
Biogeosciences, 3, 635–650, 2006
www.biogeosciences.net/3/635/2006/
© Author(s) 2006. This work is licensed
under a Creative Commons License.

Biogeosciences

Seasonal dynamics ofPseudocalanus minutus elongatusand Acartia
spp. in the southern Baltic Sea (Gdánsk Deep) – numerical
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Abstract. A population dynamics model for copepods is pre-
sented, describing the seasonal dynamics ofPseudocalanus
minutus elongatusandAcartiaspp. in the southern Baltic Sea
(Gdánsk Deep). The copepod model was coupled with a one-
dimensional physical and biological upper layer model for
nutrients (total inorganic nitrogen, phosphate), phytoplank-
ton, microzooplankton, and an early juvenile of herring as a
predator. In this model, mesozooplankton (herbivorous cope-
pods) has been introduced as an animal having definite pat-
terns of growth in successive stages, reproduction and mor-
tality. The populations are represented by 6 cohorts in dif-
ferent developmental stages, thus assuming that recruitment
of the next generation occurs after a fixed period of adult
life. The copepod model links trophic processes and popu-
lation dynamics, and simulates individual growth within co-
horts and the changes in biomass between cohorts.

The simulations of annual cycles of copepods contain one
complete generation ofPseudocalanusand two generations
of Acartia in the whole column water, and indicate the im-
portance of growth in the older stages of 6 cohorts of each
species, to arrive at a total population biomass. The peaks of
copepods’ biomass are larger at the turn of June and July for
Pseudocalanusand smaller in July forAcartia, lagging that
of phytoplankton by ca. two mouths, due to the growth of
cohorts in successive stages and egg production by females.

The numerical results show that the investigated species
could not be the main factor limiting the spring phytoplank-
ton bloom in the Gdánsk Deep, because the initial develop-
ment was slow forAcartiaand faster forPseudocalanus, but
the main development formed after the bloom, in both cases.
The phytoplankton bloom is very important in the diet of the
adults of the copepods, but it is not particularly important for
the youngest part of new generation (early nauplii). How-
ever, the simulated microzooplankton biomass was enough

Correspondence to:L. Dzierzbicka-Głowacka
(dzierzb@iopan.gda.pl)

high to conclude, in our opinion, that, in this case, it was
a major cause in limiting phytoplankton bloom. The model
presented here is a next step in understanding how the popu-
lation dynamics of a dominant species in the southern Baltic
Sea interact with the environment.

1 Introduction

In the past, where zooplankton has been introduced into a
model, factors such as filtering, respiration, and excretion
rather often have been taken as fixed productions of the hy-
pothetical biomass rather than being related to more detailed
information on behaviour and metabolism. In the literature
there are now considerable experimental data on these as-
pects for several species of zooplankton. This information
can be used to provide some idea of the functional relations
which could be used in a simulation of zooplankton response
to variations in its environment. The development of such
theoretical descriptions is critical to the inclusion of this an-
imal, in more general simulations of ecosystems. Most of
the models take into account only nutrient and phytoplank-
ton (Fransz et al., 1991), probably because of the difficulty in
representing the complex behaviour that exists among zoo-
plankton species and also among the different zooplankton
developmental stages. Models having one compartment for
the whole zooplankton community are useful only for sim-
ulating ecosystem dynamics over the course of a few days
(Wroblewski and Richman, 1987) or for a stable environ-
ment, but become meaningless for long periods if the envi-
ronment fluctuates. Although field workers consider popula-
tion dynamics to be the minimum level of study, zooplankton
population models are rarely included in ecosystem models.

The considerations of herbivores as biomass show that
useful deductions can be made. In particular, in studies of
phytoplankton populations, it may be sufficient to use a sin-
gle parameter for presenting the general concepts from this
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Fig. 1. Conceptual diagram of the coupled model.

point of view (Riley, 1965). Such studies of phytoplankton
usually stress the effects of physical variables in changing
the phytoplankton populations. These factors are certainly
important, but they may have been overemphasised by the
excessive simplicity of the portrayal of the herbivores. Thus,
it is necessary to look at the probable intricacies that can arise
from a more consistent consideration of growth, reproduc-
tion, and mortality of copepods in particular development
stages. Steele and Henderson (1976) demonstrated that a
comprehensive model of the food chain needs to take into
account the population dynamics of herbivores forCalanus
finmarchicusin the North Sea; this species dominates the
biomass of zooplankton in spring and summer and shows
clearly demarcated cohorts. The study of copepods popu-
lation dynamics was made, for instance, by Francois Carlotti
and several co-workers, who have worked along the same
lines, i.e. in the papers by Carlotti and Sciandra (1989), Car-
lotti and Nival (1992), Carlotti and Radach (1996), Carlotti
and Wolf (1998) and Radach et al. (1998) and here should
be included the paper by Moll and Stegert (2007). This type
of study for the southern Baltic Sea (Gdańsk Gulf) has been
made by Dzierzbicka-Głowacka (2005a) forP. elongatusdy-

namics in the spring bloom time in the Gdańsk Gulf. How-
ever, growth ad development of copepodite stages ofPseu-
docalanuswere presented by Dzierzbicka-Głowacka (2004a,
b).

The aim of this paper is a description of the seasonal
dynamics ofPseudocalanus minutus elongatusand Acar-
tia spp. at the Gdánsk Deep. A population dynamics model
for copepods was coupled with a 1-D physical and biolog-
ical model (Dzierzbicka-Głowacka, 2005b) and a simple 1-
D prey-predator upper layer model (Dzierzbicka-Głowacka,
2006).

2 The coupled one-dimensional model

Recently, Dzierzbicka-Głowacka (2005b) developed a one-
dimensional physical and biological upper-layer model. In
our paper, we study the dynamics ofP. minutus elongatusand
Acartia spp. from the southern Baltic Sea (Gulf of Gdansk).
We kept the structure of both simple models (Fig. 1) and
added a component for pelagic detritus, which was not pre-
viosly represented.
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Table 1. Differential equations for pelagic detritus and new processes; PDetr(z, t): detritus concentration,Kz: turbulent diffusion coefficient,
wz: phytoplankton sinking velocity,wd : detritus sinking velocity,rd : detritus remineralization rate.
∂PDetr

∂t
=

∂
∂z

(
Kz

∂PDetr
∂z

)
+ MORPD + FECT D + MORT D − wd

∂PDetr
∂z

− INGD − REMID .

