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Abstract. Studies on carbon stock in salt marsh sediments
have increased since the review by Chmura et al. (2003).
However, uncertainties exist in estimating global carbon stor-
age in these vulnerable coastal habitats, thus hindering the as-
sessment of their importance. Combining direct data and in-
direct estimation, this study compiled studies involving 143
sites across the Southern and Northern hemispheres, and pro-
vides an updated estimate of the global average carbon ac-
cumulation rate (CAR) at 244.7 g C m−2 yr−1 in salt marsh
sediments. Based on region-specific CAR and estimates of
salt marsh area in various geographic regions between 40◦ S
to 69.7◦ N, total CAR in global salt marsh sediments is esti-
mated at∼10.2 Tg C yr−1. Latitude, tidal range and elevation
appear to be important drivers for CAR of salt marsh sedi-
ments, with considerable variation among different biogeo-
graphic regions. The data indicate that while the capacity for
carbon sequestration by salt marsh sediments ranked the first
amongst coastal wetland and forested terrestrial ecosystems,
their carbon budget was the smallest due to their limited and
declining global areal extent. However, some uncertainties
remain for our global estimate owing to limited data avail-
ability.

1 Introduction

Salt marshes are intertidal vegetated wetland ecosystems,
dominant on protected shorelines and on the edge of estu-
aries in a range of climatic conditions, from sub-arctic to
tropical, while most extensive in temperate latitudes (Mitsch
et al., 1994; Butler and Weis, 2009; Laffoley and Grims-

ditch, 2009). The combination of characteristic vegetation,
geomorphology and habitat conditions of salt marshes pro-
vide essential ecosystem goods and services, including bio-
geochemical cycling and transportation of nutrients, habitat
or food for coastal biota, shield and protecting coastal ar-
eas from storms and floods, water filtration, recreation and
cultural benefits. However, salt marshes also critically suffer
from losses due to dredging, filling, draining, construction
and are particularly threatened by sea level rise as a result of
“coastal squeeze” (Doody, 2004; Polunin, 2008; Gedan et al.,
2009; Koch et al., 2009; Craft et al., 2008).

Salt marshes appear to be highly efficient in carbon burial,
but studies on global carbon accumulation of salt marshes
lag behind other coastal ecosystems. First, data on salt marsh
extent and carbon stock are patchy. A reliable estimate of
global salt marsh extent is lacking, and large areas of salt
marsh have never been mapped. Existing studies of carbon
stock on salt marshes tend to focus on specific sites and lack a
broader global perspective (Callaway et al., 2012). Chmura et
al. (2003) provided an extensive estimate of global carbon se-
questration of salt marshes, although their study still did not
cover the complete latitudinal range of salt marsh occurrence,
but only from 22.4◦ S to 55.5◦ N. Second, carbon sequestra-
tion by mangroves and seagrasses has been analyzed with
specific hypotheses in mind, such as the existence of clear
latitudinal gradients (McLeod et al., 2011), while such an ap-
proach has rarely been attempted for salt marshes. The lack
of a comprehensive global view of carbon accumulation and
storage in salt marshes contributes to this deficiency. Con-
siderable studies have investigated carbon accumulation of
salt marshes in different sites, including elevation gradients
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from low to mid- or high marsh (Callaway et al., 1996; Con-
nor et al., 2001; Elsey-Quirk et al., 2011; Callaway et al.,
2012; Schuerch et al., 2012; Adams et al., 2012), but these
studies focused on carbon density, organic matter and sed-
iment accretion and no direct estimates have been reached
concerning carbon accumulation capacity. Finally, how sed-
iment carbon accumulation may respond to tidal range and
species occurrence has been studied individually in specific
sites and for various genera of salt marshes (Rothman and
Bouchard, 2007; Zhou et al., 2007; Mahaney et al., 2008),
but a global consideration of pattern is still lacking. Even
though salt marshes have been intensively investigated for
more than fifty years, the global capacity for carbon seques-
tration by salt marshes is yet to be assessed. A global analysis
covering the full range of salt marsh distribution will provide
an opportunity to identify the role of these hotspots in cli-
mate change impact in terms of carbon storage and to inform
future global conservation efforts.

