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Abstract. Soil respiration (SR) is a major component of

ecosystems’ carbon cycles and represents the second largest

CO2 flux in the terrestrial biosphere. Soil temperature is con-

sidered to be the primary abiotic control on SR, whereas soil

moisture is the secondary control factor. However, soil mois-

ture can become the dominant control on SR in very wet or

dry conditions. Determining the trigger that makes soil mois-

ture as the primary control factor of SR will provide a deeper

understanding on how SR changes under the projected fu-

ture increase in droughts. Specific objectives of this study

were (1) to investigate the seasonal variations and the rela-

tionship between SR and both soil temperature and moisture

in a Mediterranean riparian forest along a groundwater level

gradient; (2) to determine soil moisture thresholds at which

SR is controlled by soil moisture rather than by tempera-

ture; (3) to compare SR responses under different tree species

present in a Mediterranean riparian forest (Alnus glutinosa,

Populus nigra and Fraxinus excelsior). Results showed that

the heterotrophic soil respiration rate, groundwater level and

30 cm integral soil moisture (SM30) decreased significantly

from the riverside moving uphill and showed a pronounced

seasonality. SR rates showed significant differences between

tree species, with higher SR for P. nigra and lower SR for

A. glutinosa. The lower threshold of soil moisture was 20

and 17 % for heterotrophic and total SR, respectively. Daily

mean SR rate was positively correlated with soil temperature

when soil moisture exceeded the threshold, with Q10 values

ranging from 1.19 to 2.14; nevertheless, SR became decou-

pled from soil temperature when soil moisture dropped be-

low these thresholds.

1 Introduction

Soil is the largest pool of terrestrial organic carbon in the bio-

sphere, storing around 2344 PgC in the top 3 m (Jobbágy and

Jackson, 2000). Soil respiration (SR) is the main source of

carbon efflux from ecosystems to the atmosphere, account-

ing for 60–90 % of the total ecosystem respiration (Schimel

et al., 2001; Raich et al., 2002). Thus, SR plays an impor-

tant role in the global carbon balance (Schimel et al., 2001;

Raich et al., 2002), and even small changes of SR may in-

duce positive feedbacks to climate change (Schlesinger and

Andrews, 2000). Therefore, information of how SR inter-

acts with environmental conditions, such as the response of

specific components of soil respiration to temperature and

moisture changes, will be a key part of the improvement of

process-based models.

On large scales, such as in ecosystems and biomes, net

primary production (NPP) may be the most important fac-

tor controlling SR (Wardle, 2002). NPP provides the inputs

to the soil from aboveground litter and also belowground or-

ganic detritus (Raich and Potter, 1995). Moreover, root res-

piration is strongly dependent on the translocation of pho-

tosynthates from the aboveground part of the plant (Curiel-

Yuste et al., 2004). At the smaller scale, SR has been found

to be very sensitive to soil temperature and soil moisture

(Fang and Moncrieff, 2001). Soil temperature has been rec-

ognized as the most important environmental factor control-

ling SR because it affects the respiratory enzymes of both

roots and soil microbial biomass (Xu et al., 2011). In gen-

eral, SR increases exponentially with increases of soil tem-

perature (Epron et al., 1999; Lloyd and Taylor, 1994; Miel-

nick and Dugas, 2000). In contrast to the positive relationship
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between SR and soil temperature, both very high and very

low soil moisture have been shown to diminish the tempera-

ture response of SR (Londo et al., 1999; Welsch and Horn-

berger, 2004) due to the potential oxygen limitations under

high soil moisture (Skopp et al., 1990) and due to metabolic

drought stress under very low soil moisture (Orchard and

Cook, 1983). Soil moisture also affects plant composition

and productivity (Häring et al., 2013) and thus controls the

quantity and quality of both soil organic matter (SOM) and

root exudate supply (Rustad et al., 2000).

Numerous studies have reported the effects of temperature

and moisture on SR. However, studies about the combined

effects of both factors are relatively few, and the information

of how soil moisture affects the relationship between soil

temperature and SR is scarce (Bowden et al., 1998; David-

son et al., 2006; Curiel-Yuste et al., 2007). In Mediterranean

and semiarid ecosystems, SR is highly sensitive to soil mois-

ture, and the temperature-driven increases in SR are likely

dampened by low soil moisture (Conant et al., 2004; Raich

and Potter, 1995; Rey et al., 2002). It is still unclear under

which circumstances or environmental conditions would the

primary control factor of SR switch from temperature to soil

moisture.

SR can be divided into autotrophic and heterotrophic res-

piration by different biological sources (Hanson et al., 2000).

Autotrophic respiration, also known as root respiration, is

mainly dependent on NPP and tree physiology such as photo-

synthesis substrate supply (Heinemeyer et al., 2007; Hogberg

et al., 2001). Heterotrophic respiration is the sum of micro-

bial decomposition of SOM (Fang et al., 2005; Knorr et al.,

2005). In theory, due to the different origins of autotrophic

and heterotrophic respiration, they may have different sensi-

tivities toward environmental factors and respond differently

to seasonality (Epron et al., 2001; Kuzyakov and Larionova,

2006; Yan et al., 2010).

