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Abstract. Coastal salt marshes are natural sources of methyl

chloride (CH3Cl) and methyl bromide (CH3Br) to the atmo-

sphere, but measured emission rates vary widely by geogra-

phy. Here we report large methyl halide fluxes from subtrop-

ical salt marshes of south Texas. Sites with the halophytic

plant, Batis maritima, emitted methyl halides at rates that

are orders of magnitude greater than sites containing other

vascular plants or macroalgae. B. maritima emissions were

generally highest at midday; however, diurnal variability was

more pronounced for CH3Br than CH3Cl, and surprisingly

high nighttime CH3Cl fluxes were observed in July. Sea-

sonal and intra-site variability were large, even taking into

account biomass differences. Overall, these subtropical salt

marsh sites show much higher emission rates than temperate

salt marshes at similar times of the year, supporting the con-

tention that low-latitude salt marshes are significant sources

of CH3Cl and CH3Br.

1 Introduction

As atmospheric burdens of anthropogenic halocarbons de-

crease because of the Montreal Protocol, the relative im-

portance of methyl halides for stratospheric ozone destruc-

tion increases. Methyl chloride (CH3Cl) and methyl bromide

(CH3Br) are now the most abundant long-lived organochlo-

rine and organobromine compounds, respectively (Montzka

and Reimann, 2011). The atmospheric budgets of CH3Cl

and CH3Br have large uncertainties arising from the fact

that they have a multitude of major anthropogenic (e.g.,

biomass burning, fumigation use of CH3Br, chemical feed-

stock use of CH3Cl) and natural sources (e.g., oceans, terres-

trial ecosystems), some of which are poorly characterized.

In our current understanding of the CH3Br budget, sinks

outweigh the sources by about 30–35 Ggyr−1, or roughly

20–25 % of the total annual flux (Montzka and Reimann,

2011). This large “missing source” for CH3Br is present in

both pre-phaseout (1996–1998) and current (2008) budgets

and appears to be both natural and terrestrial in origin (Yvon-

Lewis et al., 2009). The CH3Cl budget may be balanced

with a very large low-latitude terrestrial source (Xiao et

al., 2010), and a few in situ studies of subtropical (Yokouchi

et al., 2002, 2007) and tropical forests (Blei et al., 2010a;

Saito et al., 2008) tentatively support this.

Coastal salt marshes have also been identified as glob-

ally significant sources of CH3Cl and CH3Br, with emis-

sions associated with halophytic vascular plants. However,

measured emissions show dramatic geographic variability,

with large emissions from southern California (Manley et

al., 2006; Rhew et al., 2000, 2002) and much smaller emis-

sions from higher-latitude sites in Tasmania, Australia (Cox

et al., 2004), Scotland (Blei et al., 2010b; Drewer et al., 2006)

and northern California (Rhew and Mazéas, 2010). Measure-

ments from lower-latitude salt marshes have not yet been

reported. In this study, we characterize the magnitude and

seasonality of CH3Cl and CH3Br emissions from subtropi-

cal salt marshes in south Texas. Obtaining a wider latitudinal

range of measurements from coastal salt marshes is essential

to constrain their role in the global budget of methyl halides.

2 Site description

Five field outings were conducted between April 2006 and

November 2009 at several salt marsh and coastal habitats on

barrier islands in south Texas, USA, off the Gulf of Mex-

ico (Table 1). Sites were all located between 27–28◦ N and
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97–98◦W. All sites had sandy soils with elevations estimated

at less than a meter above mean sea level. A total of 62 flux

measurements were made at 24 individual sites from three

different tidally influenced ecosystems.

The first field outing (TX1: 28 April 2006) took place

on the southwestern shore of San Jose Island (27◦52′ N,

97◦03′W), a sandy barrier island north of the city of Port

Aransas. The goal of this initial outing was to survey emis-

sions from predominant salt marsh plant species of the re-

gion: Borrichia frutescens (sea ox-eye daisy), Avicennia ger-

minans (black mangrove), Monanthochloe littoralis (shore

grass) and Batis maritima (maritime saltwort).