Carbon sinks in salt marshes generally consist of above-
ground biomass, belowground biomass and soils. Globally,
it is recognized that soils contain the largest quantity of car-
bon in a range of ecosystems and two thirds of carbon is in
the form of soil organic matter (Batjes, 1996). Likewise, the
largest carbon stock of salt marshes is soil organic carbon
(Murray et al., 2011), which is influenced by the carbon ac-
cumulation rate (CAR). Estimating global salt marsh CAR
is significant to understanding carbon sequestration by salt
marsh sediments.

CAR is calculated as the product of sediment accretion
rate (SAR) and average carbon density of the soil (Connor et
al., 2001; Ford et al., 2012). To date, studies on CAR have
been restricted in geographic extent, whereas comprehensive
data are available on SAR and soil carbon density in salt
mash ecosystems. Combining data of the two parameters will
establish a global CAR inventory of salt marshes.

This paper aims to refine the global CAR inventory of
salt marshes, extending the earlier review by Chmura et
al. (2003) on the basis of recent published studies on specific
regions, and to explore regional differences (including latitu-
dinal and biogeographic differences) in CAR, as well as the
nexus of CAR with key environmental and biotic drivers. The
updated database may then be used to generate an improved
estimate of the global carbon storage in salt marsh sediments.

2 Method

2.1 Data sources and collation

We searched for relevant studies using the databases Science
Citation Index Expanded, Conference Proceedings Citation
Index-Science and Book Citation Index-Science within ISI
Web of Science (Thomson Reuters), using the Boolean
search statement: topic= (salt∗ marsh∗ or salt marsh) AND
(carbon∗ or sediment∗ or soil). This search generated 4939

studies, including 174 reviews, 414 proceeding papers and
56 book chapters, and the rest were journal articles.

Data were then selected according to the following princi-
ples:

(a) Some studies recorded CAR in terms of sequestered
CO2. The values were considered as CAR, because
salt marshes produce negligible methane (Connor et al.,
2001; Callaway et al., 2012).

(b) As far as the few studies regarding accumulation rate of
organic matter were concerned, carbon values were cal-
culated according to the formula of Craft et al. (1991).

(c) SAR estimates may involve a variety of tracers and pro-
files of tracers (Ouyang et al., 2013), including long-
term profiles of137Cs, 210Pb and short-term marker
horizons. Then CAR was obtained by multiplying SAR
and soil carbon density. As SAR could be variable
over small spatial scales, CAR estimation is expect-
edly influenced by data availability. Despite the ab-
sence of method description in 9 % of the studies, most
(64 %) employed radionuclide (i.e.,137Cs,210Pb mark-
ers) to measure SAR, while another 27 % of studies used
marker horizons. CAR derived from different methods
for SAR measurement may generate biases in compari-
son to CAR but those data potentially affected are high-
lighted in our results.

(d) According to the current classification of salt marshes
(Mold, 1974; Chmura et al., 2003), the 143 sites
were geographically divided into eight groups (Fig. 1),
namely, tropical W Atlantic, N Europe, Mediterranean,
NE Pacific, NW Atlantic, Arctic, Australasia and Sino-
Japan. Also, there is a phytobiogeographic division
based on the dominant halophyte genera at the 143 sites,
with Distichlis, Spartina, Phragmites, JuncusandHal-
imionebeing the dominant taxa.

Following the above rules, we examined individual studies
to confirm the validity of the data. Studies were excluded if
they were based on model simulation. This process filtered
the studies down to 50, including 37 studies in which SAR
and soil carbon density data were used to calculate CAR,
while the remaining 13 studies directly reported CAR. In
addition, among the 50 studies, 47 were based on sediment
samples of short cores (< 1 m), whereas only 3 studies sam-
pled using deeper cores. Overall, the studies covered a latitu-
dinal range from 40◦ S to 69.7◦ N (Table 1).