Riparian areas are characterized with high soil moisture

and sustained water table. (McGlynn and Seibert, 2003). In

these ecosystems, tree species composition and tree growth

are strongly influenced by the topographic position concomi-

tant with the changes in the soil water content. Thus, this may

indirectly affect SR through litter input and nutrient availabil-

ity. Because of the retardation of microbial decomposition

with the frequent saturation of soil water, riparian areas tend

to accumulate more SOM than hillslope areas do (Sjögersten

et al., 2006).

The main objectives of this study were (1) to investigate

the seasonal variations and relationships between SR and

both soil temperature and moisture in a Mediterranean ripar-

ian forest along a groundwater level gradient; (2) to deter-

mine soil moisture thresholds at which SR is controlled by

soil moisture rather than by temperature, even in such non-

water-stressed environments; (3) to compare SR responses

under different tree species present in a Mediterranean ripar-

ian forest (Alnus glutinosa, Populus nigra and Fraxinus ex-

celsior). With these aims, we carried out measurements of

SR under different tree species along a groundwater level

gradient in a riparian forest in NE Spain. The results of our

study may help to better the understanding of the interactions

between different components of SR with soil temperature

and moisture as well as the role of different tree species. It

also provides relevant information for SR model parameteri-

zation.

2 Material and methods

2.1 Site description

The experiment was conducted in a riparian forest grow-

ing along the Font de Regàs stream, a headwater trib-

utary of the Tordera River, in Montseny Natural Park

(north of Barcelona; 41◦50′ N, 2◦30′ E, altitudinal range

300–1200 ma.s.l.). The forest community of our study site

consists of black alder (Alnus glutinosa L.), black locust

(Robinia pseudoacacia L.), common ash (Fraxinus excelsior

L.) and black poplar (Populus nigra L.). As result of wa-

ter and nutrient availability, A. glutinosa and P. nigra trees

are mostly distributed near the river, whereas F. excelsior

trees are located further away on the upper site, near the

hill. R. pseudoacacia trees are scattered over the study area

and were not monitored. Mean annual temperature is 12 ◦C

with maximum and minimum average temperatures of 14

and 10 ◦C, respectively. The mean annual precipitation is

872 mm (1951–2010). The riparian soil is sandy loam with

low rock content (< 13 %), weakly acidic (pH of 6.7) and

has an average bulk density of 1.09 gcm−3.

2.2 Experimental design

We divided the groundwater gradient (riparian–hillslope

transect) into four levels according to the distance from the

riverside and by tree species composition (Fig. 1). The dis-

tances of level 1 to level 4 (L1 to L4) from the river centre

were 2.7, 4.4, 6.8 and 11.8 m, respectively. The three target

tree species, A. glutinosa, P. nigra and F. excelsior were lo-

cated at levels L1, L2 and L3, respectively. To examine the

interaction effects on SR of tree species, soil moisture and

temperature, we set three riparian–hillslope transects to mea-

sure the variation of total SR (sum of soil autotrophic and

heterotrophic respiration, hereafter referred to collectively as

total SR, SRtot) from different tree species. Soil chambers

were placed 1.5 m from the stem of the target tree species.

Moreover, we also set two transects to measure the topo-

graphic effects on soil heterotrophic respiration (SRH). Due

to the difficulty of trenching next to the riverbank, chambers

for SRH were set only at levels L2, L3 and L4. To separate

root respiration from SRH, we inserted a PVC tube (diameter:

65 cm; height: 40 cm) into the soil 5 months before starting

the measurements. To avoid constraints on groundwater table

fluctuations by the PVC tube, we cut two opposite windows
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Figure 1. Sketch of levels along a gradient of soil water availability

with tree species distribution and SRH chamber positions.

into the PVC tube and covered by 65 µm mesh to prevent root

growth through the windows.

Stainless steel rings were inserted permanently into the

soil, down to 3 cm depth as the base of the soil chambers,

and kept free from seedlings throughout the experiment du-

ration. The distances of each soil chamber from the riverside

varied slightly due to the tree distribution.

2.3 Field measurement

SR and soil temperatures were measured seasonally from

summer 2011 to autumn 2012. These measurements were

conducted continuously for 1 week within each season.

A heavy rainfall event took place in winter 2012, resulting

in elevated water levels of the river that washed away most

of the litter layer within 3 m from the river bank.

CO2 concentration was measured in situ with an automatic

changeover open system. The system consists of an infrared

gas analyser (IRGA, LiCor 6262, LiCor, Inc., Lincoln, NE,

USA), a data logger (CR10, Campbell Scientific Inc., UT,

USA), 12 pairs of channels, 12 soil chambers, 12 pairs of ro-

tameters, 6 pumps and 2 flowmeters. Each pair of channels

consists of two tubes connected to a soil chamber, one at-

tached on the top of chamber (reference CO2 concentration)

and another attached at the base for calculating the incre-

ment of CO2 concentration provided by SR. Soil chambers

were placed at the beginning of each field campaign, and

CO2 concentrations were analysed and recorded sequentially

over 1 min intervals at each chamber. Air was continuously

forced through all chambers by pumps. Only one chamber

was connected at a time to the IRGA to analyse the CO2

concentration of the respective chamber, while air from the

others was exhausted to the atmosphere until their own turn.