The second field outing (TX2: 16–18 May 2008) occurred

at three different locations: San Jose Island (see TX1, two

B. maritima sites, both slightly inundated during sampling),

Mustang Island beach (27◦46′ N, 97◦6′W, six beached sea-

weed sites), and the Mollie Beattie Habitat Community on

the back bay of Mustang Island (27◦38′ N, 97◦12′W, one

B. maritima site). The goal of this second outing was to de-

termine the daytime range of fluxes from the three B. mar-

itima sites; to measure emissions from pelagic seaweed (Sar-

gassum spp.) deposited on the Gulf-side beach at different

stages of decomposition; and to determine the simultaneous

gross consumption and production rates of methyl halides at

all of these sites using a stable isotope tracer technique.

The third, fourth and fifth outings (TX3, TX4 and TX5)

were all at the Mollie Beattie habitat (see TX2 above), on

the fringe of a small saltwater pond, which was tidally con-

nected with saline groundwater (Sect. S1 in the Supplement).

The purpose of these outings was to capture the full diurnal

(24 h) range of fluxes from a pair of B. maritima sites lo-

cated within 20 m of each other. These diurnal studies were

conducted at three different times of the year: the early grow-

ing season (TX3: 7–8 March 2009), the peak growing season

(TX4: 19–20 July 2009), and the end of the growing season

(TX5: 6–7 November 2009). TX5 occurred after a period of

heavy rain, and many of the B. maritima leaves were shed on

the ground. Also, between 1 and 11 a.m. during TX5, both

sites were tidally inundated, with the shorter vegetation site

mostly underwater during the 7.30 and 10.30 a.m. samplings.

Four vegetation-free control experiments were conducted:

two beach sites after the removal of Sargassum (TX2), one

salt marsh site with bare soil (TX4) and one salt marsh site

inundated with 30 cm of tidal water (TX5).

3 Methods

Gas fluxes were measured with static flux chambers consist-

ing of two components: a collar (61 L, 0.264 m2 footprint)

placed in the wet sand > 2 cm depth and an insulated cham-

ber lid (127 L) with a 1/4 in. stainless steel sample line used

to withdraw air samples and two internal fans to mix the

chamber air. All-aluminum chambers were used to limit re-

activity with methyl halides, and dark chambers have been

shown to yield similar methyl halide fluxes as light cham-

bers in other salt marshes (Rhew and Mazéas, 2010). To ini-

tiate the enclosure period, the lid was placed into the water-

filled channel on the rim of the base. Enclosure times were

30 min or less (30, 22–28, 20, 16 and 16 min for TX1-5,

respectively), and three air samples were withdrawn from

the chamber at equal time intervals. Samples were collected

into previously evacuated 1 L electropolished stainless steel

canisters (LabCommerce, San Jose, CA, USA) or 3 L fused

silica lined canisters (Restek, Bellefonte, PA, USA). While

sampling, a vent line was opened to equilibrate air pressure

between inside and outside the chamber. In addition, ambi-

ent air samples were collected several times throughout each

field campaign.

Air temperature (inside chamber and ambient air) and soil

temperature (5 and 10 cm depth) were monitored with ther-

mocouples (Omega Engineering Inc., Stamford, CT) dur-

ing the first three outings and with stainless steel thermo-

couple data loggers (iButtons, Maxim Inc., Sunnyvale, CA,

USA) for the last two outings. Soil moisture at 0–5 cm depth

(ThetaProbe soil moisture sensor, Delta-T Devices, Cam-

bridge, UK) and air pressure were monitored for each cham-

ber experiment. For TX2-5, aboveground plant biomass was

harvested, rinsed and drained before fresh weight was de-

termined. Plants were then dried overnight at 65 ◦C to de-

termine the dry weight. Meteorological data including PAR,

air pressure and air temperature were also measured at the

Mission-Aransas National Estuarine Research Reserve mon-

itoring station at the East Copano Bay, TX, USA (http:

//lighthouse.tamucc.edu/MissionAransas/HomePage).