The area of salt marshes by specific sites and regions is
well described in the literature (Dijkema, 1987; O’Callaghan,
1990; Yang and Chen, 1995; Hanson and Calkins, 1996;
Saint-Laurent et al., 1996; Lawrence et al., 2012), while re-
ports of estimates of the global area are scarce. In this study,
data of published studies were compiled to provide an esti-
mate of the present global extent of salt marshes (Table 2).
The global total carbon (C) stock in salt marshes was then
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Figure 1. Groupings and CAR of global salt marsh ecosystems.
The eight groups span latitudes from 40◦ S to 69.7◦ N, colonizing
the coasts and estuaries of the Pacific, Atlantic, Indian and Arctic
oceans. The background graph indicating sites of salt marshes is
based on Mold (1974) and Murray et al. (2011). While significant
salt marsh occurrences are present in South America, insufficient
data is available for inclusion in this analysis since there are no per-
tinent references. Color dots are used to account for CAR levels
of individual sites that were indicated in Table 1 from 50 studies,
whereas dull color dots represent sites without CAR data. There are
not substantial data for the Sino-Japan region, as such a big circle
is used to represent the average CAR of this region. Only locations
with published data allowing calculation of CAR are represented
for clarity. NEP – NE Pacific; TWA – tropical W Atlantic; NWA –
NW Atlantic; AR – Arctic; NE – N Europe; M – Mediterranean; SJ
– Sino-Japan; AU – Australasia.

estimated by multiplying region-specific CAR and the re-
spective regional areal extent of salt marshes. Area of salt
marsh in these sub-groups was estimated from Coultas and
Hsieh (1997). Soil CAR of Europe and Scandinavia was cal-
culated by combining all the CAR data of northern Europe
and the northern Mediterranean. CAR of northern Africa
(Tunisia and Morocco) adopted that of the closest region, i.e.,
the northern Mediterranean group, as no CAR values spe-
cific to this region are available. CAR of arid salt marshes
may differ from other Mediterranean sites so some errors
may result from the use of this value. There is also no avail-
able CAR data of southern Africa, despite many reports of
Spartinain southern African salt marshes, e.g., Adams and
Bate (1995); Pierce (1983); Ranwell (1967). The value in
Fig. 2 forSpartinawas used to approximate CAR of this re-
gion. Since the areas of salt marsh in southern and northern
Africa are small, these approximations have relatively little
influence on the estimation of total CAR in global salt marsh
sediments.

Despite the large areal extents of salt marshes, few data
on CAR are available for the Australasia and Sino-Japan re-
gions. The contributions from these regions are therefore ex-
trapolations from a small number of studies, which may not
be representative of the mean values applicable to the re-
gions. While these still represent the best available data, our
overall global CAR value should be interpreted with some
caution.

Figure 2. Comparison of CAR among halophyte genera from data
in the collated references. A non-parametric post hoc pairwise test
was run following Kruskal–Wallis rank sum test to test which gen-
era are different from the others.Spartinamarshes have signifi-
cantly higher CAR but there are no significant differences in CAR
among the other four groups (Kruskal–Wallis test,P > 0.05).

Table 2.Reported area of salt marshes.

Region Area (km2) Ref.

Australia 13 765 Lawrence et al. (2012)
China 5734 Shi-lun and Ji-yu (1995)
America 19 265 Field et al. (1991)
Europe and Scandinavia 2302 Dijkema (1987);

Saint-Laurent (1996)
Canada 328 Hanson and Calkins (1996);

Wetland International Inventory
Northern Africa 93 Wetland International Inventory

Southern Africa 170 O’Callaghan (1990)

Total 41 657

We explored the potential range of the global CAR value
following the “uncertainty propagation” approach of Donato
et al. (2011). See Supplementary information for details of
the method.

2.2 Data analysis

Analyses were conducted using SPSS 21 (SPSS Inc.,
Chicago, IL, USA) and R version 3.0.2 (R Core Team, 2013).
Deviations are reported as the standard error (SE). For sta-
tistical comparisons, data were tested for normality with
the Kolmogorov–Smirnov test and for homogeneity of vari-
ance with the Levene’s test (α = 0.05). When homogeneity
of variance between groups was violated, data were trans-
formed (ln(x), 1/x, or x1/2) to satisfy the assumption. Box
plots were used to describe latitudinal distribution of CAR
data. A paired-samplet test was used to compare the paired
CAR from marshes with different elevations at the same site.
In the case of heterogeneity of variances, Kruskal–Wallis
rank sum test was applied to compare more than two means
and followed by non-parametric post hoc pairwise test where
there was a significant treatment effect.
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Table 3.Comparison of CAR among salt marsh geographic groups.
Australasia, Sino-Japan and Arctic are excluded from the analysis
due to low number of sites. Southern Europe includes the north-
ern Mediterranean sites and Portugal. There are no significant dif-
ferences in the mean CAR value among the five groups for which
sufficient data are available for comparison (Kruskal–Wallis test,
P > 0.05).