Food available for mezozooplankton Foot(z, t) = Phyt (z, t) + PDetr(z, t)
Inputs to the pelagic detritus equation

with microzooplankton equation:
Fecal pellet material FECZ=nf INGZ

Carcasses material MORZ=nzINGZ

with mesozooplankton equation given in Table 3
Pelagic detritus equation

Sinking of pelagic detritus wd
∂PDetr

∂z
Flux of dead phytoplankton MORPD = ppMORP

Flux of fecal pellets FECT D=pf (FEC+FECZ)
Flux of dead zooplankton and fish MORT D=pz(MOR+MORZ)

Copepod grazing on pelagic detritus INGD=ING∂PDetr(z,t)
∂Foot(t)

Remineralization of pelagic detritus REMID=rdPDetr
Nutrient equation

Total remineralization REMI=REMID
Benthic detritus equation

Flux condition at the boundary for FP (H) = −wzPhyt (H, t) − wdPDetr(H, t)

phytoplankton and detritus

A one-dimensional Coupled Ecosystem Model consists
of three submodels: meteorological, physical and biologi-
cal. The meteorological component drives both of the 1-D
models, and the output of the physical model is also used
for driving the biological model. We do not discuss the
meteorological and physical submodels, but focus on the
biological submodel. This submodel combines two mod-
els: nutrient-phytoplankton-zooplankton-detritusand prey-
predator, i.e. this model consists of seven mass conservation
equations. There are six diffusion advection reaction equa-
tions for phytoplankton, micro- and mesozooplankton, and
early juvenille fish biomass, and a double nutrient in the wa-
ter column. The seventh equation, an ordinary differential
equation, describes the development of detritus at the bottom.
The equations, process formulations and parameter values
of the ecosystem model are given by Dzierzbicka-Głowacka
(2005b). However, the additional equations and processes
relating to the model’s pelagic detritus compartment are pre-
sented in Table 1.

The philosophy was to make the model as simple as pos-
sible as far as phytoplankton is concerned: phytoplankton is
modelled with the aid of only one state variable. The phy-
toplankton concentration is taken as a dynamically passive
physical quantity, i.e. it is incapable of making autonomous
movements. The biological model incorporates formulations
of the primary production mechanism and of the remineral-
ization mechanisms within the mixed layer in the lower lay-
ers and at the bottom. Phytoplankton in the water is either
grazed by zooplankton, small fish, or else it dies and sinks.
The grazed phytoplankton can be divided into many groups:

one contributes to zooplankton growth, another is deposited
as faecal pellets, and a third is excreted by the zooplankton as
dissolved metabolites, and is lost by mortality and predation.
Organic detritus in the water column is either immediately
remineralized or directly transported to the bottom, where it
accumulates in a stock of benthic detritus. The concept of
the detritus pool at the bottom has been introduced to cre-
ate a lag in the remineralization of the majority of detritus
and the eventual replenishment of the upper layer with nu-
trients. This complex process is parameterized by assuming
a net remineralization rate for bottom detritus (Billen et al.,
1991). In this model nutrients are represented by two compo-
nents: total inorganic nitrogen (NO3+NO2+NH4) and phos-
phate (PO4). The pool of nutrients is enriched in many ways:
through the remineralization of dead phytoplankton, zoo-
plankton and fish, and feacal pellets; the release from phy-
toplankton, zooplankton and fish excretion and benthic re-
generation. One state variable for microzooplankton is con-
sidered. Microzooplankton is defined as heterotrophic plank-
tonic organisms from 10 to 500µm SED (Spherical Equiv-
alent Diameter), excluding heterotrophic nanoflagellates and
naupliar/larval stages of larger zooplankton and of benthic
organisms. The microzooplankton comprises ciliates and
other heterotrophic protists, which are filter-feeders, feeding
on phytoplankton. The fish is represented by earlier juvenile
of herringClupea harengusfor 4–10 cm size class, where its
growth rate is controlled by the encounter rate between con-
sumer and prey. This component has been introduced into
this model to determine a predation of zooplankton.
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Table 2. Mathematical formulations of relationships used in the model;i: cohort; j : stage; ifWj−1<Wi<Wj , theni=j for successive
developmental stagesj=1, 2 · · · 13; Foot: food concentration;T : temperature;Wi : weight;Zi : number;B: predator biomass;g: growth
rate of predator;Wfemale: weight of female;Wegg: weight of egg;Kz: turbulent diffusion coefficient;Ri: Richardson number.

Process Units Formulation

Growth
Ingestion µgC d−1 INGi= f ilif teif wi

Influence of food f ili(Foot) = fimax
{1 − exp

(
−(Foot−Footo)

kFoot

)
}

Influence of temperature f tei(T ) = t1tT2
Allometric relation f wi(W) = Wα

i

Fecal pellets µgC d−1 FECi=(1 − na)INGi=nf INGi

Metabolism µgC d−1 METi=Ms + Ma

Basic metabolism Ms = nwWi

Active metabolism Ma = neAi , Ai = na INGi

Egg matter µgC d−1 female−1 ProdEggi = exp(GROWTH) − 1
Growth µgC d−1 GROWTH=ING−FEC−MET
Growthj=13 µgC d−1 GROWTH13=ING13−FEC13−MET13−ProEgg
Dynamics

Mortality no. m−3 d−1 MORi=Zimz

Predation no. m−3 d−1 PREDi =βgB/Wi

Migration no. m−3 d−1 MIGi =1+ aw cos(ω(t − to))f (z)

Eggs no. d−1 female−1 EGGi=
Wfemale
Wegg

ProdEggi , EGG=X Z13
∫
J EGGi

Turbulent diffusion m2 s−1 Kz = 5 × 10−4(1 + Ri)−2.5
+ 10−6

In this paper the mesozooplankton (herbivorous copepods)
has been introduced into this model as animals having defi-
nite patterns of growth, reproduction, and mortality. Assume
that two taxa of copepodPseudocalanus minutus elongatus
andAcartia spp. are present. The each species’ population
is represented as six cohorts with different developmental
stages.

Planktonic copepods are the major food source for fish lar-
vae in the period of development following the utilization of
the larval yolk sac. They also form part of the basic diet of
many adult pelagic fish. Feeding studies of fish larvae by
Załachowski et al. (1975) and Last (1978a, b, 1980) have
shown thatPseudocalanus, Acartia and Temoranauplius
and copepodid stages are important components of the diet
of numerous species of fish in the Baltic Sea and adjacent
waters, i.e. the North Sea and also the English Channel, as
well as in Scotland, Nova Scotia and Canadian Arctic wa-
ters.

3 Submodel of population dynamics for investigated
copepods

We consider that the mesozooplankton is composed of 6 co-
horts with different ages ofP. m. elongatusandAcartiaspp.,
with weightsWi and numbersZi ; then

{Zmeso} =
∑2

k=1
∑6

i=1 WiZi , where

∂Wi

∂t
= INGi − FECi − METi (1)

∂Zi

∂t
=

∂

∂z

(
Kz

∂Zi

∂z

)
− MIGi − MORi − PREDi . (2)

Equation (1) determines the change in weight of an indi-
vidual copepod, taking developmental stages into consid-
eration as the sum of its individual gains and losses of
energy (GROWTH=ING−FEC−MET); equation (2) repre-
sents the effects of mortality, predation, and daily migration
on a particular cohort as a function of numbers in that co-
hort in the appropriate development stage. IfWegg is the
weight of the naupliar stage at which feeding starts and
Wfemale is the weight of the adult, then for each cohort re-
lations of the form Egg=F(T , Foot, Zfemale, Wfemale/Wegg)

indicate the requirements for some function defining recruit-
ment Egg in terms as temperatureT , food available, Foot,
adults numbers,Zfemale, and the ratio of adult to naupliar
weight,Wfemale/Wegg.