Air samples were measured for halocarbons (CH3Br,

CH3Cl and CHCl3) by gas chromatography–mass spectrom-

etry (GC/MS, Agilent 6890N/5973). Details regarding the

inlet system, chromatography, gas standards and calibration

procedures are described elsewhere (Rhew, 2011). Concen-

tration trends were calculated using a linear regression of the

chamber air concentration versus time, with goodness of fit

assessed both by R2 and the standard error on the slope. For

the B. maritima sites, for example, R2 values averaged 0.997

for CH3Cl and 0.995 for CH3Br. Net fluxes were calculated

by multiplying this slope with the moles of air in the cham-

ber, divided by the enclosed surface area; net flux errors were

calculated by propagating the errors of each of these com-

ponents. For consistency, all fluxes are reported in units of

µmolm−2 d−1 unless otherwise indicated, with negative val-

ues representing consumption rates and positive values rep-

resenting production rates. Also, a stable isotope tracer tech-

nique was applied in the TX2 outing to separate the net flux

into the gross production and gross consumption components

(Sect. S2). All times are reported as US central standard time

(CST = GMT−6 h).
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4 Results

4.1 TX1: April 2006

Of the various vegetation sites sampled during TX1, the

largest emissions by far were from the B. maritima site (trian-

gles in Fig. 1), which emitted 580±30 µmolm−2 d−1 CH3Cl

and 30± 12 µmolm−2 d−1 CH3Br. As a comparison, the

largest reported emissions observed from a salt marsh previ-

ously were 570 and 42 µmol m−2 d−1, respectively (Rhew et

al., 2002; Manley et al., 2006). The A. germinans site showed

emissions < 0.5 % of the B. maritima site, while the two

B. frutescens sites and the M. littoralis site showed small to

insignificant net emissions of CH3Cl (< 0.3 µmolm−2 d−1)

and CH3Br (< 0.012 µmolm−2 d−1).

4.2 TX2: May 2008

In TX2, the three B. maritima sites showed large net emis-

sions of methyl halides, comparable to TX1. Emission rates

increased throughout the day (8.50 a.m. to 2.20 p.m.), al-

though the sampling period was too short to fully assess

diurnal trends. One site had a maximum flux of 620±

20 µmolm−2 d−1 CH3Cl and 39± 2 µmolm−2 d−1 CH3Br,

which at that point represented the largest CH3Cl and sec-

ond largest CH3Br emission rate per unit area from a natural

source yet observed.

The three freshly deposited Sargassum sites at the Gulf

coast beach showed net emissions that were 3 orders of mag-

nitude smaller that the B. maritima sites (Fig. 1 and Table 1).

Three other sites of Sargassum that were visibly at a more ad-

vanced stage of decomposition and desiccation showed sim-

ilar net emissions. When two of the Sargassum sites were

cleared of seaweed and measured as control experiments on

a bare sand surface, net emissions were an order of magni-

tude smaller still. Gross consumption rates measured with

stable isotope tracers were negligibly small (Sect. S2).

4.3 TX3, TX4 and TX5: March, July and

November 2009

The next three outings each captured the diurnal variability

of CH3Cl and CH3Br fluxes over a 24 h period from a pair of

B. maritima-dominated sites (Fig. 2). The day/night differ-

ences in emissions were much more pronounced for CH3Br

than for CH3Cl. For CH3Br, the maximum daytime averages

were 2.3 times greater than the nighttime averages (n= 6

sites), whereas the difference for CH3Cl was 1.3 times. The

molar ratio of CH3Cl to CH3Br fluxes also showed a day to

night difference (Fig. 2), shifting from roughly 40 : 1 at night

to 20 : 1 during the daytime.

Surprisingly, the maximum observed CH3Cl emission flux

in July (630±10 µmolm−2 d−1) occurred in the middle of the

night (1 a.m.). In fact, this represented the highest observed

emission rate from all the outings, comparable to the highest

flux from TX2. The lowest emissions were observed during
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Figure 1. Net fluxes of CH3Cl and CH3Br for all field sites in

south Texas. Triangles: B. maritima; squares: fresh Sargassum; dia-

monds: decaying Sargassum; circles: other vegetation (M. littoralis,

A. germinans, B. frutescens), stars: vegetation-free control. Note the

log–log scale. The gray dashed line shows the overall average 23 : 1

molar ratio. Two chambers that had small negative fluxes are not

included.

November (TX5) during the morning at one site when the

vegetation was almost entirely submerged by high tide. The

other site also was submerged at the time, but had slightly

more vegetation above the surface of the water.

To derive an integrated daily flux, the fluxes at each site

were modeled by a cosine function during daylight hours,

with steady emissions assumed at night (Fig. 2, Sect. S3).