Groups Number Soil CAR, g C m−2 yr−1

of sites (Mean± SE)

Tropical W Atlantic 32 293.7± 60.9
N Europe 23 315.2± 62.9
S Europe 7 305.5± 86.0
NE Pacific 8 173.6± 45.1
NW Atlantic 64 172.2± 18.1

Stepwise multiple regression was used to determine which
of the independent variables, viz., tidal range, latitude, halo-
phyte genera and MAT, accounted for most of the variation
in CAR. The five major genera were included as a categor-
ical variable with four levels, while other genera were ex-
cluded owing to few available data. Each level has two val-
ues, namely, 0 and 1. The categorical variable, serving as a
qualitative variable, was included as a block with the default
“Enter” method, whereas tidal range and latitude were in-
cluded as another block with the default “Stepwise” method
in the multiple regression model. A regression tree was cre-
ated and structured in a hierarchical fashion to determine the
influences of independent variables (i.e., latitude, halophyte
genera, tidal range and MAT) on the distribution of CAR val-
ues.

3 Results and discussion

3.1 Regional difference in carbon accumulation rate

In order to assess the regional difference in carbon sequestra-
tion by salt marshes, soil CAR was calculated for the five salt
marsh groups for which sufficient comparative data are avail-
able (Table 3), the five dominant halophyte genera (Fig. 2),
and for latitudinal intervals of 10◦ from 28.4◦ N to 69.7◦ N.
Region-specific CAR and area were combined to produce
a global CAR of salt marshes. Globally, mean CAR in salt
marsh sediment is 244.7± 26.1 g C m−2 yr−1 (Table 4).

Compared to previous studies, our results show both dif-
ferences and common features. First, the average CAR of
our study is higher than those from earlier reports, aver-
aged 151 g C m−2 yr−1 (Chmura et al., 2003; Duarte et al.,
2005). Our estimate has revised the former estimates upward
by roughly 60 %. The difference may relate to the fact that
the earlier reports (1) have smaller latitudinal ranges (from
22.4◦ S to 55.5◦ N); (2) suffer from the lack of data from sig-
nificant regions, including the Asia-Pacific, Arctic and Aus-
tralasia; or (3) used a simplistic method for up-scaling CAR

Figure 3. Latitudinal pattern of CAR for global salt marshes.
The box-whisker plots of CAR reflect a clear pattern at latitudi-
nal range 10–40◦ S, 28.4–38.4◦ N, 38.4–48.4◦ N, 48.4–58.4◦ N, and
68.4–78.4◦ N, with the highest value in the 48.4–58.4◦ N (mean
CAR= 315.2 g C m−2 yr−1), while the lowest value occurs at high-
latitudinal 68.4–78.4◦ N (mean CAR= 30g C m−2 yr−1). No data
is available for the 58.4–68.4◦ N range and is not presented in the
plot. The bottom, middle and top of each box indicates the 25th,
50th (median) and 75th percentiles, respectively. Around 95 % of
the data are expected to lie between whiskers. The scattered points
above the whiskers are outliers and the upper points are extreme
outliers.

from individual sites to the global coverage, i.e., arithmetic
means of individual CAR irrespective of regional salt marsh
area.

The highest average accretion rate of soil carbon,
i.e., 315.2 g C m−2 yr−1, was recorded from the northern
Mediterranean marshes dominated bySpartina spp. The
largest carbon stock was in accordance with data of soil car-
bon stores in seagrass ecosystems, which was also found
in Mediterranean meadows dominated byPosidonia ocean-
ica (Fourqurean et al., 2012). However, the only recorded
CAR of salt marsh soils in the Arctic is an order of mag-
nitude lower (30 g C m−2 yr−1) than those of all other re-
gions (172.2 to 315.2 g C m−2 yr−1). But the lack of data for
this region makes generalization difficult. Furthermore, as
shown in Fig. 2, among the five halophyte genera,Spartina
demonstrated the highest capacity for soil carbon accumu-
lation, with average CAR at 200.9 g C m−2 yr−1, while av-
erage CAR ofDistichlis (107.5 g C m−2 yr−1) ranked the
lowest. CAR ofSpartinawas significantly higher but there
are no significant differences in CAR among other genera
(P > 0.05). Nonetheless, there is significant latitudinal vari-
ation of CAR in salt marsh sediments (P < 0.001) (Fig. 3).