Processes taken into account are presented in Table 2.
Weight is controlled by growth, which depends on food and
temperature. The growth rate is expressed in carbon mass
units. The ingestion rate ING for specific developmental
stages is dependent firstly on the food concentration accord-
ing to a functionf ili and secondly on temperature, follow-
ing a constantQ10 law f tei . We use the allometric relation
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expressed by Paffenhöfer (1971),f wi , in which the maxi-
mal ingestion rate increases with weight during development.
Egested matter is the part of ingested matter which is not as-
similated and here is represented by fecal pellet production
FEC. The quantity of egested matter is simply proportional
to the ingestion rate with the percentage of ingestion egested
as fecal materialnf . The total rate of metabolic loss (ex-
cretion rate) MET can be split into three components with
different relations to the food uptake rate (see Steele and
Mullin, 1977). Ms is assumed to be the resultant or basic
metabolism, independent of food supply. The respiratory
costs of foraging for and capturing foodMr should fall as
the food concentration and, correspondingly,f (Food), rises.
Finally, there is the cost of assimilating and biochemically
transforming the food (specific dynamic action,Ma), propor-
tional to the rate of assimilationA, which is computed as a
constant fraction of the ingestion rate (e.g. Steele, 1974, who
usedA=0.7ING). We suppose as Wroblewski (1984) that ex-
cretion can be separated into 2 terms. The first (Ms) rep-
resents the basic metabolism and is proportional to weight.
The second (Ma) refers to the active metabolism and is pro-
portional to the ingestion rate.

The number of juveniles EGG is defined assuming that
eggs are released by the female throughout some time span
J . For mature adults, ingested matter is used for mainte-
nance and reproduction (Sekiguchi et al., 1980). The repro-
ductive rate per individual female ofPseudocalanuscan be
converted to the equivalent amount of egg matter per day as
a percentage of female weight (see Corkett and McLaren,
1978; McLaren and Leonard, 1995). The efficiency termX

is the conversion of increase in biomass by the adult popula-
tion into eggs, including the wasted growth in the males.

The intensity of mortality MOR is determined as average
mortality ratemz; mz at different food concentrations and
temperatures forPseudocalanusis given by Klein Breteler et
al. (1995).

According to Mudrak (2004), the youngest development
stages (nauplii) were usually found in subsurface layers
(mostly between 10 and 20 m). They did not normally
change their positions in the water column. Younger copepo-
dids (C1-C2) showed strong diel vertical migration above the
halocline, older copepodids (C4-C5) below the thermocline,
when adults remained in the deepest part of the water column
(near the bottom) (Mudrak et al., 2004). Therefore, here the
migration process MIG, only for copepodids in the vegeta-
tion season, was described in a day-night cycle, wheref (z)

is the vertical distribution of copepods in timeto in which its
maximum concentration occurs in the upper layer.

Predation PRED represents the losses incurred byZi . Its
magnitude can be determined from the biomass of early ju-
venile herring on the assumption that the loss incurred by
the prey concentration is proportional to the increase in the
predator biomass.

The copepod population model simultaneously provides
the time variations for the weights and the number of the

six cohorts, and for the biomasses of each cohort forPseu-
docalanus minutus elongatusandAcartia spp. in the whole
column water in the southern Baltic Sea.

Copepod ingestion and egg-production rates vary in re-
sponse to forcing from the physical and biological envi-
ronments (Runge, 1984, 1985; Ambler, 1985; Peterson,
1988; Rothschild, 1988; Kleppel, 1992). In turn, the in-
gestion rate and diet are thought to affect growth, devel-
opment and egg production (Roman, 1984; Stoecker and
Egloff, 1987; Kleppel et al., 1991). The relationships be-
tween food concentration, composition, feeding and pro-
duction have been difficult to quantify in natural food en-
vironments. Growth and development of copepods in dif-
ferent waters are determined mainly by temperature and
food availability (Paffenḧofer and Harris, 1976; Corkett and
McLaren, 1978; Vidal, 1980a, b; Thompson, 1982; McLaren
et al., 1989; Klein Breteler et al., 1995; Witek, 1995; Koski
et al., 1998; Dzierzbicka-Głowacka, 2004a, b). Egg pro-
duction of copepods in nature is generally assumed to be
food-limited, while juvenile growth often seems to be de-
pendent on temperature alone (McLaren et al., 1969; Paf-
fenḧofer and Harris, 1976; Thompson, 1976; Corkett and
McLaren, 1978; Landry, 1983; Dzierzbicka-Głowacka and
Zieliński, 2004). Some authors found correlations between
copepod egg production and phytoplankton standing stock
(e.g. Landry, 1978; Checkley, 1980; Durbin et al., 1983;
Beckman and Petersen, 1986; Kiørboe and Johanson, 1986)
while others did not (e.g. Bautista et al., 1994; Hay, 1995).
In our opinion, these relations are not explicit and are hard to
obtain. Food concentration clearly has no effect on egg pro-
duction. Egg production for some species may be correlated
with food availability at the same temperature.

Most of the coefficients used in the submodel are calcu-
lated from these results. Where data are lacking, coefficients
are estimated from knowledge about similar species (see Ap-
pendix).

3.1 Assumptions of the model

The dynamical constants used in the biological model with
the population dynamics submodel for the copepods investi-
gated were determined mostly from data derived from the
literature (see Tables 1 and 2 of Dzierzbicka-Głowacka,
2005b). The values of the parameters were chosen reason-
ably close to Baltic levels.

We need to make assumptions concerning the vertical dis-
tribution of the biological characteristics and the biology of
thePseudocalanusandAcartia:

(i) initial values as constants with depth were assumed (see
Table 3);

(ii) the initial population ofPseudocalanusandAcartiahad
no eggs and no nauplii N1-N6;

www.biogeosciences.net/3/635/2006/ Biogeosciences, 3, 635–650, 2006
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Table 3. The initial values of biological characteristics investigated.

State variable Symbol Value Units

Total inorganic nitrogen NutrN 6 mmol m−3

Phosphate NutrP 0.6 mmol m−3

Phytoplankton Phyt 0.01 mgC m−3

Microzooplankton Zmicro mgC m−3 0.1 mgC m−3

Pseudocalanus Egg 0 ind. m−3

N1-N6 0 ind. m−3

C1 2300 ind. m−3

C2 1800 ind. m−3

C3 1300 ind. m−3

C4 900 ind. m−3

C5 500 ind. m−3

adults 300 ind. m−3

Zmezo 4.2 mgC m−3

Acartia Egg 0 ind. m−3

N1-N6 0 ind. m−3

C1 1100 ind. m−3

C2 1000 ind. m−3

C3 900 ind. m−3

C4 700 ind. m−3

C5 400 ind. m−3

adults 300 ind. m−3

Zmezo 2 mgC m−3

Clupea harengus(3 cohorts) B1 30 mgC m−3

B2 15 mgC m−3

B3 7.5 mgC m−3

(iii) the mean weight for specific development stages of
species investigated were assumed after standard HEL-
COM (Hernroth, 1985) for Gdansk Deep.

We assume that the available food concentration for all
the stages of the population of copepods investigated is the
value of the food concentration (phytoplankton and other re-
sources), as well as the notion that copepods feed continu-
ously if there is food present. The products of mesozooplank-
ton metabolism, which enter the nutrient model (i.e. excre-
tion, remineralized fecal pellets and dead bodies), are evenly
distributed throughout the upper layer (Table 4). The remain-
ing fecal pellets and dead bodies fall immediately to the ben-
thic detritus.