Of these three outings, the largest average diel emissions

were in July (TX4) at 455± 130 µmolm−2 d−1 for CH3Cl

and 22± 5 µmolm−2 d−1 for CH3Br. March emissions were

roughly half of those, and November emissions were slightly

lower than March (Table 1, Fig. 3). Even though night-

time measurements were not used in the model, the differ-

ence between the modeled to measured nighttime values was

only −4± 11 % (or −20± 50 µmolm−2 d−1) for CH3Cl and

5±22 % (or 1±2 µmolm−2 d−1) for CH3Br. Thus the model

was applied to the May (TX2) sites as well (Table 1).

5 Discussion

The predominance of B. maritima emissions over emissions

from other measured plant and macroalgal species is sim-

ilar to observations from southern California salt marshes,

where B. maritima was one of the two largest emitters of

methyl halides (Manley et al., 2006; Rhew et al., 2002).

However, B. maritima sites from Texas generally showed

much larger diel averaged emissions of CH3Cl and CH3Br

than those from southern California, especially outside the

peak summer growing season (Fig. 3). Even normalized by

biomass, emission rates from Texas sites were roughly 10
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Table 1. Field conditions and predominant vegetation at Texas coastal field sites.

Outing/date: (dd/mm/yy) Location Net flux (µmolm−2 d−1) Modeled diel fluxa Batis biomass

Enclosed species n CH3Cl CH3Br CH3Cl CH3Br kgm−2

TX1: 28/04/06 San Jose Island fresh dry

Batis maritima 1 584± 27 30± 12 – – N/D N/D

Avicennia germinans 1 1.8± 0.4 0.023± 0.010 – – – –

Variousb 3 ≤ 0.2 ≤ 0.02 – – – –

TX2: 16/05/08–18/05/08 San Jose Island, Mustang Island Beach and Mollie Beattie

B. maritima (site A)c 3 409± 115 23± 5 296 16 1.44 0.25

B. maritima (site B)c 3 371± 80 22± 4 230 15 1.38 0.23

Sargassum (fresh) 3 0.56± 0.55 0.029± 0.027 – – – –

Sargassum (decaying) 3 0.84± 0.72 0.030± 0.014 – – – –

Sand (beach) 2 0.04± 0.02 0.004± 0.003 – – – –

B. maritima (site C) 3 494± 115 29± 8 287 16 1.58 0.30

TX3: 07/03/09–08/03/09 Mollie Beattie

B. maritima (site A) 5 220± 30 13± 5 222 13 1.52 0.28d

B. maritima (site B) 5 270± 40 13± 4 266 13 1.34 0.24d

TX4: 20/07/09–21/07/09 Mollie Beattie

B. maritima (site A) 7 571± 43 27± 7 547 25 1.66 0.31

B. maritima (site B) 7 374± 28 20± 6 362 18 1.68 0.29

Sand (marsh) 1 −0.073±0.061 0.004± 0.002 – – – –

TX5: 06/11/09–07/11/09 Mollie Beattie

B. maritima (site A)c 7 165± 30 7.0± 2.9 156 6 0.66 0.13

B. maritima (site B)c 7 207± 117 10.7± 9.4 265 11 0.75 0.13

Saltwater (marsh)c 1 2.40± 0.07 0.037± 0.001 – – – –

a modeled diel flux (µmol m−2 d−1) based on daytime measurements;
b Borrichia frutescens and Monanthochloe littoralis;
c soil surface covered with water for some or all measurements;
d vegetation H2O estimated as 81.9 % based on average of other outings.

times larger than Newport Bay California sites (monthly av-

erages) (Manley et al., 2006).

The production of CH3Cl and CH3Br at B. maritima

sites are related, as illustrated by a strong linear correlation

(R2
= 0.78). These fluxes also showed moderate correlations

with chamber air temperature, surface soil temperature and

biomass (R2
= 0.40 to 0.53, Figs. S1 and S2 in the Sup-

plement). Within individual outings, however, these environ-

mental factors were poor predictors. For example, large flux

differences were observed between two adjacent sites with

similar biomass (e.g., TX4 and TX5) and could even show a

slightly negative relationship (e.g., TX3). CH3Cl and CH3Br

showed no correlation with net fluxes of chloroform and car-

bonyl sulfide (Whelan et al., 2013) that were measured si-

multaneously (Figs. S1 and S2).