For exploring the drivers of CAR variation, the nexus of
CAR with tidal range, latitude, MAT and the dominant halo-
phyte genera was analyzed using multiple linear regressions.
There is no significant impact of MAT (P = 0.567) or gen-
era (P = 0.728) on CAR. Tidal range and latitude accounted
for 51.7 % and 29.6 % of the variation in CAR (P < 0.05).
In addition, regression tree analysis was applied to compare
the impact of latitude, mean tidal range (MTR), MAT and
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Table 4.Estimation of global CAR using specific soil CAR for different regions. USA was divided into three sub-groups as per the division
of salt marsh groups in Fig. 1.

Region Soil CAR, g C m−2 yr−1 Area Soil CAR, Tg C yr−1

(mean± SE) (km2) (mean± SE)

Australia 274.8 13 765 3.78
China 223.6 5734 1.28
USA

Tropic W Atlantic region 293.7± 60.9 8596 2.52± 0.52
NW Atlantic region 134.0± 12.8 2685 0.36± 0.03
NE Pacific region 173.6± 45.1 7984 1.39± 0.36

Europe and Scandinavia 312.4± 50.6 2302 0.72± 0.12
Canada 214.3± 33.7 328 0.07± 0.01
Northern Africa 305.5± 86.0 93 0.03± 0.01
Southern Africa 200.9± 23.0 170 0.03± 0.004
Total 244.7± 26.1 41 657 10.2± 1.1

dominated genera on CAR (Fig. 4). Latitude occupies the
highest hierarchy and MTR constitutes the primary branches
of the regression tree, while MAT is not an independent de-
terminant of CAR.

These results suggest that carbon sequestration by salt
marsh sediments is affected by multiple biogeochemical and
biotic factors. Tidal range determines belowground carbon
dynamics (root production, carbon burial) through influenc-
ing sediment aeration and porewater flow, also affecting
sediment and organic matter import/export dynamics. Soil
CAR for salt marshes was shown to be positively related
to belowground biomass productivity and negatively related
to organic matter decomposition (Elsey-Quirk et al., 2011;
McLeod et al., 2011; Gonzalez-Alcaraz et al., 2012), which
are the predominant biotic processes for carbon accumula-
tion. Both processes are affected by tidal range.

For a given inundation depth, biomass productivity should
be greatest in low tidal range environment (Schuerch et al.,
2012). Where biomass productivity may be low (e.g., some
Mediterranean marshes), retention of organic matter is usu-
ally high in these micro-tidal environments (Ibañez et al.,
2000). Thus CAR could be higher in micro-tidal marshes.
Further, tidal range may result in differences in the frequency
of tidal flooding (Chmura et al., 2011), which alters the mode
and rate of organic matter decomposition (Gonzalez-Alcaraz
et al., 2012) and export generally in tidal wetlands (Sainti-
lan et al., 2013; Lee, 1995), thereby influencing CAR. Marsh
vegetation also influences carbon accumulation through lit-
ter input. A number of studies have revealed that different
species of halophyte inhabiting salt marshes contributed dif-
ferent quality and quantities of litter to salt marsh sediments
(Zhou et al., 2007; Mahaney et al., 2008). Soil microbe me-
diated decomposition also changes with litter species (Roth-
man and Bouchard, 2007). These factors combined would re-
sult in variation in the quality (e.g., stoichiometry and form
of essential elements) as well as quantity (e.g., different pro-

Figure 4. A regression tree for estimating CAR from latitude, mean
tidal range and dominated genera. At each internal node, we asked
the associated question, and go to the right child if the answer is
“no”, go to the left child if the answer is “yes”. MTR denotes mean
tidal range.

duction and turnover rates) of organic matter in salt marsh
sediments.