Predator is represented by early juvenile of herringClu-
pea harengus(4–10 cm). The Vistula Lagoon is an impor-
tant spawning area for southern Baltic spring-spawning her-
ring Clupea harengus. At the turn of winter and spring (in
March), adults which migrate from the southern Baltic to the
spawning are in the shallow and brackish water of the Vis-
tula Lagoon (Fey, 2001). Herring in the Vistula Lagoon have
three cohorts each year (Margoński, 2000). Larvae abun-
dance in Vistula Lagoon in 1999 was observed in 495–128
individuals in 100 m3. When young herring are about 40 to
50 mm, they undergo a metamorphosis, developing the mor-
phological characteristics of adults; they are then identified

Table 4. Processes coupling the mesozooplankton submodel to the
other components.

Total ingested material ING=
∑2

k=1
∑6

i=1 INGk,iZk,i

Total fecal pellet material FEC=
∑2

k=1
∑6

i=1 FECk,iZk,i

Total cadaverous material MOR=
∑2

k=1
∑6

i=1 MORk,iWk,i

Total metabolic products MET=
∑2

k=1
∑6

i=1 METk,iZk,i

as juveniles. Metamorphosis begins in June in Vistula La-
goon. Herring early juveniles emigrated from the Polish part
of the Vistula Lagoon; the juveniles of the first cohort mi-
grated in June, the second cohort in July, and the third co-
hort in August to the southern Baltic Sea. An early juvenile
(ca. 40 mm) appears in the Gulf Gdańsk after two weeks,
assuming that its velocity was ca. 4 cm s−1, after Miller et
al. (1988). Therefore, in these calculations it was assumed
that, during the first half of the year, the predator biomass is
B=0.

4 Results

The 1-D biological upper layer model described in
Dzierzbicka-Głowacka (2005b), with the population dynam-
ics submodel for copepods, was used in the numerical simu-
lations of the seasonal dynamics ofPseudocalanus minutus
elongatusandAcartia spp. in the southern Baltic Sea. How-
ever, the experimental data relating to copepods were given
by Maritime Branch Materials (IMGW 2000) and Mudrak
(2004).

4.1 Numerical simulations

The flow field and water temperature used as the inputs of
the biological submodel were reproduced by the physical
submodel. However, wind stress, global radiation and the
heat balance at the sea surface are determined from stan-
dard meteorological components for the location (54◦52′ N,
19◦10′ E) in Gdánsk Gulf for 1999. In Dzierzbicka-
Głowacka (2005a) the spring phytoplankton andPseudo-
calanus elongatusdynamic in the southern Baltic Sea at the
two stations were simulated. Here we present the results
of the biological parts of the model for 1999 at the Gdańsk
Deep, as well as the simulation made with a dynamic popu-
lation ofP. m. elongatusandAcartiaspp.

4.1.1 Simulations of annual plankton cycle

Modeled temperature fields resulting from the physical
model (as the output) (Fig. 2a) were used for the primary
production, phytoplankton respiration and physiological pro-
cesses of copepods calculation. The simulated tempera-
ture began to increase during the second half of March and
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Fig. 2. Annual simulation. Simulated profiles of temperature(a),
primary production(b), nutrients – total inorganic nitrogen(c) and
phosphate(d), phytoplankton(e), microzooplankton(f), small de-
tritus (g), mesozooplankton –Pseudocalanus minutus elongatus
andAcartia spp.(h) and early juvenile of herring(i) at the Gdansk
Deep in 1999.

reached ca. 21◦C in August. The destruction of the thermo-
cline starts in the late fall. Probably, the spring bloom in this
year was triggered in the first half of March. The bloom is
initiated by the heating event and the extremely low winds.
The end of permanent overturning of the water column in
mid-March in the main event allows the phytoplankton to
start growing (Fig. 2b). The depths of the upper layer, which
are determined by the mixing intensity in the water column,
show that strong gradients in the nutrient concentration de-
velop (Figs. 2c and d). The phytoplankton biomass (Fig. 2e)
reflects the nutrient availability, showing a strong nutrient –
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Fig. 2. Continued.

depleting spring bloom. The phytoplankton biomass reached
the mean maximum values ca. 400 mgC m−3 in the upper
10-m layer in the spring bloom. The highest value occurred
in the second half of April and equaled ca. 530 mgC m−3

on the surface sea (Fig. 2e). This situation is caused by the
high nutrient concentrations and daily global radiation in the
last decade, focusing on March and April. The phytoplank-
ton biomass was low in summer, from June till August, most
likely as a result of a faster depletion of nutrients and the phy-
toplankton grazing by micro- and mesozooplankton. The de-
velopment of microzooplankton was exactly correlated with
the development of phytoplankton (Fig. 2f). Generally, the
greatest amounts of microzooplankton occurred in the up-
per layer, in the periods of large biomass of algae. Biomass
of microzooplankton was characterized by the occurrence of
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Fig. 2. Continued.

two biomass peaks in a year; at the turn of summer and au-
tumn. A considerable increase inZmicro took place in April,
shortly after the beginning of the spring bloom. The micro-
zooplankton biomass was ca. 30 mgC m−3 in the springtime;
however, in the summertime, it fell below 10 mgC m−3, with
simultaneous decreasing phytoplankton biomass, and reap-
peared in early autumn with higher biomass. Small pelagic
detritus (Fig. 2g) was abundant mainly when the phytoplank-
ton concentration exceeded 200 mgC m−3, and its maximum
concentration was deeper than the 20 m layer.

The biomass of mesozooplankton, represent byPseudo-
calanus andAcartia, increased in the first half of the year,
reaching maximum values from ca. 8 mgC m−3 at the turn
of June and July (Fig. 2h). This increase was mainly from
growth in successive stages and egg production. In autumn a
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Fig. 3. Pseudocalanus minutus elongatus. Weights,Wi (a), num-
bers,Zi (b), and biomass,

∑
WiZi (c), of six cohorts.

certain increase in phytoplankton biomass took place.Phyt
remained stable, at a level slightly higher than in summer.
It might have been related to the considerable reduction in
the amount of micro- and mesozooplankton, as well as an in-
crease in the concentration of nutrients resulting from deeper
mixing of water. The vegetation season ended in December,
when the biomass of phytoplankton dropped to a level from
January–February. The early juvenile of herring biomass in-
creased to ca. 60 mgC m−3 at the end of July, and 90 mgC
m−3 at the end of August (Fig. 2i). The increase in predator
biomass in July and August is additionally caused by the mi-
gration of second and third cohorts from the Vistula Lagoon.
The highest biomass of early juvenile of herring occurred
last summer (ca. 140 mgC m−3), when prey concentration
reached the second small maximum.
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4.1.2 Pseudocalanus minutus elongatus

The distributions shown in Fig. 3 present the changes in val-
ues of weightsWi (Fig. 3a) and numbersZi (Fig. 3b), and the
biomasses of six cohortsWiZi (Fig. 3c) ofPseudocalanus.

One complete distinct generation (6th cohort of 2nd gen-
eration) developed throughout the seven mouths, beginning
in mid-April and ending in mid-November.

