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Abstract. Poorly constrained rates of biomass turnover aremodel (CABLE-POP) is evaluated against leaf—stem allom-
a key limitation of Earth system models (ESMs). In light etry observations from forest stands ranging in age from 3 to
of this, we recently proposed a new approach encoded in 200 year. Results indicate that simulated biomass pools con-
model called Populations-Order-Physiology (POP), for theform well with observed allometry. We conclude that POP
simulation of woody ecosystem stand dynamics, demografepresents an ecologically plausible and efficient alternative
phy and disturbance-mediated heterogeneity. POP is suitabl® large-area parameterisations of woody biomass turnover,
for continental to global applications and designed for cou-typically used in current ESMs.
pling to the terrestrial ecosystem component of any ESM.
POP bridges the gap between first-generation dynamic veg-
etation models (DVMs) with simple large-area parameteri-
sations of woody biomass (typically used in current ESMs)1 Introduction
and complex second-generation DVMs that explicitly simu-
late demographic processes and landscape heterogeneity Ghanges in woody biomass storage in forest and savanna
forests. The key simplification in the POP approach, com-ecosystems, including woody ecosystems regenerating on
pared with second-generation DVMSs, is to compute physio-abandoned agricultural lands, are the major driver of the
logical processes such as assimilation at grid-scale (with CAterrestrial carbon sink, which currently amounts to around
BLE (Community Atmosphere Biosphere Land Exchange)a quarter of anthropogenic emissions, mitigating climate
or a similar land surface model), but to partition the grid- change (Ahlstrom et al., 2012; Pan et al., 2011; Le Queré
scale biomass increment among age classes defined at sugtal., 2013). Such ecosystem dynamics and their feedbacks
grid-scale, each subject to its own dynamics. POP was sucdo atmospheric carbon content and radiative forcing are rep-
cessfully demonstrated along a savanna transect in northresented in Earth system models (ESMs) by incorporating
ern Australia, replicating the effects of strong rainfall and dynamic vegetation models (DVMs). These attempt to de-
fire disturbance gradients on observed stand productivity angcribe changes in vegetation biomass components over time
structure. as the net effect of the allocation of net primary production
Here, we extend the application of POP to wide-ranging(NPP), which increases or decreases biomass pools through
temporal and boreal forests, employing paired observationghenological (seasonal) cycles of foliage and roots, mortal-
of stem biomass and density from forest inventory data toity of plant individuals and disturbances such as wildfires
calibrate model parameters governing stand demography an@ind storms. The first-generation DVMs adopted by most cur-
biomass evolution. The calibrated POP model is then coutent ESMs (Arora et al., 2013) employ large-area param-
pled to the CABLE land surface model, and the combinedeterisations designed for application on the scales of grid
cells 10s to 100s of kilometres on a side. Typically these
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parameterisations treat carbon flows associated with respphenology implies that the enhancement of existing land sur-
ration and mortality as first-order decay processes, expressddce models (LSMs) lacking or employing simpler parame-
as products of pool biomasses and bulk rate parameters irterisations of vegetation dynamics may be a time-consuming,
dependent of age structure (the “big wood” approximation;technically challenging task.
Wolf et al., 2011). These are computationally efficient —an Wolf et al. (2011) recently used global forest inventory
important consideration for global-scale applications — butdata to assess forest biomass allometry in eight global land
have the disadvantage of not resolving underlying populasurface models, including two second-generation DVMs.
tion and community processes such as recruitment, mortalitysimulated relationships between stem and foliage biomass
and competition between individuals and species for limitingpools generally conformed poorly with observed allome-
resources (e.g. Sitch et al., 2003). This lack of mechanistidry, indicative of model failure to consistently reproduce
detail means that the models are unable to directly exploitboth structural and functional characteristics of vegetation.
the wealth of information on forest stand structure and dy-Best overall performance was noted for the models ED and
namics available from forest inventories. These have beetORCHIDEE-FM (Bellassen et al., 2010), which include an
used to develop individual-based height-structured modelxplicit parameterisation of self-thinning, which strongly