The sequence was programmed every 4 cycles of differential

IRGA measurements from 12 chambers, and an additional

cycle of absolute IRGA measurement, which was then used

to calculate the actual absolute ambient air concentration of

CO2 in ppm. The CO2 concentration of the ambient air was

determined as the difference between the scrubbed sample,

which flows through soda lime and Mg(ClO4)2, and the am-

bient air sample.

Soil chambers were protected by placing a 50cm× 50cm

green fine mesh on top to avoid possible heating by direct

sunlight during the measurements. Soil temperature of 5 cm

depth was continuously measured with Pt100 temperature

sensors and recorded in parallel with the CO2 concentration

analysis. Thirty centimetre integral soil moisture (cm3 cm−3,

SM30) in each level were determined and recorded half-

hourly with a moisture reflectometer (CS616, Campbell Sci-

entific). Additionally, we also measured 5 cm integral soil

moisture (SM5) next to each soil chamber once per day dur-

ing each measuring field campaign with impedance probes

(ThetaProbe soil moisture sensor, MI2x, Delta-T Devices,

Cambridge, UK). A grid of 28 wells (PVC tubes of 35 mm in

diameter) was installed to monitor groundwater table oscilla-

tion. Wells were distributed along the study site and at differ-

ent distances from the stream: 2.7, 4.4, 6.8, 11.8 m (n= 7).

Groundwater levels were monitored manually every 2 weeks

using a sounding device with acoustic and light signal (Ei-

jkelkamp Agrisearch Equipment). In autumn of 2012, af-

ter concluding the measurements, litter layer and soil sam-

ples (15 cm depth) inside each chamber were collected. Litter

layer samples were weighted after oven drying at 65–70 ◦C

for 24 h. Soil samples were first oven dried at 105 ◦C and

then analysed to determine their organic carbon and nitrogen

content by using the Walkley–Black and Kjeldahl methods,

respectively.

2.4 Statistical analysis

Statistical analyses were performed with PASW statistics 18

(SPSS Inc., 2009, Chicago, IL, USA). The missing data of

soil temperatures were estimated from air temperature values

based on a regression analyses between air and soil tempera-

tures. SR, soil temperature and soil moisture data were anal-

ysed using ANOVA to examine whether seasonal SR rates

were different between levels and tree species. Data used to

test the significance in ANOVA were based on daily means.

Least significant difference (LSD) was used to detect differ-

ences between levels and tree species for each season. We

used regression analysis to examine the relationship between

SR and soil temperature. An univariate exponential equation

was fitted (van ’t Hoff, 1898):

SR= aebT , (1)

where SR is soil respiration rate (µmolCm−2 s−1), T is soil

temperature (◦C), a and b are fitted parameters.

The apparent Q10 was calculated as

Q10 = e10b (2)
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Table 1. Soil carbon and nitrogen content and dry weight of litter L

and F organic horizons from soil respiration chambers.

Groundwater level C/N SOC % Nitrogen% Litter Layer

(kgm−2)

L2 – Near river 10.40 2.73 0.16 0.97

L3 – Intermediate 10.00 4.38 0.26 1.20

L4 – Uphill 9.15 3.36 0.23 1.67

L1 – A. glutinosa 12.13 2.29 0.11 0.69

L2 – P. nigra 10.27 3.52 0.20 1.18

L3 – F. excelsior 9.67 4.85 0.30 2.21

A Q10 value for the whole measurement period was com-

puted for each topographic position and tree species on the

basis of daily average SR rate and soil temperature. In addi-

tion, we estimated specific Q10 values for summer of 2011

and 2012. Data collected were fitted to the exponential equa-

tion. In order to understand the interaction between soil tem-

perature and soil moisture and the effect of soil moisture on

regulating SR, we applied recursive partitioning analysis to

search for the threshold of soil moisture. As models based

on partitioning can only handle linear models, the Eq (1) was

transformed by linearizing with logarithms:

lnSR= lna+ bT (3)

Logarithmic transformed SR values were used as the depen-

dent variable. Once the soil moisture thresholds were ob-

tained, linear and nonlinear regression analyses were used

to determine the relationship between SR, soil temperature

and soil moisture at each soil moisture interval. The recur-

sive partitioning analysis was conducted in the R statistical

environmental using the party package (Zeileis et al., 2008).

3 Results

3.1 Seasonal variation of groundwater level,

soil moisture, soil nitrogen and carbon content

Seasonal variation of air temperature and precipitation was

remarkable. The precipitation in 2011 was significantly

higher than in 2012, especially in summer. Summer precip-

itation in 2011 was 4 times higher (183 mm) than in 2012

(39 mm). SM30 was significantly higher at L1 (Fig. 2). In

summer 2012, due to a remarkable drought, SM30 at L1 only

showed a small decrease with respect to summer 2011; while

at the other levels (L2, L3 and L4) SM30 was markedly de-

creased. Groundwater levels showed no seasonal variation

but were significantly different between them.