The very large nighttime emissions in July when tempera-

tures were also high suggest that temperature is a more prox-

imate control on emission rates than insolation. This is con-

sistent with studies in southern California (Rhew et al., 2002)

and Scotland (Blei et al., 2010b), but contrasts with earlier

studies in Scotland (Drewer et al., 2006) and Ireland (Dim-

mer et al., 2001). At another salt marsh site in southern Cal-

ifornia, Manley et al. (2006) found that B. maritima emis-

sions were less correlated with either temperature or insola-

tion compared to other plants. We suggest that, for studies

that use transparent chambers, the effect of insolation and

temperature may be difficult to separate without monitoring

leaf temperatures directly or actively modulating the temper-

ature in the chamber. This does not discount the importance

of insolation, which regulates seasonal changes in tempera-

ture and biomass.

The average CH3Cl : CH3Br molar flux ratio of 22± 9

is slightly greater than southern and northern California

salt marsh averages (7–17) (Manley et al., 2006; Rhew et

al., 2002; Rhew and Mazéas, 2010) and is much higher than

the ratios of 2–4 reported from higher-latitude salt marshes

(Blei et al., 2010b; Cox et al., 2004; Dimmer et al., 2001).

This is consistent with the observation of Blei et al. (2010b)

Biogeosciences, 11, 6427–6434, 2014 www.biogeosciences.net/11/6427/2014/
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Figure 2. Net fluxes of CH3Cl, net fluxes of CH3Br, the CH3Cl to

CH3Br flux ratio, photosynthetically active radiation (PAR), cham-

ber air temperature and surface soil temperature at B. maritima sites

versus time of day (central standard time). Colors represent differ-

ent outings, as in Fig. 1; different symbols (circles, squares, dia-

monds) represent different sites at the same outing. Error bars that

are smaller than the symbols are not shown. The dashed lines repre-

sents the model fit to TX3-5 (March, July, and November) results.

PAR is a 15 min interval measurement averaged over the 2 days of

each field outing.

that the salt marshes from more temperate climates gener-

ally have lower emission ratios. However, this is not a con-

sequence of higher temperatures leading to higher ratios. At

the Texas B. maritima sites, molar ratios did not dramatically
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Figure 3. Comparison of B. maritima methyl halide emissions

from three coastal salt marshes. This study (black triangles) shows

diel averages. The San Diego, California sites show diel averages

(gray squares) at two B. maritima sites and daytime fluxes (gray

circles) at mixed B. maritima/Salicornia bigelovii sites (Rhew et

al., 2000, 2002). The Upper Newport Bay, California, sites (white

diamonds) show daytime fluxes of monospecific B. maritima sites

(Manley et al., 2006). The dashed line is a sinusoidal curve fit to the

Texas data.

shift with the seasons, and the molar ratios of emissions were

higher at night (∼ 40) and lower during the day (∼ 20), op-

posite of the temperature trends (Fig. 2).

This diurnal trend in ratios is clearly related to the much

larger diurnal variation in CH3Br flux compared to CH3Cl

flux, as illustrated by the pronounced midday CH3Br peak

in this study (Fig. 2). Interestingly, this same trend in molar

ratios was also observed in a San Diego salt marsh (Rhew

et al., 2002), where it mirrored a diurnal shift in the carbon

isotopic ratio (δ13C) of CH3Cl and CH3Br. In that study, car-

bon isotopic signatures were heavier at night (−50 ‰ CH3Cl

and −10 ‰ CH3Br) compared to daytime (−70 ‰ CH3Cl

and −60 ‰ CH3Br), with the isotopic shift much more pro-

nounced for CH3Br than CH3Cl (Bill et al., 2002).

www.biogeosciences.net/11/6427/2014/ Biogeosciences, 11, 6427–6434, 2014
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Two hypotheses were proposed to explain these diurnal

trends of ratios and isotopic signatures (Bill et al., 2002;

Rhew et al., 2002): (1) biogenic production dominates dur-

ing the day, while soil consumption becomes more signif-

icant at night; and (2) two different production mechanisms

with different isotopic signatures and ratios of production oc-

cur simultaneously.