that have been successfully used to simulate forest dynamiosontrols biomass turnover rates in closed-forest ecosystems
at the stand scale since the 1970s (e.g. Botkin et al., 1972Westoby, 1984). The study recommended the use of biomass
Bugmann, 2001; Smith et al., 2001). Different DVMs have allometry data from forest inventories as a simple approach
also been shown to simulate widely different patterns ando improving the characteristic behaviour of global land sur-
time evolution of biomass pools, especially under future cli- face models with respect to structural dynamics.
mate projections (Cramer et al., 2001; Friedlingstein et al., To simultaneously overcome the limited ecological real-
2006; Sitch et al., 2008; Friend et al., 2014) where modelssm of simulated wood turnover in many first-generation
with a conservative response of biomass turnover to climatidVMs, and the technical limitations of current second-
forcing tend to retain a net biomass sink over the cominggeneration DVMs, Haverd et al. (2013) proposed a new ap-
century, whereas others simulate a source or reduced sink byroach for the simulation of woody ecosystem stand dy-
late 21st century (Ahlstrom et al., 2012). In ESM simula- namics, demography and disturbance-mediated heterogene-
tions with an active carbon cycle feedback to climate, suchity. The approach, encoded in a model called Populations-
differences translate into divergence in the simulated globalOrder-Physiology (POP), is designed to be modular, deter-
climate (Friedlingstein et al., 2006). It has been suggestedninistic, computationally efficient and based on sufficient
that the representation of forest dynamics in ESMs may bescological realism for application at the grid scales typically
one of the greatest sources of uncertainty in future climateemployed by DVMs and ESMs for continental to global ap-
projections (Purves and Pacala, 2008). plications. Coupled to the CABLE (Community Atmosphere
A handful of offline (not coupled to the atmosphere) Biosphere Land Exchange; Wang et al., 2011) LSM, POP re-
second-generation DVMs exist that simulate demographiceives woody biomass increment from CABLE and returns
processes and landscape heterogeneity of forests using moam updated biomass state (an approach conceptually simi-
explicit approaches that have been demonstrated to accuar to that of ORCHIDEE-FM, but with key differences dis-
rately replicate forest size structure and successional dynareussed in Sect. 4.2). CABLE-POP was demonstrated along a
ics as predicted by community ecological theory. Examplessavanna transect in northern Australia, successfully replicat-
include LPJ-GUESS (Smith et al., 2001) and ED (Moorcroft ing the effects of strong rainfall and fire disturbance gradi-
et al., 2001; Fisher et al., 2010). Such approaches are peents on observed stand productivity and structure (Haverd et
ceived as offering promise as an improved, second generaal., 2013). The key simplification in the POP approach, com-
tion of DVMs (Purves and Pacala, 2008; Fisher et al., 2010) pared with second-generation DVMs, is to compute physi-
These models include stochastic representations of processegical processes such as carbon assimilation at grid-scale
such as recruitment, mortality and large-scale disturbance(with CABLE or a similar land surface model), but to par-
which requires replication of dynamic objects such as treetition the grid-scale biomass increment among age classes
individuals and patches, and repeated computations of thdefined at sub-grid-scale, each subject to its own dynam-
same processes as applied to different objects, in order to obes. POP is not a new DVM but a scheme for dynamically
tain a representative average for the ecosystem as a wholestimating size structure and turnover of woody vegetation,
For studies of global and continental carbon balance, and foforced by productivity information from an external LSM.
coupling to ESMs, however, this is a potential disadvantage In the present study, we extend the application of POP to
because of their demand in terms of both of memory andglobally distributed forests, heeding the recommendation of
processing power, and the additional complication that thewolf et al. (2011) to constrain and improve the performance
results are not strictly deterministic, which complicates the of the model by using allometric scaling relationships from
analysis of results. In addition, the intricate internal represenforest inventory data. Thus calibrated, the combined model
tation of stand structure and its integration with plant physio- (CABLE-POP) is evaluated against leaf-stem allometry and
logical processes such as carbon assimilation, allocation antbtal biomass observations from forest stands.
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2 Methods cell. Trees are assumed to belong to the plant functional type
(PFT) defined for the tile or grid cell in the host LSM. Indi-