Latitude is a proxy of drivers such as length of grow-
ing season, and sediment salinity may also vary with lati-
tude due to differences in the balance between evaporation
and rainfall. Significant latitudinal trend can therefore be ex-
pected for primary productivity. This study suggests that salt
marsh CAR changes markedly with length of growing sea-
son. Generally, this study suggests CAR of salt marsh sed-
iments peaks at mid-latitudes, between∼ 48.5 and 58.5◦ N,
and decreases towards the poles and the equator. This pat-
tern corresponds with the general latitudinal pattern of salt
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Figure 5. CAR of salt marshes in relation to habitat elevation from
low marsh to mid- or high marsh. Different symbols for CAR of low,
mid- and high-marsh locations from the same site were aligned ver-
tically. BE – the Blackwater Estuary, UK; BF – the Bay of Fundy,
New Brunswick, Canada; SM – Stiffkey Marsh, UK; DM - Dengie
Marsh, UK; SA - St. Annaland, Netherlands; OR – Oder River,
Poland; VR – Vistula River, Poland; LAB – Little Assawoman Bay,
USA; HM – high marsh; MM – mid-marsh; LM – low marsh.

marsh development. Additionally, variations in salinity lead
to difference in soil properties among coastal marshes, and
soil bulk density was positively correlated with organic car-
bon concentrations and negatively correlated with salinity.
Carbon accumulation was negatively correlated with salin-
ity, attributed to impact of salinity on decomposition rate
of organic matter (Loomis and Craft, 2010). Furthermore,
temperature influences the underlying metabolic processes of
carbon gain through photosynthesis and carbon loss through
microbial and plant respiration. Moderate rises in tempera-
ture can give rise to salt marsh productivity in temperate lat-
itudes, e.g., the pattern of increasing salt marsh macrophyte
productivity with temperature (Kirwan et al., 2009) or de-
creasing productivity with latitude (Turner, 1976) in North
American coastal marshes. However, rises in temperature
may also result in metabolic changes, distribution shifts and
decreased soil C density owing to increased decomposition
rates (Chmura et al., 2003; McLeod et al., 2011). Thus, its
positive effect on the primary productivity and negative ef-
fect on C decay may entrain the decrease of CAR from mid-
latitudes towards the equator or the poles.

3.2 Variation of CAR with marsh elevation

Soil CAR presents a clear declining trend from low marsh to
high marsh across all locations with data available for com-
parison (paired-samplet test,P < 0.001; Fig. 5). The vari-
ation of CAR with respect to elevation could be explained
by its drivers. CAR is driven by three parameters, i.e., SAR,

dry bulk density of the soil (DBD) and its organic carbon
content, which is positively related to loss on ignition (LOI).
Connor et al. (2001) reported that low-marsh sediments were
characterized by higher soil bulk densities and lower LOI.
According to Chmura and Hung (2004), SAR decreases with
distance from the nearest creek, i.e., low marsh have higher
SAR than high marsh, probably due to shorter inundation
time and thus reduced sediment input. Oenema and Delaune
(1988) developed a function describing the relationship be-
tween SAR and the distance of a marsh from the major
creeks, showing that SAR of low marsh is higher than that
of high marsh.

High-marsh sediments, however, are likely to have higher
carbon content (Connor et al., 2001; Zhou et al., 2007). In
addition, it was indicated that root productivity of salt marsh
species was higher in low-inundation conditions than that
in high-inundation conditions (Blum, 1993). The pattern of
low marsh having higher CARs suggests that this increase in
carbon content and root productivity is more than offset by
the decrease in SAR and DBD while going landward. In our
collated literature, CAR of mid-marsh was lower than high
marsh. The reason for this lack of a clear-cut pattern from
low to high marsh is unclear but differences in tidal inunda-
tion duration and flow dynamics between the mid- and high-
marsh elevations are expected to be smaller than those be-
tween low and mid-elevations. And the highest root growth
of some salt marsh species at an optimum elevation rather
than at low and high marsh (Kirwan and Guntenspergen,
2012) may also facilitate the higher sediment carbon accu-
mulation at mid-marsh than at high marsh.