Soil near the river contained less organic carbon and ni-

trogen, but a higher C : N ratio, with a C : N ratio of 12.13

(Table 1). Soil C : N ratio decreased from the riverside going

uphill, whereas the dry weight of litter layer increased from

the riverside going uphill. The largest amount of dry weight

of litter layer was found under F. excelsior, and coincided

Figure 2. Seasonal changes of summer 2011 (Su 11), autumn 2011

(Au 11), winter 2012 (Wi 12), spring 2012 (Sp 12) summer 2012

(Su 12) and autumn 2012 (Au12) in (a) mean seasonal air tempera-

ture and precipitation; (b) 30 cm integral soil moisture (SM30); (c)

groundwater level, value represents the depth of groundwater level

from soil surface (L1, L2, L3 and L4).

with the highest soil organic carbon (SOC) and soil nitrogen

concentrations between all levels.

3.2 Seasonal variation of SRH along hillslope transect

SRH rates ranged from 0.17 µmolCm−2 s−1 (in winter, L4)

to 1.69 µmolCm−2 s−1 (in summer, L2, Fig. 3a–d). SRH de-

creased significantly from riparian zone (L2) to hill zone

(L4), especially in summer. SRH measured from different

levels were significantly different in all seasons (P < 0.05).

SRH at L2 had a higher variability during the whole ex-

periment. Minimum soil temperature coincided with maxi-

mum SM5 in winter while maximum soil temperature was

recorded in summer when SM5 was lowest. SRH varied

markedly during the year following the change of soil tem-

perature from summer 2011 to spring 2012, and the changes

of SM5 for summer and autumn 2012. As expected, SRH was

lower during winter when soil temperatures were the lowest

of the year, and SRH was higher during the growing season.

3.3 Tree species and topographic effects

on SRtot and SM30

The observed variation of SRtot for the three tree species

followed the change of soil temperature over the year

(Fig. 3e–h). SRtot of P. nigra was the highest one, especially

during summer, and SRtot of A. glutinosa was the lowest one

throughout the year. There were no significant differences of

soil temperatures between tree species locations. SM5 did not

differ between tree species locations but there was a tendency
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Table 2. Comparison of soil respiration rates (SR), soil moisture (SM) and Q10 values in 2011 and 2012 summer campaigns. Heterotrophic

SR (SRH). Total SR (SRtot). Five centimetre integral soil moisture (SM5). Thirty centimetre integral soil moisture (SM30).

SR (µmolCm−2 s−1) SM5 (%) SM30 (%) Q10

Chamber 2011 2012 Reduction 2011 2012 Reduction 2011 2012 Reduction 2011 2012

SRH L2 – Near river 1.65 0.84 49 % 27.10 14.94 45 % 22.22 14.51 35 % 1.09 0.76

L3 – Intermediate 0.98 0.70 28 % 31.68 14.91 53 % 12.60 9.22 27 % 1.04 0.88

L4 – Uphill 0.74 0.50 32 % 38.02 14.19 63 % 10.87 8.13 25 % 0.97 0.84

SRtot L1 – A. glutinosa 1.24 0.78 37 % 27.24 13.04 52 % 42.49 36.58 14 % 1.31 0.80

L2 – P. nigra 1.42 1.13 21 % 26.22 12.93 51 % 22.22 14.51 35 % 1.17 0.63

L3 – F. excelsior 1.26 0.76 40 % 26.45 12.87 51 % 12.60 9.22 27 % 1.40 1.14

All data of SR, SM5 and SM30 were significantly different between 2011 and 2012. All P values < 0.001.

Table 3. Comparison of soil respiration rates (SR) and soil moisture (SM) after a rainfall event of 13.5 mm in summer 2012. Heterotrophic SR

(SRH). Total SR (SRtot). Five centimetre integral soil moisture (SM5). Thirty centimetre integral soil moisture (SM30). Data were averaged

for the 2 days before and 2 days after the rainfall event.

SR (µmolCm−2 s−1) SM5 (%) SM30 (%)

Chamber before after increase before after increase before after increase

SRH L2 – Near river 0.66 1.00 52 % 14.09 18.84 34 % 14.45 14.50 0 %

L3 – Intermediate 0.59 0.80 34 % 15.19 18.37 21 % 8.46 10.15 20 %

L4 – Uphill 0.41 0.59 45 % 12.06 17.51 45 % 6.97 9.64 38 %

SRtot L1 – A. glutinosa 0.67 1.04 54 % 11.27 16.91 50 % 36.13 37.48 4 %

L2 – P. nigra 0.99 1.66 68 % 10.86 18.86 74 % 14.45 14.50 0 %

L3 – F. excelsior 0.68 0.98 44 % 11.10 17.20 55 % 8.46 10.15 20 %

towards a higher SM5 under F. excelsior. SM30 was signifi-

cantly different between levels for all seasons. The variation

of SM30 at L1 was lower and showed less seasonal variabil-

ity, maintaining most of the SM30 values around 40 %. Dur-

ing both summers 2011 and 2012, SM30 at L3 dropped to

around 10 %, which is even lower than the SM5 at L4 where

F. excelsior is found.

3.4 Drought and rain pulse effects on SR

The low precipitation of summer 2012 caused a significant

reduction of around 50 % of SM5, 14–35 % of SM30 and

at the same time a reduction of SR between 21 and 49 %.