2.1 Models viduals are not distinguished within a cohort, but each cohort
has a diagnostically varying mean individual stem biomass

2.1.1 POP (Populations-Order-Physiology) (see below), from which other size metrics (height, stem di-

ameter and crown area) can be derived (see Appendix A4).
POP is described in Appendix 1 of Haverd et al. (2013), and POP thus simulates allometric growth of cohorts of trees
the detailed description (Appendix A) and summary belowthat compete for light and soil resources within a patch. The
are largely reproduced from that paper. For the purpose ofinnual stem biomass increment is partitioned among cohorts
the present application, which includes closed-forest ecosysaccording to a power function of their current aggregate stem
tems, we extended tree mortality in POP to include a crowd-biomass (size), on the assumption that larger individuals pre-
ing component as described below. A Fortran 90 version ofempt resources owing to a larger surface area and explo-
the POP computer code is included in the supplementary maration volume of their resource-uptake surfaces (leaves and
terial to this paper. fine roots), and due to the advantage conferred on taller in-
POP is designed to be modular, deterministic, computadividuals by the shading of shorter ones in crowded stands
tionally efficient, and based on defensible ecological princi- (Westoby, 1984). A cohort’s share of the total annual biomass
ples. Parameterisations of tree growth and allometry, recruitincrement is divided equally among individuals. Thus, be-
ment and mortality are broadly based on the approach of théween cohorts, there is shading implicit in the weighting of
LPJ-GUESS DVM (Smith et al., 2001). The time stefr ) the biomass patrtitioning towards larger trees/cohorts.
is 1 year. The mortality parameterisation was specifically updated
POP is designed to be coupled to a land surfacefor this study and is therefore described here in detail. Key
model (LSM) or the land surface component of an ESM model parameters are listed in Table 1.
(Sect. 2.1.2) which provides forcing in terms of the an- Population dynamics are governed by
nual grid-scale stem biomass increment( (kg C m~2)) for N
woody vegetation, as an average across a simulated tile org = — (mR,y +mC,y)Ny , (1)
grid cell. In LSMs such as the CABLE model employed in

the present study (see below), each tile represents the propQgna e is the stem density of the cohort established in year
tion of a grid cell dommgted by one major veggtatlon type, _andmg , andmc., are cohort mortalities (y) due to re-
such as evergreen or deciduous forest. For scaling to the Ian%—ource limitation and crowding respectively is initialised

scape (tile or grid cell) scale, POP a'Sf? requires mean rexq racruitment density, and is reset (according to disturbance
turn times of exogenous (large-scale) disturbances. For thfntensity) when the patch experiences disturbance.

present study, where we focus on the patch-scale size struc- The mortality rate for a cohort depends on the growth ef-

tural dynamics, we adopt a mean “catastrophic” disturbancgyqia ey (GE), closely related to the concept of the relative
return time of 100 years, which kills all individuals (cohorts) growth rate (RGR), given by

and removes all biomass in a given patch. POP can also ac-

count for “partial” disturbance, such as fire, which results GE, = AC,/C, 2

in the loss of a size-dependent fraction of individuals and

biomass, preferentially affecting smaller (younger) cohorts.whereC, (kg Cm2) is the stem biomass antiC, is the

However, this feature is not used here. Stem biomass increannual stem biomass increment of it cohort;s is set to

ment is provided by the host LSM (here CABLE) or pre- 0.75, which is the power governing the mean proportional-

scribed for stand-alone calibration. ity between plant resource-uptake surfaces (leaves and roots)
State variables are the density of tree stems partitionednd stem biomass for a wide range of plant taxa and veg-

among age classes (cohorts) of trees and representatiiation types according to Enquist and Niklas (2001). GE

neighbourhoods (patches) of different age since last disturthus represents annual growth relative to the estimated area

bance across a simulated |andscape, representing a Spat@ resource-uptake surfaces for trees of a particular size. We

unit (tile or grid cell) of an LSM. Hereinafter we use the term characterise the response of resource-limitation mortality to

“grid cell” to refer to the spatial unit at which POP is cou- GE by a logistic curve with the inflection point at GF:

pled to the host LSM, in our study a vegetation tile compris- MR,y

ing either evergreen needleleaved or deciduous broadleaveliR.y = 1+ (GEy/éEmm)p’ ®)

forest. A patch thus represents a stand of vegetation of suf-

ficient extent to encompass a neighbourhood of individualwherey is the index for a particular cohort anch,max(yr—l)

woody plants, competing with one another in the uptake ands the upper asymptote for mortality as GE declines, a proxy

utilisation of light, soil resources and space. Patches are ndbr the resilience of plants to extended periods of resource

spatially referenced, but represent a statistical sample of lostress, and is set to the value of 0.3 adopted in the LPJ-

cal stand structure within the overall landscape of the gridGUESS DVM (Smith et al., 2001). The exponentassigned
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Table 1.POP model parameters.