3.3 Global CAR in salt marsh sediments compared with
other ecosystems

Our global estimate of salt marsh carbon stocks is based on
the area-weighted mean value of the 143 sites so that the high
CAR of the northern Mediterranean does not unduly affect
the global figure. The product of our mean regional CAR
and the area of salt marshes for the respective reported re-
gions estimates the global CAR of salt marsh sediments to
be about 10.2± 1.1 Tg C yr−1 (Table 5). Based on the uncer-
tainty propagation method (see Supplementary information),
the potential range of this value has been estimated to be be-
tween 0.9 Tg C yr−1 and 31.4 Tg C yr−1. This range is sig-
nificantly wider than that estimated for global mangrove C
storage by Donato et al. (2011), where there is a fivefold dif-
ference between the lower and upper limits. The wide range
can be attributed to the large differences in reported CAR,
with the highest value about 20x the lowest value.

This estimate has a couple of important caveats. First, for
some regions the CAR is based on small number of measure-
ments/sites extrapolated to large areal extents (e.g., Australia
and China). This will potentially cause significant errors to
the regional estimate but also highlights the need to obtain
more measurements incorporating the range of species and
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Table 5.Comparison of carbon accumulation in sediments and soils of salt marshes and other ecosystems. ND – no data.

Ecosystems Soil CAR, Number of Global area, Soil CAR, Reference
g C m−2 yr−1 studies/ km2 Tg C yr−1

(mean± SE) sites (mean± SE)

Coastal ecosystems

Salt marshes 242.2± 25.9 50/143 41 657 10.1± 1.1 This study

Mangroves 226± 39 13/34 137 760 to 31.1± 5.4 to Giri et al. (2011); Chmura et al. (2003);
152 361 34.4± 5.9 Bird et al. (2007); Lovelock et al. (2010);

Sanders et al. (2010); Spalding et al. (2010)

Seagrasses 138± 38 ND/123 300 000 to 41.4± 11.4 to Duarte et al. (2005); Kennedy et al. (2010);
600 000 82.8± 22.8 Fourqurean et al. (2012)

Terrestrial forest ecosystems

Temperate 5.1± 1.0 18/ND 10 400 000 53± 10.4 Schlesinger and Bernhardt (2013)

Boreal 4.6± 2.1 5/ND 13 700 000 63± 28.8 Zehetner (2010)

Tropical 4.0± 0.5 15/ND 19 622 846 78.5± 9.8 Asner et al. (2009);
Schlesinger and Bernhardt (2013)

environmental conditions typical of the study regions. Sec-
ond, a small number of regions have no published CAR data
at all and the current regional estimate was obtained using
CAR from nearby regions or conspecific marshes, multiplied
by the known area of salt marsh (e.g., northern Africa). Con-
sequently, while we attempt to provide an updated global
CAR value based on new data, there are still considerable
data gaps associated with particular regions that would invite
future research to further refine our estimates.

Our estimate of global total sediment CAR in salt marshes
is lower than both its neighboring coastal mangrove and
seagrass ecosystems (31.1± 5.48 to 82.8± 22.8 Tg C yr−1),
and the upland terrestrial forest ecosystems (53± 10.4 to
78.5± 9.88 Tg C yr−1). As far as sediment CAR is con-
cerned, our area-specific salt marsh CAR ranks the high-
est (Fig. 6) but the overall accumulation rate is reduced be-
cause of the limited areal extent of this habitat. The high ca-
pacity of carbon sequestration in salt marsh sediments can
be attributed to oxygen-depleted sediment conditions reduc-
ing mineralization rate, continual sediment deposition/burial,
and the combined high primary production but low ex-
port/consumption rates, which facilitate accumulation of or-
ganic matter (Hussein et al., 2004; Loomis and Craft, 2010;
Callaway et al., 2012; Keller et al., 2012).