The first hypothesis could explain the lower overall net

emission rates and heavier isotopic signatures at night (since

consumption favors lighter isotopes; Miller et al., 2001),

but this study and others (Rhew and Mazéas, 2010) suggest

that gross consumption is trivial in salt marshes compared

to B. maritima production rates, even at night (Sect. S2).

Also, gross consumption generally favors CH3Cl uptake over

CH3Br by a molar factor of 30–40 (Rhew, 2011; Rhew and

Mazéas, 2010), such that if nighttime consumption is impor-

tant, the net emission ratio of CH3Cl to CH3Br should de-

crease at night, not increase.

The second hypothesis is supported by having two known

production mechanisms of methyl halides from B. maritima:

the enzymatically mediated methylation of halides (Ni and

Hager, 1999; Wuosmaa and Hager, 1990) and an abiotic reac-

tion between plant pectin and halides (Hamilton et al., 2003;

Wishkerman et al., 2008). Because the abiotic mechanism

yields a very light isotopic signature (δ13C of −78 ‰ for

B. maritima) (Keppler et al., 2004), a large abiotic increase

during the daytime relative to enzymatic production could

explain the isotopic shift. However, the CH3Cl : CH3Br mo-

lar ratio of production for the abiotic mechanism is also

larger (45–58) (Wishkerman et al., 2008) than the predicted

enzymatic production (20–1) (Rhew et al., 2002), which

would yield a larger diurnal shift for CH3Cl than CH3Br,

which is not observed.

An alternative hypothesis involves both a diurnal shift in

the isotope signature of the carbon substrate used to produce

methyl halides combined with a shift in methylation ratios

of the halides. If production is predominantly biological, a

diurnal shift in the δ13C signature of the methyl donor (S-

adenosyl-L-methionine) (Ni and Hager, 1999) and/or higher

isotopic fractionation rates during the daytime could yield the

observed isotopic signal. It is also possible that the abiotic

production mechanism produces lighter δ13C methyl halides

at higher temperatures, but the carbon source for abiotic pro-

duction comes from structural components of a plant that are

not necessarily expected to have diurnal variation in δ13C

(Keppler et al., 2004).

The other half of this hypothesis involves the Cl / Br ra-

tios in the plant changing during the day. Bromide is prefer-

entially halogenated by both biotic and abiotic mechanisms

relative to their availability (Ni and Hager, 1998; Wishker-

man et al., 2008) and may be replenished during the day

and depleted at night, perhaps in conjunction with transpira-

tion rates. However, the amount of chloride and bromide that

is volatilized daily via methyl halide emission is not large

enough to substantially change the overall Cl− and Br− con-

tent in plant tissue. In this study, the biomass normalized diel

emission rates of CH3Cl and CH3Br were 1.25± 0.40 and

0.062±0.014 µmolgdwt−1 d−1, respectively (n= 9 sites). If

we assume that the B. maritima tissue halide contents are

similar to those measured in southern California B. mar-

itima plants (210 mgg−1 for Cl− and 2900 µgg−1 for Br−;

Manley et al., 2006), then we estimate that roughly 0.02 %

of Cl and 0.17 % Br in the leaf tissue is removed daily via

methyl halide emissions. Thus, to impact halide availability,

there would need to be a small segregated subset of “active”

halides at the enzyme site. If this “active” halide pool was

0.5 % of the overall tissue content, then the methyl halide

emissions could reduce that pool by 4 % for Cl and 34 % for

Br daily. This would lead to an increased CH3Cl to CH3Br

emission ratio, until the halide levels were replenished. A

subset of “active” halides in the cytoplasm of plant cells is

implied by Ni and Hager (1998, 1999), who proposed that

the function of halide methyltransferase is to dispose of ex-

cess chloride to regulate internal concentrations.

The Texas salt marsh fluxes measured over several months

strongly suggest a seasonality of fluxes. Assuming that the

seasonality can be characterized with a sinusoidal fit to the

diel averaged data (Fig. 3) and that these measurements are

temporally and spatially representative, we derive an es-

timated annual flux of 92 mmolm−2 yr−1 for CH3Cl and

4.7 mmolm−2 yr−1 for CH3Br. These annual values are 2 to

3 times larger than those estimated for the B. maritima sites

in Upper Newport Bay (28 mmolm−2 yr−1 for CH3Cl and

2.4 mmolm−2 yr−1 for CH3Br) (Manley et al., 2006). Sam-

pling over the full range of environmental conditions would

help refine these estimates of the annual flux.