Symbol units description value source Eq.

s [1 Power governing the mean proportion-0.75 (Enquist and Niklas, 2,4
ality between plant resource-uptake sur- 2001)
faces and stem biomass

GEmin [kgm~—2](-S)  parameter in resource-limitation mortality0.015  Calibrated 3
formulation Haverd et al. (2013)

p 1 Parameter in resource-limitation mortality 5 LPJ-GUESS DVM 3
formulation Smith et al. (2001)

MR, max yr—4 Parameter in resource-limitation mortality 0.3 LPJ-GUESS DVM 3
formulation Smith et al. (2001)

ac [1 determines the onset of crowding mortal-10.0 This work 5
ity with respect to crown projective cover

fc 1 Scaling factor in formulation for crowd- 0.013 Calibrated 5
ing mortality This work

kallom [] Parameter in relationship between crowr200 Widlowski et al. (2003) 6
area and trunk diameter at breast height

krp [1 Parameter in relationship between crowrnl.67  Widlowski et al. (2003) 6

area and trunk diameter at breast height

a default value of 5, governs the steepness of the response dfc , crown projected area (M m—2) of all crowns in the
mp to GE around GE = Gf. For this study Gki, was set  yth and taller cohortsyc a coefficient which determines the
to its calibration value of 0.015, as determined previously byonset of crowding mortality with respect tgc and fc is a
optimisation against northern Australian tree basal area dattunable scaling factorc was set to 10.0, corresponding to

(Haverd et al., 2013). an onset of crowding mortality apc ~ 0.8. This value im-
The partitioning of the grid-cell-level annual biomass in- plies that crowding mortality is insignificant in the Australian
crement among cohorts in a patch is governed by savanna simulations, thus retaining the validity of the param-

ACy _ (Cy/N)'N, AC eters relating tanr ,, in Eq. (6) as used in the earlier study of

Al S (Ci/N)N; A7 (4) Haverd et al. (2013). Crown projected area is evaluated as
where AC is the grid-cell annual biomass increment (as- A, = Nykanomply‘rp, (6)
sumed to be partitioned equally among patches)js the

time step of 1 year and the summation is over all co-whereN, is stem density (m?); D, is stem diameter at
horts in the patch. Individuals within a patch are thus as-Preast height (m) (Appendix A, Eq. A6—A9); akgiom and
sumed to capture resources in proportion to the area of theikrp are parameters set to respective values of 200 and 1.67 re-
resource-uptake surfaces, estimated assthewer of stem  spectively, based on literature values compiled by Widlowski
biomass following the allometric scaling theory of Enquist et al. (2003).

and Niklas (2001). Additional mortality occurs as a result of disturbances.

The additional crowding mortality componeni4 ,) was Replicate patches representing stands of differing age since
included to allow for self-thinning in forest canopies. Self- last disturbance are simulated for each grid cell. It is assumed
thinning is dependent on the assumption that some treet1at each grid cell is large enough to accommodate a land-
(within a cohort) have a slight advantage in pre-empting re-scape in which the frequency of patches of different ages fol-
sources, creating a positive feedback to their growth and ultilows a negative exponential distribution with an expectation
mately resulting in death of the most suppressed individua|s[e|at6d to the current disturbance interval. This assumption
In contrast, in POP, the total stem biomass increment for ds valid if grid cells are large relative to the average area af-
cohort is equally partitioned amongst all members. To com-fected by a single disturbance event and disturbances are a
pensate for this simplification, we use the following param- Poisson process, occurring randomly with the same expecta-
eterisation, which emulates the contribution to self-thinningtion at any point across the landscape, independent of pre-