The peaks of the biomass (see Fig. 3c) were due to egg
production, in mid-April – of 6th cohort of the 1st generation,
at the turn of May and June – of 5th cohort, as well as to
a high degree of 6th cohort biomass, in mid-June – of 4th
cohort, as well as to a high degree of 6th cohort biomass and
to a lower degree of 5th, at the turn June and July – of 3rd
cohort, as well as to a high degree of 6th cohort biomass and
to a lower degree of 4th and 5th, in mid-July – of 2nd cohort,
as well as to a high degree of 6th cohort biomass and to a
lower degree of 3rd, 4th and 5th cohorts biomass and at the
first half of August – of 1st cohort, as well as 2nd, 3rd, 4th,
5th and 6th cohorts biomass of the 1st generation.

The phytoplankton peak in September permitted a new
growth period for the second generation copepodite stages
(visible mainly in the weight curves); and females of the 6th
cohort produced a relatively small number of eggs to yield a
third generation in November.

The total depth integrated biomass ofPseudocalanusis
characterized by one peak biomass. The maximum total
biomass (ca. 330 mgC m−2) was at the turn of June and July
(see Fig. 3c). Figure 3 clearly illustrates the overlap be-
tween the first and second generations. The second gener-
ation, present the first spawning, seemed to develop slowly
and with a higher mortality.

During winter, the total biomass ofPseudocalanusslightly
decrease, invisible at Fig. 3c, because of a weights decrease
of individuals subject to lack of food (see Fig. 3a), as well
as of a numbers decrease, because the weights and numbers
of individuals decreased slightly owing to the lack of food
and the low mortality. The biomass then increased as a result
of a considerable increase in the individuals weight for the
copepodite stages. In spring, the individuals became active
and they grew by feeding on the phytoplankton bloom, and
the adult females produced eggs. By combining the informa-
tion on growth with the dynamics of individuals, we can af-
firm that most individuals had a lower growth rate during the
naupliar and copepodite phases, with a low phytoplankton
biomass in summer; subsequently, the copepodite stages re-
sumed exponential growth with the rise of phytoplankton in
September (Fig. 3a). Individuals of the 3rd generation were
produced in November by the females of the 6th cohort of the
2nd generation, but they developed no farther than stage N3,
due to a lack of food and the severe decrease in temperature.
Growth curves stopped because of the death of individuals
and which of the weights and numbers decreased. Any de-
crease in numbers was caused by mortality and at the second
half of year, also by predation. The rate of mortality was high
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Fig. 4. Acartia spp. Weights,Wi (a), numbers,Zi (b), and
biomass,

∑
WiZi (c), of six cohorts.

in summer in the upper layer as a result of high temperature
and low food concentration; however, in springtime, the rate
was the lowest as a result of high food concentration and low
temperature. Predation was the largest in October, when the
predator biomass had a maximum value.

4.1.3 Acartiaspp.

The distributions shown in Fig. 4 present the changes in val-
ues of weightsWi (Fig. 4a) and numbersZi (Fig. 4b) and the
depth integrated biomasses of six cohorts and total biomass∑6

i=1 WiZi (Fig. 4c) ofAcartiaspp.
Two complete distinct generations, from eggs to adults,

for the first time – 6 cohorts of the 2nd generation, the
second time – 5 cohorts of the 3rd generation, developed
throughout the year, one beginning in April and the other
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from mid-June to mid-July (see Figs. 4a and b). The total
biomass ofAcartia is characterized by two biomass peaks, in
July – main, and small, in September. The peak of biomass
in July (ca. 140 mgC m−2, see Fig. 4c) was mainly due to
the high egg production by adults of the 2nd generation (1st,
2nd, 3rd and 4th cohorts), as a result of the very high num-
bers of adults (Fig. 4b). Figures 4a and b clearly illustrates
the overlap between generations. The 3rd generation, present
from the first spawning in mid-June by the 6th cohort to the
adults at the turn of August and September, as well as the
first spawning at the turn June and July by the 5th, 4th, 3rd,
and 2nd cohorts to the adults in September, seemed to devel-
oped slowly (Fig. 4a) and had a high predation rate (Fig. 4b),
i.e. the total development time of the 6th cohort was 75 days
and of the 2nd cohort – 90 days. The second peak of biomass
in September (ca. 70 mgC m−2, see Fig. 4c) was mainly due
to the high egg production of adults of the 6th cohort of the
3rd generation (Fig. 4b), as a result of high temperature. The
phytoplankton peak in September permitted a new growth
period for the 3rd generation copepodite stages, and females
of the 5th, 4th, 3rd, and 2nd cohorts of the 3rd generation
produced relatively small eggs to give a 4th generation in
October.

In the spring bloom, a substantial growth of phytoplank-
ton biomass was observed which fell at the next stage as a
result of an increase first in microzooplankton, and next in
mesozooplankton biomass. This growth in biomass of suc-
cessive cohorts of copepods is caused by an increase in body
weight and egg production by each of the adults. This sit-
uation leads to the substantial growth in the total biomass,∑2

k=1
∑6

i=1 WiZi , which is the algebraic sum of the prod-
ucts of the weights,Wi , and numbers,Zi , of both species.

The biomass peak ofPseudocalanusappeared at the turn
of June and July; however, theAcartia biomass was char-
acterized by two biomass peaks in a year; in July and in
September.

These small maxima occurring in the distributions of in-
vestigated species are the result mainly of a brood by suc-
cessive cohorts, causing their numbers to increase. The cal-
culations demonstrate that the growth of the weight of each
cohort is mainly caused by temperature and a substantial in-
crease in phytoplankton biomass. The body weight of cope-
pods strongly increases in the spring bloom, because in the
time the growth rate is higher as a result of larger phyto-
plankton biomass. In this period, temperature has also sig-
nificant influence on the growth ofPseudocalanus, causing
the growth rate tends to maximum.

4.2 Experimental data

The most important species in the Gdansk Gulf areAcartia
spp. (i.e.A. bifilosa, A. longiremisandA. tonsa) andCen-
tropages hamatus, Temora longicornis, andPseudocalanus
minutus elongatus. In the Gdánsk Deep a fourth species,
Pseudocalanus, occurred in great abundance, where in a

deeper layer, below 30 m, it became dominant, and below
the isohaline layer – almost the only representative of meso-
zooplankton. In 1999 at the Gdańsk Deep, the predominant
species werePseudocalanus minutus elongatusandAcartia
longiremis(see Maritime Branch Materials, IMGW 2000).
The results of the numerical simulations described here are
compared to the mean observed values, assuming an organic
carbon content of copepodsgC/gw.w=0.064 (Vinogradov
and Shushkina, 1987). The mean biomass of all copepods
(8 species) in the whole column water in the Gdańsk Deep
in 1999, was obtained Maritime Branch Materials, IMGW
2000, i.e. in March – ca. 20, April – ca. 45 , June – ca. 80 and
August – ca. 100 mgw.w m−3 and it corresponds to 1.3, 2.9,
5.1 and 6.4 mgC m−3. However, the mean biomass of inves-
tigated species calculated here was ca. two times lower than
observed values, except in March; i.e. in March – ca. 0.1,
April – ca. 1.2, June – ca. 2.8 and August – ca. 3.8 mgC m−3.