Our data demonstrate that salt marshes are significant
habitats for carbon accumulation in the biosphere, acting
as important but previously neglected carbon sinks. The re-
markable combination of their high capacity for carbon-
sequestration but low carbon stock in salt marshes could
reflect the past management approach to these habitats,
which has resulted in significantly reduced areal extent. The
“coastal squeeze” phenomenon affects salt marshes most

Figure 6. Average CAR (± SE) in sediments and soils of major
coastal and terrestrial forest ecosystems.

significantly and, if not managed urgently, will continue to
erode the importance of salt marshes as potential carbon stor-
ages. Despite their high capacity of carbon accumulation,
when compared with terrestrial forests, carbon buried in salt
marshes, as part of “blue carbon”, can be stable over longer
timescales (millennia) (Duarte et al., 2005; McLeod et al.,
2011) and decomposes at a lower rate (Reddy and DeLaune,
2004), while most forest carbon stocks are often eventually
released to atmosphere during forest fires (Fourqurean et al.,
2012).

However, this global estimate of CAR in salt marshes
needs to be interpreted with caution, since the estimate is
limited by the quality and quantity of available data. First,
the reported global area of salt marshes is far from com-
plete and has not covered all habitats of salt marsh halo-
phytes. Second, there are some compromises made when
making extrapolations from a limited database. For exam-
ple, no CAR data is available for any African salt marshes
and values from geographically or taxonomically proximal
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sources have to be used for estimating CAR for this region.
Third, drivers such as local ocean currents may cause devia-
tions in temperature from the latitudinal trend. The analysis
was conducted as an attempt to address broad latitudinal pat-
terns in CAR. Additionally, some carbon values were esti-
mated from organic matter content according to the formula
of Craft et al. (1991), which was based on soil samples from
North Carolina (USA). This conversion factor can be vari-
able. For example, another study converted soil carbon stock
of salt marshes from soil organic matter with a factor of 0.55
based on widely sampled terrestrial soils (Ford et al., 2012).
If the latter conversion factor was applied to our study, some
carbon values would increase by∼37.5 %. Last but not least,
there is not sufficient information about detailed halophyte
composition in the collated references, thereby hindering our
attempt to conduct further fine-grained analyses beyond the
genus level. Again, this study is meant to be a broad-scale
analysis of the global pattern of CAR in salt marsh commu-
nities. As such, variations at a fine scale are not necessarily
addressed. Accordingly, further studies will be needed to re-
fine CAR of this study when more data are available from
a more comprehensive coverage of halophyte habitats in the
future.

4 Conclusions

With sediment CAR averaged at 244.7± 26.1 g C m−2 yr−1,
our global estimate indicates that salt marshes rank among
the most effective ecosystems in carbon sequestration. The
highest CAR was in the northern Mediterranean, whereas the
lowest CAR was in the Arctic. Regarding the five major halo-
phyte genera,Spartina-dominated marshes have the highest
CAR, whereas the CAR ofDistichlis-dominated habitats is
the lowest. Owing to the comparatively small areal extent of
salt marshes, global carbon buried in salt marshes is approxi-
mately 10.2 Tg C yr−1, which is far lower than those of other
coastal ecosystems and terrestrial forest ecosystems. The ac-
curacy of this estimate, however, is compromised by large
data gaps in CAR for some regions, e.g., Africa, Australasia
and Sino-Japan.

Our analysis suggests that the CAR of salt marshes
changes with latitude, tidal range, halophyte genera and habi-
tat elevation. CAR of salt marshes varied significantly at lat-
itude intervals of 10◦ from 28.4◦ N to 69.7◦ N. These fac-
tors drive CAR variation through physical and biotic control
on belowground biomass productivity, microbial decomposi-
tion and litter input. Furthermore, it is clear that the CAR of
low marsh was higher than high marsh, whereas the capacity
of carbon sequestration in mid-marsh was lower than that of
high marsh. Further field studies and experiments are needed
to investigate the underlying forces driving carbon sequestra-
tion with respect to marsh elevation.

The findings of this study confirm salt marshes as signifi-
cant coastal hotspots in sequestering carbon. However, with

an annual loss rate of 1–2 % between 1980 and 2000 (Duarte
et al., 2008), and with loss continuing, similar to the man-
groves (Kristensen et al., 2008), this trend seriously compro-
mises the capacity of salt marshes for carbon storage, unless
proper management and rehabilitation is implemented. There
are significant data gaps in salt marsh CARs. Further research
on CAR of salt marshes in South America and South Asia as
well as inclusion of the full range of salt marsh halophytes is
strongly recommended.

The Supplement related to this article is available online
at doi:10.5194/bg-11-5057-2014-supplement.
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