associated with within-cohort competition: vious disturbance events. To account for disturbances and
1 AC the resulting landscape structure, state variables of patches
mc.y =min [A_ exp(ac (1 —1/cpey)) fe. C_Ay} (5) of different ages are averaged, and weighted by probability
" t v At

intervals from the negative exponential distribution. The re-
Equation b) implies that crowding mortality never exceeds sultant weighted average of, for example, total stem biomass
growth. Here¢pc y is crown projective cover (Appendix A5), or annual stem biomass turnover is taken to be representative
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temperature The model set-up in this study was designed to permit
__ precipitation disturbance evaluation of CABLE-POP predictions of leaf-stem allom-
incoming radiation ¢, ot return time i o i
humidity e etry. CABLE-POP was run offline at1x 1° spatial resolu-
windspeed l tion for grid cells containing the locations of forests in the
€0 l Cannell-Usoltsev (C-U) database (see Sect. 2.2 on data be-
stem low). Simulations were forced using GSWP-2 (Globa Soil
Wetness Project) 3-hourly meteorology for the 1986—1995
period (Dirmeyer et al., 2006). Leaf area index (LAI) was
pOP prescribed using a monthly climatology from the MODIS
CABLE b,Stem (Moderate Resolution Imaging Spectroradiometer) Collec-
Iomass . .
turnover tion 5 product (Ganguly et al., 2008). Vegetation cover was
* * prescribed as one of three of the CABLE PFTs: evergreen
* . orojectve  needleleaf, evergreen broadleaf or deciduous broadleaf, each
p;fgagg’nm;:;iy cover with its own set of physiological parameters. Note that
x cohort & patch CABLE does not distinguish between cold- and drought-
deciduous broadleaved vegetation. Needleleaf and broadleaf
Figure 1. Coupling of CABLE and POP, along with key inputs and were distinguished based on the classification in the C-U
outputs. database. All needleleaf forests were assumed evergreen, and
broadleaf forests were classified as deciduous or evergreen
according to the larger area fraction specified in the vegeta-

for the grid cell as a whole. Strictly, the Poisson assump-,n, gistribution data set by Lawrence et al. (2012). In cases
tion demands that the mean disturbance interval is invari-

. . ) i T "with no information on either, a distinction was made by the
able over time, a difficult assumption to uphold in practice, |ocation, with broadleaf forests north of 1N assumed de-
as disturbance agents such as wildfires, windthrow and pestiy,,qus.
or pathogen attacks may increase or decrease depending on|y,q modelling protocol was as follows: (i) CABLE soil
variations in climate and other drivers. A constant past dis-jisture and temperature were initialised by running CA-

turbance regime was assumed in the present study. BLE (without CASA-CNP) once for 10 years (using the
10 year meteorological data record); (i) CABLE (without
2.1.2 CABLE-POP CASA-CNP) was run a second time for 10 years from this
CABLE is a global land surface model consisting of five init_ial state, this time with daily_forcing inputs_to CASA-C_NP
components (Wang et al., 2011)) ¢he radiation module de- being s_aved, namely gross primary production, soil moisture
scribes direct and diffuse radiation transfer and absorption by2nd sil temperature; and (iii) CASA-CNP was run for 400
sunlit and shaded leaves)(the canopy micrometeorology Y€&r (40x 10 year of repeated forcing) at daily time step,
module describes the surface roughness length, zero-plaﬁ’(‘—f-'th POP being called annually and initial biomass stores set
displacement height and aerodynamic conductance from th& Z€ro.
reference height to the air within canopy or to the soil sur-
face; @) the canopy module includes the coupled energy bal-2-2 Data
ance, transpiration, stomatal conductance and photosynthesis ] ] ] )
of sunlit and shaded leaved) the soil module describes heat Forestinventory data for total biomass, stem biomass, foliage
and water fluxes within soil and snow at their respective sur-2iomass and stem density were sourced from the Biomass
faces; andg) the CASA-CNP biogeochemical model (Wang Compartments Database (Teobaldelli, 2008). This database
etal., 2010). In this study, we used CABLE-2.0 with the de- Ontains data from around 5790 plots and represents a har-
fault the soil module replaced by the Soil-Litter—Iso (SLI) monised collection of .eX|st|ng data sets (Cannell, 1982;
model (Haverd and Cuntz, 2010). Usqltsev, 2001), covering Fhe temperate an(_:i boreal forest
As illustrated in Fig. 1, coupling between CABLE and "€9ion globally. The data mcIuQe the followmg compart-
POP is achieved by exchange of two variables: CABLE SUIO_ments: stem, bark, brgnches, follage,_roots, fruits, dead wood
plies annual stem biomass increment to POP and POP returrféd understorey. Latitudes and longitudes were rounded to
an annual stem biomass loss to CABLE. To convert betweeri€ nearest degree centred on the half-degree, and the data
stem biomass (POP) and tree biomass (CABLE), we assum&€re separated. into broadleaf apd needlelleaf groups, with
a ratio of 0.7, a representative average for forest and wood-mixed forest” sites removed. Latitude/longitude duplicates
land ecosystems globally (Poorter et al., 2012). The resultWere then removed sep'arately for each of the needleleaf and
ing tree biomass turnover is applied as an annual decrease fyoadleaf subsets, leaving all but one randomly selected oc-