The surface area coverage of B. maritima in Texas salt

marshes was not quantified for this study. In Newport Bay,

California, B. maritima covered 10 % of the entire salt marsh

area (including barren areas) and 18 % of the vegetated area

(Manley et al., 2006). For the purpose of comparison, we

will assume that these Texas salt marshes have the same

B. maritima coverage and that the remaining 82–90 % of

salt marshes have negligible emission rates. Spatially av-

eraged emissions for the entire salt marsh are then esti-

mated at 9–17 and 0.47–0.84 mmolm−2 yr−1 for CH3Cl and

CH3Br, respectively. These fluxes are slightly greater than

those reported from Newport Bay salt marshes (3–8 and

0.2–0.7 mmolm−2 yr−1 for CH3Cl and CH3Br, respectively,

with the range representing total area and only vegetated

areas), which have other large emissions associated with

Frankenia grandifolia (Manley et al., 2006). However, these

rates are 1 to 2 orders of magnitude greater than annually

averaged salt marsh fluxes in Scotland (0.11 mmolm−2 yr−1

for CH3Cl and 0.03 mmolm−2 yr−1 for CH3Br) (Blei et

al., 2010b; Drewer et al., 2006). The Scotland salt marsh

fluxes are similar in magnitude to other high-latitude salt

marshes, including Tasmania, Australia (Cox et al., 2004)

and northern California (Rhew and Mazéas, 2010).
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Collectively, these studies show that methyl halide emis-

sions from coastal salt marshes have a strong climatic de-

pendence, with small emissions at higher latitudes and large

emissions at lower latitudes. This climatic dependence may

be related to both temperature (higher temperatures yield

faster enzymatic and abiotic production rates of methyl

halides) and insolation (greater photosynthesis rates lead to

greater biomass, with associated increases in relevant sec-

ondary metabolites and enzymes). B. maritima alone may

be responsible for globally significant amounts of methyl

halides, as it is an evergreen succulent shrub found widely

in tropical and subtropical salt marshes, brackish marshes

and mangrove swamps ranging from northern Brazil (3◦ S)

to South Carolina (33◦ N) (Lonard et al., 2011). A major

uncertainty involves the spatial distribution and global cov-

erage of coastal wetlands, with 2.2–40 Mha of tidal marsh

and 13.8–15.2 Mha of mangroves (Pendleton et al., 2012).

As an illustrative exercise, if B. maritima or similarly emit-

ting plants cover 10 % of the surface area of tidal marshes

and mangroves, and if averaged emissions are as calculated

here, then this subset of salt marsh vegetation would con-

tribute 30–90 Gg CH3Cl and 3–9 Gg CH3Br per year. De-

riving a more accurate global source strength will require

a much broader geographic distribution of measurements,

along with better estimates of ecosystem surface areas and

plant distributions. Clarifying the importance of coastal salt

marsh vegetation in the global budgets of CH3Cl and CH3Br

will require further measurements at low-latitude salt marsh

sites.

6 Conclusions

Large emissions of CH3Cl and CH3Br were observed from

subtropical salt marshes located on the Gulf coast of Texas.

These large emissions were associated with B. maritima, a

widespread succulent salt marsh plant that was also observed

to be a large emitter in southern California salt marshes.

However, B. maritima emission rates in this study were 2 to

3 times larger than those reported from California, and spa-

tially averaged emission rates from Texas salt marshes were

much larger overall than those reported from higher-latitude

salt marsh sites. Diurnal trends in CH3Cl and CH3Br emis-

sion rates, along with their ratio of emissions, were similar to

those observed in southern California salt marshes. To derive

a better estimate of the global salt marsh contribution to the

atmospheric budgets of the methyl halides, more informa-

tion is needed about the spatial extent, vegetation cover and

methyl halide emission rates from low-latitude salt marsh

sites.

The Supplement related to this article is available online

at doi:10.5194/bg-11-6427-2014-supplement.
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