1) and finally the MAR and
HNL (0.3 d−1) sites. The lowest values were found in the
surface waters of the Gyre (0.2 d−1). Overall, ourb-values
and growth rates compare to those reported for the Bering
Sea, Arabian Sea, Southern Ocean and equatorial Pacific at
140◦ W (84–136 ‰µmol kg−1 and 0.2–0.4 d−1) (Bidigare et
al., 1997; Harada et al., 2003; Laws et al., 2001) but they are
slightly higher than those reported from the Peru upwelling
zone (197–397‰µmol kg−1 and 0.5–1 d−1) (Bidigare et
al., 1997). This is probably related to the strength of the
upwelling as indicated by the higher nutrient and CO2 con-
centrations in the sampled area and by the larger photope-
riod. It is also noteworthy that the calculated growth rates
are maximum estimates and are valid only on the assump-
tion that alkenone producing haptophytes obtain CO2 (as the
only carbon source) solely by passive diffusion, which may
not be the case in the nutrient-rich waters of the upwelling
zone. Moreover, alkenones may occur well below the eu-
photic zone (40–100 m) in fecal material produced by her-
bivorous zooplankton (Grice et al., 1998) and other particles,
which have been transported down due to physical mixing
and sinking. Through the continuous convective movement
in the water column of this dynamic area, the phytoplankton
cells are likely to encounter lower average CO2 concentra-
tions and higher irradiance than at the depths they were sam-
pled. In this sense, if we consider that alkenones found at
depths of 40–100 m were produced in the upper layer where
CO2 concentration is lower (∼28 µmol kg−1) and light is
not limited, the estimated growth rate decreases to 1.2 d−1,
which is in the range of typical values found in field popula-
tions of nutrient rich waters (Bidigare et al., 1997).

The b-values for the alkenone synthesizer phytoplankton
were well distinguishable between the two contrasting envi-
ronments: low at the oligotrophic sites and a high value in
the upwelling zone. Due to the natural correlation between
concentrations of dissolved CO2 and nutrients, b-values ob-
viously co-varied with the concentrations of silicate, ni-

trate and phosphate. However, at the very low phosphate
levels (<0.4µmol l−1) of the oligotrophic sites, b-values
showed relatively high variation (75–160‰µmol kg−1) and
compared very well with the corresponding values reported
by Bidigare et al. (1997), but also with those from other
oligotrophic areas (Laws e al., 2001; Benthien et al., 2002).
This confirms the interpretation given by these authors that
growth rates may be controlled by some trace micronutrient
(e.g. Zn) (Bidigare et al., 1997; Shaked et al., 2006), and/or
that adaptation of the phytoplankton physiology to the low
nutrient waters might result in higher variability in the effi-
ciency of the different carbon uptake mechanisms.

4 Summary and conclusions

As a summary, lipid biomarker abundances together with
their relative component contribution confirmed the general
expectations on the predominance of diatom algae in
nutrient-rich waters, and of zooplankton, bacteria and de-
graded material below the euphotic zone. In contrast, the
hyperoligotrophic area of the Gyre was characterized by low
concentrations of lipid biomarkers, and especially by un-
precedented deep maxima of eukaryotic markers, and rather
unexpectedly high heterotrophic activity in surface waters.
Among these biomarkers, phytol and the more specific
diatom sterols followed the chlorophyll profile. However,
highest concentrations were measured for alkenones with
maximum values above chlorophyll maximum and above the
concentration peak of 19’HF, thus indicating a quite specific
community of the alkenone producing prymnesiophytes.
Discrepancies between the alkenone-calculated and the in
situ temperatures of the surface layer from the gyre seemed
to be caused by nutrient limitation and/or degradation of
alkenones. Carbon isotope ratios of alkenones markers ev-
idenced that prymnesiophytes inhabiting the depth of the
chlorophyll maximum were likely light-limited.

Our results along the different trophic systems in the
South East Pacific showed also that source-specific algal
biomarkers and compound specific isotope analyses largely
responded to the composition of the phytoplankton and to
the different processes of carbon acquisition. Within a prob-
ably complex pattern of processes that link theεp of the
different phytoplankton taxa and their environmental factors,
our field study illustrates that carbon isotope fractionation
values from nutrient-rich waters were much lower compared
to those in nitrate limited. However, the high scatter ofεp

in the oligotrophic conditions indicates that other factors be-
sides major nutrients are probably affecting the carbon iso-
tope fractionation. Light not being generally a limiting fac-
tor in the euphotic layer, higher growth rates and/or active
uptake of HCO−3 could explain the reducedεp values of the
nutrient-rich waters. These relatively low and similarεp

over the different phytoplankton taxa of the nutrient-rich wa-
ters implied non-diffusive C transport, whereas the high and
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dispersedεp values from the nutrient-poor waters might re-
sult from the lower growth rates and from higher variability
in the efficiency of the carbon uptake mechanism by diffu-
sion. However, the available data do not allow distinguishing
between the two factors.
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Table B1. Selected lipid biomarkers concentrations normalized to organic carbon (mg g−1C) in suspended particles from the South Pacific
Ocean.

locations-
depth (m)

phytol C281
5.24(28) C25 HBI C16:4

FA
C20:5
FA

Total
alkenones

C301
22 n-C17 n-

alcohols
C20:1 +
C22:1
FA

Branched
FA

C271
5
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Table C1. Stable carbon isotopic composition (δ13C(‰)±s.d. of three replicate injections) of selected lipid biomarkers in suspended particles
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