The plankton material was also collected during 20–25
May 1999 in diurnal cycles from the water column, which
was divided into several layers. The hauls were made us-
ing a Copenhagen net (100µm). Every single sample was
prepared and analysed according to standard methods (HEL-
COM). Numbers ofP. m. elongatusandAcartiaspp. for spe-
cific development stages were given by Mudrak (2004). Dur-
ing this period, the vertical distributions of observed biomass
in diurnal cycles were different, i.e. in the 0.07–0.8 mgC m−3

range in the upper-euphotic layer and 0.1–0.9 mgC m−3 in
the lower one forPseudocalanusand 0.02–1 mgCm−3 in
the upper layer and 0.03–0.55 mgC m−3 in the lower one for
Acartia. The average value of the biomass in the whole col-
umn water in these days was 0.395 mgC m−3 for Acartiaand
0.728 mgC m−3 for Pseudocalanus.

Figures 3c and 4c show the results of numerical simula-
tions, as well as observed data for depth integrated biomass
of investigated species. Depth integrated biomass was in the
1.8–42 mgC m−2 range forAcartiaand in the 6–63 mgC m−2

range for Pseudocalanusat the end of May after exper-
imental data. However, the mean observed values were
13 mgC m−2 for Acartia and 48 mgC m−2 for Pseudo-
calanusand they are slightly higher (ca. 25%) forAcartia
and ca. 20% lower forPseudocalanusthan mean obtained
here, i.e. the calculated mean biomass was ca. 10 mgC m−2

for Acartiaand ca. 60 mgC m−2 for Pseudocalanus.

5 Discussion

The simulated biological characteristics (i.e. the inorganic
nitrogen and phosphate concentrations, the phytoplankton
biomass and depth integrated ofPseudocalanus minutus
elongatusandAcartiaspp. biomass) in the model were com-
pared to the observations from the investigated water regions.
Taking into consideration the fact that outputs of the meteo-
rological submodel were obtained using meteorological data
for 1999, the comparison of numerical results will be made
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Fig. 5. Simulated and mean observed values of nutrient in the 15-m
upper layer at the Gdańsk Deep in 1999.

to the mean values of empirical data for 1999 on the basis of
various authorities.

The outstanding problem concerns the quality of field data
used to test such simulations. The problems of data arise
from the fact that the variability in space and time of zoo-
plankton is usually so great that any model that has the right
orders of magnitude in its outputs will fit the data. Thus,
even with models treating herbivores in some detail, the test-
ing of these models may rest primarily upon the nutrient and
phytoplankton levels, which can be measured with greater
accuracy.

The results of the numerical simulations of phytoplankton
biomass and nutrient concentration are in accordance with
the in-situ observations. Comparing the nutrient concentra-
tion from the calculated and mean experimental data, the
present results indicate that the difference inNutr is ca. 20%
in the wintertime, and ca. 5% in the summertime, in the
upper layer (see Fig. 5); however, ca. 30% at the bottom
(see Figs. 2c and d). The differences in the phytoplankton
biomass between the modelled and mean observed values is
equal to 5–20% in the 10-m upper layer and to 30% at the sur-
face sea (see Fig. 6) and depend on both the month for which
the calculations were made, as well on the C/Chl-a ratio for
converting the simulated carbon contents to chlorophyll-a. In
this paper, the calculations were made assuming the C/Chl-a

ratio as a mean value for the southern Baltic Sea in the upper
layer after Witek (1993) (see Fig. 7).

However, the obtained depth integrated biomass of cope-
pods is different in relation to the mean value of the observa-
tion data. The differences are in the 20–30% range at the end
of May, after experimental data given by Mudrak (2004). In
our opinion, on the basis of data from IMGW (see Maritime
Branch Materials, 2000), the total biomass ofPseudocalanus
andAcartia computed here amount to ca. 50–60% of all the
copepod biomasses in the Gdańsk Deep in 1999.

The results obtained here are different than those given
by Mudrak (2004) and Maritime Branch Materials (2000),
probably as a result of predation, which is proportional to
the increase in predator biomass. During the first half of the
year, predation was assumed to be zero because the predator
biomass was equal to zero at this time; however, during the
second half of the year, predation was considered, because,
in our model, the predator is only represented by early juve-
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served values of chlorophyll-a in the upper layer at the Gdańsk
Deep in 1999.

nile herring. The high biomass ofPseudocalanusin May was
due to initial numbers of adults which were too large and pro-
duced too many eggs in April (the efficiency termX was too
high) and the biomass ofAcartia in May was too low, due
to initial numbers of adults which were too small and pro-
duced too little eggs in April (the efficiency termX was too
low), and the mortality forPseudocalanuswas too low and
a high number forAcartia in the springtime, as well as the
low threshold for ingestion of food causing an early increase
in weights. This situation could also be caused by migration,
which, in our model, is of the same for copepodites of the
investigated species.

In our model, the development of copepods adjusts to the
dynamics of its food supply. The threshold of food con-
centration where copepods can survive seems to be an es-
sential parameter at the beginning of the bloom and at the
end of summer. The copepod biomass depends on physi-
cal and biological processes, such as phytoplankton growth,
as well as mortality and predation. We established a low
threshold for naupliar and copepodite stages. The simula-
tions show that the zooplankton population clearly misses
the phytoplankton bloom, if it is brief. One complete gen-
eration ofPseudocalanusdevelops in spring, summer and
early autumn. Any increase in thePseudocalanuspopulation
starts in the spring bloom time (Fig. 3c) but mainly formes
at the turn of spring and summer from individuals of the sec-
ond generation. Two complete generations ofAcartia de-
velop in spring and summer. In the case ofAcartia, the ini-
tial growth in population takes place in May after the phy-
toplankton spring bloom (Fig. 4c). Total biomass ofAcartia
was characterized by the occurrence of two biomass peaks
in a year; one in July, mainly formed from individuals of
the second generation and another small peak in Septem-
ber, from individuals of the third generation. The numerical
simulations show that the investigated species could not be
the main factor limiting the phytoplankton spring bloom in
the southern Baltic Sea, because the initial development was
slow for Acartia and faster forPseudocalanus, but the main
development formed after the bloom. However, the simu-
lated microzooplankton biomass was enough high (i.e. max-
imum value ca. 30 mgC m−3 in May) to conclude, in our
opinion, that, in this case, it was the major cause limiting the
spring bloom.
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in the Gdánsk Gulf in the 0–15 m layer (Witek, 1993).

The results are significant changes in the distributions of
phytoplankton and zooplankton biomass which have taken
place in an area of considerable increase in primary pro-
duction. In the spring bloom time, a substantial growth
of phytoplankton biomass is observed which falls slightly
at the next stage, as a result of an increase in the zoo-
plankton biomass, mainly the microzooplankton. The mi-
crozooplankton biomass reflects the phytoplankton availabil-
ity, showing a strong increase with declining food concen-
tration. However, later an increase in mesozooplankton
biomass is caused by the weight growth of successive co-
horts and also the egg production by each of the female.
This situation leads to the substantial growth in the total
biomass of the investigated species which is the algebraic
sum of the products of the weights,Wi , and numbers,Zi ,
(Zmeso=

∑2
k=1

∑6
i=1 Wk,iZk,i). These small maxima occur-

ring in the distributions ofPseudocalanusand Acartia are
the results mainly of a brood by successive cohorts, causing
their numbersZi to increase. Then, early juvenile of herring
biomass growth tends to decrease in the micro- and meso-
zooplankton biomass. Any increase in the predator biomass
depends not only on prey concentration but also on energy
dissipation, which, in the upper mixed layer, is defined by
wind speed. At low prey levels, the rate of mortality is higher
than growth and a decrease in predator biomass is observed.