The Q10 values ranged from 0.97–1.40 in summer 2011 and

0.63–1.14 in summer 2012 (Table 2).

A rainfall event (13.5 mm) during the measurement

period of summer 2012 caused a significant increase

of soil moisture and SR rates at all levels (L1 to

L4). The SM5 increased around 21–74 % after the rain-

fall event even though it only caused a 0–38 % in-

crease of the SM30 (Table 3). This rainfall event caused

a sharp increase of SR from 0.41–0.99 µmolCm−2 s−1 to

0.59–1.66 µmolCm−2 s−1, which corresponds to an increase

of SR around 34 to 68 %.

3.5 The switch of primary control factor of SR

We identified three SM5 intervals for each SRH and SRtot

(Table 4), which suggests the existence of thresholds in soil

moisture effects. SR was positively related (P < 0.001) to

soil temperature when SM5 was higher than 23 % for SRH

or higher than 27 % for SRtot. The lower thresholds for SRH

and SRtot were 20 and 17 % of SM5 respectively. Under the

lower bound value, SRH showed a significantly positive rela-

tionship with SM5 (Fig. 4, linear regression with r2 of 0.89,

0.92 and 0.91 for L2, L3 and L4) while SRtot showed a weak

positive relationship with SM5 (Fig. 5, linear regression with

r2 of 0.56, 0.11 and 0.10 for L1, L2 and L3). The exponential

model based on soil temperature accounts for 68 to 84 % of

the variation in both SRH and SRtot rates at the higher SM5

interval values. The fitted Q10 values in high SM5 intervals

ranged from 1.49 to 2.14. Generally the Q10 values of SRH

were lower than the Q10 of SRtot.
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Table 4. Exponential relationships between soil respiration (SR) and soil temperature (T ), and Q10 for different SM5 intervals. Heterotrophic

SR (SRH). Total SR (SRtot). (SM5) is 5 cm integral soil moisture.

SM5 > 23 % 23 % > SM5 > 20 % SM5 < 20 %

Fn R2 Q10 Fn R2 Q10 Fn R2 Q10

SRH L2 – Near river SRH = 0.52e0.05T 0.77∗∗∗ 1.58 SRH = 0.68e0.02T 0.74∗ 1.25 SRH = 2.10e0.4T 0.58∗∗ 0.02

L3 – Intermediate SRH = 0.51e0.04T 0.72∗∗∗ 1.49 SRH = 0.67e0.05T 0.70∗ 1.65 SRH = 2.11e−0.04T 0.57∗∗ 0.66

L4 – Uphill SRH = 0.40e0.05T 0.84∗∗∗ 1.58 SRH = 0.64e0.02T 0.66∗ 1.19 SRH = 1.34e−0.03T 0.34∗ 0.76

SM5 > 27 % 27 % > SM5 > 17 % SM5 < 17 %

SRtot L1 – A. glutinosa SRtot = 0.53e0.04T 0.77∗∗∗ 1.54 SRtot = 0.69e0.03T 0.83∗∗∗ 1.30 SRtot = 0.77e0.01T 0.01 1.06

L2 – P. nigra SRtot = 0.52e0.05T 0.78∗∗∗ 1.60 SRtot = 0.61e0.04T 0.80∗∗∗ 1.46 SRtot = 1.39e−0.02T 0.19∗∗ 1.17

L3 – F. excelsior SRtot = 0.32e0.08T 0.68∗∗∗ 2.14 SRtot = 0.56e0.03T 0.62∗∗∗ 1.40 SRtot = 1.30e−0.02T 0.25∗∗ 0.82

∗ P < 0.05; ∗∗ P < 0.01; ∗∗∗ P < 0.001

Figure 3. Seasonal variation of soil respiration, soil temperature and soil moisture. (a–d) Data of soil heterotrophic respiration: (a) SRH

along groundwater level gradient. (b) 5 cm soil temperature. (c) 5 cm integral soil moisture (SM5). (d) 30 cm integral soil moisture (SM30).

(e–h) Data of total soil respiration rates (SRtot) of three tree species. (e) SRtot under different tree species. (f) 5 cm soil temperature. (g) 5 cm

integral soil moisture (SM5). (h) 30 cm integral soil moisture (SM30) . All values are mean SD. Data points marked with indicate significant

differences between species at P < 0.05 (For details, please see to Appendices A and B).

4 Discussion

4.1 Effect of groundwater level and soil moisture on SR

In the studies of Martin and Bolstad (2005) and Pacific

et al. (2008), it was indicated that the amount and availabil-

ity of soil water varies depending on landscape position and

topography. Both studies also show that small differences

in micro-topography appear to be important in driving soil

moisture conditions. This is in accordance with our results;

the overall seasonal trends of soil moisture were similar, but

differences in the relative magnitude of soil moisture still can

be found between different levels.