6 Conclusions

The work presents the idea of a 1-D Coupled Ecosys-
tem Model with a high-resolution zooplankton (herbivorous
copepods) module for two taxa (PseudocalanusandAcartia)
as a top-down regulator which may play a significant role in
marine ecosystems. The zooplankton community is diverse,
comprising large size differences and metabolic heterogene-
ity. It is therefore of importance to investigate and identify
the critical factors. Such models are suitable as tools because
hypotheses can be tested, and our understanding of the pro-
cesses and dynamics can be evaluated. The copepod model
links trophic processes and population dynamics, and sim-
ulates individual growth within cohorts and the changes in
biomass between cohorts.

The population dynamics model forPseudocalanusand
Acartia, coupled with a 1-D Coupled Ecosystem Model pre-
sented in this work, can be utilized to study of the seasonal
variability of the above species in the southern Baltic Sea
(Gulf of Gdánsk). This paper is a next step in understanding
how the population dynamics of a dominant species interact
with the environment.

Appendix A

Adaptation of the submodel to investigated copepods

The parameters of the functionfil – the dependence of the in-
gestion rate on the food concentration – are (fimax), the max-
imal ingestion rate, (Footo), the minimal threshold food con-
centration which is the value of Foot at which GROWTH=0,
and (kFoot), the ingestion rate asfimax/kFoot for Foot which is
slightly greater than Footo (Steele and Mullin, 1977).

The ingestion rate depends on the developmental stage,
food supply, temperature and weight of the animals. We as-
sumed that the first two naupliar stages ofPseudocalanus
andAcartia are unable to ingest particles; they are consid-
ered to live on reserves provided by the egg after Berggreen
et al. (1988) forAcartia tonsa. For the other naupliar stages,
N3-N6, we have extrapolated the coefficientfimax, consider-
ing a similar increase as for C1. The values offimax for C1
– adults were estimated after experimental data which were
given by Ciszewski and Witek (1977) forP. m. elongatusat
5◦C andAcartia bifilosaat 15◦C from the Gdánsk Depth.
The parameters (Footo) and (kFoot) are given in Table A1.

The maximum ingestion rate in copepods has been shown
to be temperature dependent, but the reportedQ10 values dif-
fer widely (see Table A1). We use an intermediate value of
2.6 for Acartia to estimate thet2 coefficient; consequently,
our parametert2 has a value of 1.1. However, forPseu-
docalanusa Q10 of 1.9 was assumed after Fennel (2001);
hence, at2 has a value of 1.066. Coefficientt1 is calculated
so thatf te is equal to 1 at 15◦C for Acartia and 1 at 5◦C
for Pseudocalanusand, therefore,t1 is equal to 0.239 and
0.726 forAcartia andPseudocalanus, respectively. Coeffi-
cientst1 andt2 are identical for all stages. The assimilation
rate (na) of 70% is generally considered as representative for
copepods (Steele, 1974); hence, the percentage of ingestion
egested as fecal material (nf ) is 30%. Supposing first that
30% (ne) of the ingested matter is used for metabolism and
is excreted, and second, that the ratio of the maximum in-
gestion rate to weight averages 20% (Sciandra, 1986), then
a daily excretion rate of 6% of the weight may be attributed
to the active metabolism. To adjust total metabolic losses
to an average value of 10% of the weight per day (Corkett
and McLaren, 1978; Miller and Landry, 1984), we estimate
that excretory wastes, due to minimal metabolism (nw), rep-
resent 4% of the body weight (Carlotti and Sciandra, 1989).
The growth rate for copepodite stages ofPseudocalanusat
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Table A1. Parameters used in the copepod submodel and given after some authors: Footo: threshold food concentration;Q10: temperature
coefficient;Wegg: weight of an egg;α: exponent of allometric relation;X: the sex ratio.

Parameter Species Value Source

Footo Acartia hudsonica 30.5 mgC m−3 (at 4◦C) Wlodarczyk et al. (1992)
(at the 4 temperatures) 11.6 mgC m−3 (at 8◦C)

20.7 mgC m−3 (at 12◦C)
16.4 mgC m−3 (at 16◦C)

Acartia tonsa 45 mgC m−3 Kiørboe et al. (1985)
0.2–22 mgC m−3 Piontkovski and Petipa (1976)
5–10 mgC m−3 Turner and Tester (1989)

Acartiaspp. 10 mgC m−3 (N3-N6, C1, C2) in this paper
20 mgC m−3 (C3-C6)

Pseudocalanus in this paper after
minutus elongatus variable Dzierzbicka-Glowacka (2004a, b)

Q10 Centropages hamatus 3.8 Kiørboe et al. (1982)
Neonalanus plumchrus 5.4 Dagg and Wyman (1983)
Eudiaptomus graciliodes 4.1 Christofferson and Jespersen (1986)
Temora longicormis 2.4 Dam and Peterson (1988)
Acartia hudsonica 1.88 Wlodarczyk et al. (1992)
Acartia tonsa 1.4–3.9 Thompson et al. (1994)
Acartia clause 1.6–3.3 Kremer and Nixon (1978)
Acartiaspp. 2.6 in this paper
Pseudocalanus in this paper
minutus elongatus 1.9 after Fennel (2001)

kFoot Acartia 28 mgC m−3 (N3-N6)
70 mgC m−3 (C1-C6) in this paper

α Acartia 0.7 Paffenḧofer (1971)
Pseudocalanus 0.7 Paffenḧofer (1971)

Wegg Acartia 0.0305µgC Ambler (1985)
Pseudocalanus 0.14µgC Frost (1989)

X Acartia 20% in this paper
Pseudocalanus 80% in this paper

5◦C andAcartiaat 15◦C is shown at Fig. A1 as a function of
food concentration.

Here we obtained the number of eggs produced per fe-
male per day as a function of growth rate, i.e. multiplying
exp GROWTH-1 byWfemale/Wegg, assuming a maximum
growth rate ofPseudocalanusfor C5 and ofAcartia for C1
(after McLaren and Leonard, 1995; Dzierzbicka-Głowacka,
2005c). The number of juveniles is defined on the assum-
tion that eggs are released by the adult female throughtout
some time spanJ . For females from the southern Baltic Sea
this value forAcartia bifilosachanged with temperature from
20◦C to 7◦C – from 2 weeks up to about 30 days; forPseudo-
calanus minutus elongatus– species living in cooler waters
thanAcartia– was about 40 days at a temperature of 7◦C and
after about 2 months at a temperature of 3◦C, after Ciszewski
and Witek (1977). The wet weight adult of females is ob-
tained after standard HELCOM (Hernroth, 1985), assuming
the organic carbon content of copepods to be gC/gw.w.=0.064
(Vinogradov and Shushkina, 1987).

Schmidt et al. (1998) found the mortality ofAcartia tonsa
in the southern Baltic Sea, ca. 7% in winter, 5% in autumn,
and negligible in summer and spring (ca. 1%). We use the
above value forAcartia. However, forPseudocalanusthe
mortality rate (mz), as a function of temperature and food
concentration, is used after Klein Breteler et al. (1995).

The parameters of migration MIG are the relative am-
plitude of zooplankton concentration changes (aw) and the
time in which the maximum zooplankton concentration oc-
curs (to). The values of 0.6 and 3.25 a.m. foraw andto were
estimated by Renk et al. (1983) on the basis of experimen-
tal data for the southern Baltic Sea. The vertical distribution
of zooplankton in timeto in the vegetation season was deter-
mined as a function of depth (f (z)=−0.0003775z2

+0.62)
(Dzierzbicka-Głowacka, 1994). Figure A2 shows the diel
migration as a function of depth at the following four times:
03:00 a.m., 08:00 a.m., 03:00 p.m. and 08:00 p.m.

We use a value of 5/3 forβ in predation PRED; this means
that 60% of the ingested food contributes to predator growth
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Fig. A1. Growth rate as a function of food concentration at 5◦C
for Pseudocalanus minutus elongatus(a) and at 15◦C for Acartia
spp.(b).
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and 40% is voided as fecal pellets and excreted material. The
detailed description of the process is presented in the work of
Dzierzbicka-Głowacka (2005b).
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PhD thesis, Gdánk Univ., Gdynia, (in Polish), 323 pp., 2004.

Mudrak, S., Bielecka, L., and /Zmijewska, M. I.: Diel vertical mi-
grations of copepoda from Gdansk Deep (Baltic sea), Abstracts,
39th European Marine Biology Symposium, Genoa, 2004.
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Deep, Pol. Ecol. Stud., 9(3), 341–359, 1983.

Riley, G. A.: Factors controlling phytoplankton populations on
Georges Bank, J. Mar. Res., 6, 54–73, 1946.

Riley, G. A.: A mathematical model of regional variations in plank-
ton, Limnol. Oceanogr., 10, 202–215, 1965.

Roman, M. R.: Utilization of detritus by the copepodAcartia tonsa,
Limnol. Oceanogr., 29, 949–959, 1984.

Rothschild, B. J.: Biodynamics of the sea: the ecology of high di-
mensionality systems, in: Toward a theory of biological – physi-
cal interactions in the world ocean, edited by: Rothschild, B. J.,
Kluwer, Boston, 527–548, 1988.

Runge, J. A.: Egg production of the marine planktonic copepod,
Calanus pacificusBrodsky: laboratory observations, J. Exp. Mar.
Biol. Ecol., 74, 53–66, 1984.

Runge, J. A.: Relationship of egg production ofCalanus pacifi-
cus to seasonal changes in phytoplankton availability in Puget
Sound, Washington, Limnol. Oceanogr., 30, 382–396, 1985.

Sciandra, A.: Study and modelling of development ofEuterpina
acutifrons(Copepoda, Harpacticoida), J. Plankton Res., 8, 1149–
1162, 1986.

Schmidt, K., K̈ahler, P., and Bodungen, B.: Copepod egg produc-
tion rates in the Pomeranian Bay (southern Baltic Sea) as a func-
tion of phytoplankton abundance and taxonomic composition,
Mar. Ecol. Prog. Ser., 174, 183–195, 1998.

Sekiguchi, H., McLaren, I. A., and Corkett, C. J.: Relationship be-
tween growth rate and egg production in the copepodAcartia
clausiHudsonica, Mar. Biol., 58, 133–138, 1980.

Steele, J. H.: The Structure of Marine Ecosystems, Harvard Univer-
sity Press, Cambridge, 1974.

Steele, J. and Henderson, E. W.: Simulation of vertical structure in
a planktonic ecosystem, Scott. Fish. Res. Rep., 5, 1–27, 1976.

Steele, J. H. and Mullin, M. M.: Zooplankton dynamics, in: The sea
Vol. 6, edited by: Goldberg, E. D., McCave, I. N., O’Brien, J. J.,
and Steele, J. H., Interscience Publ. New York, London, Sydney,
Toronto, 857–887, 1977.

Stoecker, D. K. and Egloff, D. A.: Predation byAcartia tonsaDana
on planktonic ciliates and rotifers, J. Exp. Mar. Biol. Ecol., 110,
53–68, 1987.

Thompson, B. M.: The biology ofPseudocalanus elongatus
(Boeck), PhD thesis, University of East Anglia, Norwich, 1976.

Thompson, B. M.: Growth and development ofPseudocalanus
elongatusandCalanussp. in the laboratory, J. Mar. Biol. Ass.
UK., 62, 359–372, 1982.

Thompson, A. M., Durbin, E. G., and Durbin, A. G.: Seasonal
changes in maximum ingestion rate ofAcartia tonsain Narra-
gansett Bay, Rhode Island, USA, Mar. Ecol. Prog. Ser., 108, 91–
105, 1994.

Turner, J. T. and Tester, P. A.: Zooplankton feeding ecology: nonse-
lective grazing by the copepodsAcartia tonsaDana,Centropages
velificatusDe Oliveira, andEucalanus pileatusgiesbrecht in the
plume of the Mississippi River, J. Exp. Mar. Biol. Ecol., 126,
21–43, 1989.

Witek, Z.: Structure and function of marine ecosystem in the
Gda/nsk Basin on the basis of studies performed in 1987, Sci-
entific Committee on Oceanic Research, 63, 1–123, 1993.

Witek, Z.: Biological production and its utilization within a marine
ecosystem in the western Gdansk basin, Sea Fischeries Institute,
Gdynia, Poland, 1995.

Wlodarczyk, E., Durbin, A. G., and Durbin, E. G.: Effect of temper-
ature on lower feeding thresholds, gut evacuation rate, and diel
feeding behavior in the copepodAcartia hudsonica, Mar. Ecol.
Prog. Ser., 85, 93–106, 1992.

Wroblewski, J. S.: Formulation of growth and mortality of larvae of
northern anchovy in a turbulent feeding environment, Mar. Ecol.
Prog. Ser., 20, 13–22, 1984.

Wroblewski, J. S. and Richman, J. G.: The non-linear response of
plankton to wind mixing events – implications for survival of
larval northern anchovy, J. Plankton Res., 9, 103–123, 1987.

Verity, P. G. and Smayda, T. J.: Nutritional value ofPhaeocystis
pouchetii(Prymnesiophyceae) and other phytoplankton forAcar-
tia spp. (Copepoda): ingestion, egg production, and growth of
nauplii, Mar. Biol., 100, 161–171, 1989.

Vidal, J.: Physioecology of Zooplancton. I. Effects of phytoplank-
ton concentration, temperature, and body size on the growth rate
of Calanus pacificusandPseudocalanussp., Mar. Biol., 56, 111–
134, 1980a.

Vidal, J.: Physioecology of Zooplancton. II. Effects of phyto-
plankton concentration, temperature, and body size on the de-
velopment and molting rates ofCalanus pacificusandPseudo-
calanussp., Mar. Biol., 56, 135–146, 1980b.

Vinogradov, M. E. and Shushkina, E. A.: Functioning of pelagic
plankton communities in the ocean, Nauka Moskwa (in Russian),
1987.

Załlachowski, W., Szypu/la, J., Krzykawski, S., and Krzykawska,
I.: Feeding of some commercial fishes in the southern region of
the Baltic Sea in 1971 and 1972, Pol. Arch. Hydrobiol., 22, 429–
448, 1975.

Biogeosciences, 3, 635–650, 2006 www.biogeosciences.net/3/635/2006/