In our study site, the SRH was significantly higher at L2

and decreased with the distance from the river. At the same

time, SRtot of A. glutinosa at L1 was significantly lower than

the other two species found at L2 and L3. This result could

be explained by limitations of SR imposed by groundwater
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Figure 4. Differentiation of soil temperature (ST) and soil moisture (SM) as primary controlling factors for SRH. At SM5 ≥ 23 %, there are

positive correlations of SRH with soil temperature in all levels (a). At 20 % ≤ SM5 < 23 %, there is a transition with no clear relationship of

either SM or ST with SRH (b). At SM5 < 20 %, there is no relationship between SR and ST as the inset figure shows (c); it switches from

ST to SM5 as the controlling factor with positive correlations between SRH and SM5 for all levels. Campaigns with SM5 < 20 % were all

from spring and summer 2012. SM5 (5 cm integral soil moisture).

Figure 5. Differentiation of soil temperature (ST) and soil moisture (SM) as primary controlling factors for SRtot. At SM5 ≥ 27 %, there are

positive correlations of SRtot with soil temperature under all tree species (a). At 17 % ≤ SM5 < 27 %, there are positive but slightly weaker

correlations of SRtot with soil temperature under all tree species (b). At SM5 < 17 %, there is no relationship between SR and ST as the inset

figure shows (c); it switches from ST to SM5 as the controlling factor with positive correlations between SRtot and SM5 for all tree species.

Campaigns with SM5 < 17 % were all from spring and summer 2012. SM5 (5 cm integral soil moisture).

level in two different ways. First, when the groundwater level

is low, the drought stresses soil microbial and root respiration

activity; second, when groundwater level is high and close to

topsoil surface, it limits soil aeration and likely reduces the

effective respiring soil volume. Pacific et al. (2008) showed

that the soil CO2 concentrations were significantly higher

in the riparian zone as a result of higher soil moisture. In

contrast, Zanchi et al. (2011) found lower SR in plots after

drainage, and suggested that the low C and N content in the

topsoil near the river, where most of the soil CO2 respiration

is produced, could partially explain that low SR. The discrep-

ancy of these two studies could be associated with the differ-

ent drainage regimes as the poorly drained plots imply the

anaerobic inhibition of SR. In our study, however, SRH was

measured at L2, L3 and L4 under well-drained conditions,

and SRH decreased concomitantly with the decrease in the

availability of soil water. Nonetheless, SRtot of A. glutinosa

was measured at L1, where the soils sometimes experienced

flooding or poor draining conditions, and the root respiration

may be inhibited by the high groundwater level.

Additionally, landscape position and topography not only

altered the availability of soil water but also affected the

annual range of soil moisture. This was shown in Zanchi

et al. (2011), studying riparian SR in Amazonia. They in-

dicated that riparian soil is very sensitive to the changes of

water-flooding regimes. The high groundwater table in ripar-

ian zones implies intermittent anaerobic conditions and the

inhibition of diffusion during water saturation. These differ-

ences in soil moisture caused by site topography may result

in differences in SR even though the soil temperatures were

similar among all sites. The different behaviours of SRH and

SRtot from L1 to L4 from our results indicate a different con-

tribution of SRH to SRtot. As the root system of A. glutinosa

may constantly experience a saturated water regime, the rel-

ative contribution from root respiration may be much lower

than the one of the other two species.
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4.2 Rain pulse and drought effects on SR

The Mediterranean climate is characterized by summer

droughts that particularly affect the top soil layers; there-

fore, rainfall events during these dry periods can trigger

abrupt increases in SR that last for days (Bowling et al.,

2011; Cisneros-Dozal et al., 2007; Lee et al., 2004; Unger

et al., 2010). Lee et al. (2004) simulated precipitation and

found that hardwood forest floors were very sensitive to

changes in moisture in the upper soil layers. Moreover, Wang

et al. (2012) noted that the response of litterfall respiration is

very sensitive to rainfall, and the increase in soil moisture by

rainfall primarily enhanced the litterfall respiration but de-

creased mineral SR. Similar results were published by Casals

et al. (2011), who reported that SR after a precipitation pulse

was mostly derived from SRH with a contribution up to 70 %

of SRtot. Hence, our findings seem to be consistent with these

previous studies.

4.3 Confounding effects of temperature and moisture

on SR

This study aimed at assessing the importance of soil mois-

ture on soil respiration and determining the threshold of soil

moisture at which soil moisture overrules temperature in con-

trolling SR. The response of SR to soil moisture has been

widely studied and described by various types of functions

such as linear or logarithmic functions, depending on the

soil type, climate or vegetation type (Comstedt et al., 2010;

Epron et al., 1999; Orchard and Cook, 1983). In our study,

the seasonal courses of SRH and SRtot generally followed

the seasonal cycle of temperature, but were moderated by

soil moisture. Such a relationship is in agreement with other

previous studies (Davidson et al., 1998; Martin and Bolstad,

2005; Wang et al., 2013).

The positive linear relationship between SR and soil mois-

ture in low soil moisture conditions found in our work agrees

with many previous studies where low soil moisture con-

strains SR (Almagro et al., 2009; Davidson et al., 1998; Keith

et al., 1997; Rey et al., 2002; Wang et al., 2013; Xu and Qi,

2001). In our study, the low soil moisture and warmer tem-

peratures actually reduced SR rates, resulting in lower Q10

values at the lower soil moisture. A similar decline of Q10

with decreasing soil moisture was reported by Conant et al.

(2004), Curiel-Yuste et al. (2003) and Wen et al. (2006). Low

soil water content not only reduces the contact between the

substrate, enzymes and microbes, it also decreases the sub-

strate supply due to the increased drying-out of litter and top-

soil layer (Davidson et al., 2006). Another possible reason for

the observed lower Q10 is that the reduction of photosynthe-

sis decreases the translocation of photosynthates to the rhi-

zosphere (Hogberg et al., 2001; Nordgren et al., 2003).

In a Norway spruce stand, Gärdenäs (2000) found that lit-

ter moisture explained most of the variation of SR, whereas

mineral soil moisture, air and litter temperature had no ef-

fects on SR. Our results showed that the seasonal variations

of SRH and SRtot were mainly controlled by soil temperature,

with a secondary influence of soil moisture (SM5). Using

the recursive partitioning method, we have identified clear

thresholds for SM5 effects on the temperature sensitivity of

SR. Soil moisture thresholds at which SR temperature sen-

sitivity is reduced have been found in several studies from

different ecosystems (Fang and Moncrieff, 2001; Gaumont-

Guay et al., 2006; Jassal et al., 2008; Lellei-Kovács et al.,

2011; Palmroth et al., 2005; Wang et al., 2013). However, the

threshold values in soil moisture seem to be site specific as

the factors limiting water uptake by plants and microbes may

differ by ecosystem. Even in the same climate region, dif-

ferent soil moisture thresholds have been found in previous

studies. For example, Almagro et al. (2009) investigated how

soil moisture modulated the sensitivity of soil respiration in

different ecosystems in the Mediterranean region and found

that the threshold value of soil moisture was 10 %. Above

this soil moisture values, Q10 ranged from 1.86 to 2.20 and

decreased to 0.44 to 0.63 when soil moisture was lower than

10 %. However, Rey et al. (2002) found in a Mediterranean

oak forest that soil temperature accounted for 85 % of the

variation of SR when soil moisture was above 20 % with

a Q10 value of 2.34. Furthermore, Xu and Qi (2001) found

that with soil moisture higher than 14 %, the Q10 value was

1.8 and decreased to 1.4 when soil moisture was lower than

14 %.

4.4 Other factors affecting SR

In addition to soil moisture threshold values, we also found

variations of SRH and SRtot between location and tree

species in each soil moisture interval. For example, when

SM5 was lower than 20 %, SRH measured at L4 was always

lower than SRH measured at L2 and L3. When SM5 was

lower than 17 %, SRtot of P. nigra was significantly higher

than for the other two species, suggesting that there are still

other factors affecting SRH and SRtot variations. Several ex-

planations for this result are plausible. First, spatial variabil-

ity in vegetation can affect SR due to differences in root res-

piration and the quantity and quality of detritus (Raich and

Tufekcioglu, 2000). These biophysical gradients across land-

scape positions can lead to strong spatial heterogeneity in SR.

Tree species in our study site exhibit different litterfall tem-

poral patterns and may also contribute to the seasonal varia-

tion of the availability of SOC and nutrients to the microbial

community and roots. Second, the vitality of tree species in

responses to soil water regime could generate different root

respiration rates. Additional data of daily sap flow of the

studied trees from our study site (data not shown) confirmed

the differences in tree transpiration and growth activity. For

example, the water use efficiency of P. nigra was highest,

followed by F. excelsior and A. glutinosa. Additionally, the

mean diameter at breast height (DBH) of P. nigra is larger

than mean DBH of the other tree species. P. nigra may be
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more efficient in taking up water and nutrients compared to

the other two tree species.

5 Conclusions

This research demonstrates how soil moisture constrains the

relationship between SR and soil temperature. We present

critical threshold values of soil moisture where SR depen-

dency on soil moisture overrules soil temperature depen-

dency. Our results also reveal the importance of soil mois-

ture as a predictor of SR even in a non-water-stressed envi-

ronment such as riparian forests. Our findings provide sup-

port for modelling approaches that include soil temperature

and soil moisture by making available parameters to predict

SR rates. This study also has implications for a better under-

standing of global change impacts on the carbon cycle since

soil water availability will likely become an increasingly cru-

cial factor for some regions that are expected to suffer more

frequent and severe droughts under climate change.
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Appendix A

Table A1. Analysis of variance (ANOVA) statistics for soil temperature (ST) and soil moisture (SM): SM5, SM30 and heterotrophic soil res-

piration (SRH) of different levels of the same season (mean±SD). LSD was used to test post hoc. Means with the same letter in parentheses

are not significantly different (P < 0.05).

Campaign ST SM5

L2 L3 L4 L2 L3 L4

2011 Summer 16.11± 0.73(A) 17.88± 0.88(AB) 18.12± 2.02(B) 27.11± 0.74(A) 31.68± 3.20(B) 38.02± 0.87(C)

2011 Autumn 10.87± 0.30(A) 12.48± 0.24(B) 13.33± 0.25(C) 33.51± 4.75(A) 35.33± 7.00(A) 42.05± 3.40(B)

2012 Winter 1.75± 1.22(A) 5.13± 1.92(B) 6.11± 1.50(B) 33.14± 4.50(A) 31.21± 3.00(A) 32.52± 4.30(A)

2012 Spring 18.82± 1.13(A) 18.81± 1.04(A) 20.03± 1.25(B) 18.73± 4.31(A) 18.87± 2.89(A) 21.26± 3.18(A)

2012 Summer 20.18± 2.05(A) 21.70± 2.74(A) 20.80± 2.40(A) 14.94± 4.99(A) 14.91± 4.35(A) 14.19± 3.04(A)

2012 Autumn 7.11± 2.58(A) 7.66± 3.98(A) 8.73± 3.38(A) 26.87± 6.08(A) 26.77± 5.80(A) 25.84± 4.21(A)

SM30 SRH

L2 L3 L4 L2 L3 L4

2011 Summer 22.22± 0.23(A) 12.60± 0.36(B) 10.87± 0.1(C)0 1.65± 0.03(A) 0.98± 0.03(B) 0.52± 0.32(C)

2011 Autumn 28.69± 2.20(A) 22.31± 3.32(B) 22.37± 2.51(B) 0.97± 0.04(A) 0.90± 0.04(B) 0.66± 0.01(C)

2012 Winter 27.35± 0.22(A) 18.61± 0.18(B) 18.90± 0.24(C) 0.22± 0.66(AB) 0.26± 0.05(A) 0.20± 0.03(B)

2012 Spring 21.91± 0.41(A) 14.17± 0.51(B) 9.96± 0.25(C) 0.95± 0.11(A) 1.00± 0.25(A) 0.78± 0.05(B)

2012 Summer 14.51± 0.07(A) 9.22± 0.78(B) 8.14± 1.25(C) 0.84± 0.18(A) 0.70± 0.14(B) 0.50± 0.08(C)

2012 Autumn 27.27± 1.12(A) 20.38± 1.03(B) 19.01± 1.14(C) 0.59± 0.10(A) 0.61± 0.21(A) 0.41± 0.14(B)
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Appendix B

Table B1. Analysis of variance (ANOVA) statistics for soil temperature (ST) and soil moisture (SM): SM5, SM30, and total soil respiration

(SRtot) of different tree species of the same season. LSD was used to test post hoc. Means with the same letter in parentheses are not

significantly different (P < 0.05).

Campaign ST SM5

A. glutinosa P. nigra F. excelsior A. glutinosa P. nigra F. excelsior

2011 Summer 17.51± 1.07(AB) 18.11± 1.09(A) 17.04± 1.73(B) 27.24± 4.67(A) 26.22± 2.65(A) 26.45± 2.42(A)

2011 Autumn 11.16± 0.20(A) 11.11± 0.71(A) 11.77± 0.69(B) 34.46± 4.60(A) 34.42± 4.79(A) 39.78± 4.86(B)

2012 Winter 2.02± 2.00(A) 3.00± 2.49(A) 2.05± 4.17(A) 31.24± 3.42(AB) 29.36± 2.76(A) 32.46± 4.37(B)

2012 Spring 18.16± 0.84(A) 18.53± 0.64(A) 18.57± 1.48(A) 16.19± 2.80(A) 14.15± 1.26(B) 17.86± 2.16(A)

2012 Summer 19.74± 1.69(A) 22.15± 3.11(B) 19.57± 2.07(A) 13.04± 2.55(A) 12.93± 3.65(A) 12.87± 2.60(A)

2012 Autumn 7.08± 2.27(AB) 8.71± 2.49(A) 6.07± 4.15(B) 23.80± 3.53(A) 22.83± 4.52(A) 26.66± 4.15(B)

SM30 SRtot

L1 L2 L3 A. glutinosa P. nigra F. excelsior

2011 Summer 42.49± 0.45(A) 22.22± 0.23(B) 12.60± 0.36(C) 1.24± 0.28(A) 1.42± 0.33(A) 1.26± 0.20(A)

2011 Autumn 42.92± 3.52(A) 28.69± 2.20(B) 22.31± 3.32(C) 0.69± 0.27(AB) 0.89± 0.22(B) 0.80± 0.04(A)

2012 Winter 46.08± 0.11(A) 27.35± 0.22(B) 18.61± 0.18(C) 1.44± 0.08(A) 0.28± 0.08(A) 0.26± 0.04(B)

2012 Spring 37.62± 0.10(A) 21.91± 0.41(B) 14.17± 0.51(C) 0.85± 0.14(A) 1.10± 0.17(A) 1.16± 0.29(B)

2012 Summer 36.58± 0.63(A) 14.51± 0.07(B) 9.22± 0.78(C) 0.78± 0.17(A) 1.13± 0.43(B) 0.76± 0.31(A)

2012 Autumn 40.76± 0.50(A) 27.27± 1.12(B) 20.38± 1.03(C) 0.49± 0.17(A) 0.81± 0.14(B) 0.68± 0.12(C)
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