the CABLE tree biomass pool, and replaces the default fixed?Urrence in eachlx 1° grid cell. This resulted in a 3%
biomass turnover rate. reduction in data. Data for a small number of tropical sites

in the database were omitted as they did not contain all

biomass
increment

leaf & root

NPP biomass
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Figure 2. Locations of forest stands used for CABLE-POP calibra- ' e : 28 o * ? ° °

tion and evaluation.

Figure 3. POP calibration. Biomass—density plot, showing all the
points in the C-U data; a linear fit to all the C-U data; a linear fit
data required for our analysis. For comparison with modelto 30 data points lying along the upper bound; POP simulations of
output, the data were further filtered, such that only plots withPatches with the same age and StemNPP as the 30 data points lying
data for stem biomass, foliar biomass, stem density and ag@'ong the upper bound.
were retained, leaving 178 broadleaf plots and 304 needle-
leaf plots. Hereafter we refer to the data for these plots as
the “C-U data”. Their locations are denoted in Fig. 2. Aver-
age stem biomas¥siem (kg tree 1) and foliar biomasa/so
(kg tree’1) per tree were obtained by dividing the bulk quan-
tities by stem densityX). Total biomass per tree\{) was

timated as th f dv. foll q i b with points below this upper bound resulting from young
estimated as the sum ot woody, Tollar and fine root DIoMasS g4 s i the density-independent growth phase and addi-
assuming allometric ratios of stem biomass to total woody

. . . ; ~~Jtional disturbance-related mortality beyond that described
biomass (0.7) (Widlowski et al., 2003) and fine root to foliar by self-thinning. Thirty-three points along this upper bound

bi?maﬁs (1'03 (Luyssaertr(]at acl:., 6037)' in th . . were selected for POP calibration. This was done by bin-
n this study, we use the C-U data in three ways: (i) to ning the data in Fig. 3 into 39 evenly spaced bins span-

constructabio.mas.s—density (I(Ml,i VS. Iog(]\{)) plot for the ning a log(N) range of 2.3—4.5, and selecting the observa-
purpose of calibrating th? crowding mortality component of tion corresponding to the maximum value in each non-empty
POP (Sect. 2.3 below); (i) to construct leaf—stem aIIor_netrybin_ The coefficients in Eq.7] were estimated from these

plots (logMro1) vs. logMstem) for the purpose of evaluating points using reduced major axis (rma) regression (e.g. Sokal
the CABLE-POP scaling exponent (slope) relatibfg, to and Rohlf, 1995, Sect. 14.13) and treated as observations.

Mstem and for tuning thg CABLE allocatlgn coefflplents 0 The corresponding model observables were constructed from
leaves and S_‘?ms’ to which the intercept is s_en_sltlve (Sect. tand-alone POP simulations of stands with the same age and
b_elow); anq (il to eva_1|uate CABLE-POP predictions of stem CABLE-estimated annual stem increment (hereafter Stem-
biomass directly against data (Sect. 3 below). NPP) as the observations, and with a high initial stem den-
. . . . 2
23 Calibration sity (3 individuals nT<) 'Fo z;ccelerate _the progress pf young
stands towards self-thinning behaviour. The residuals be-

The crowding mortality component of the POP model wasWeen modelled and observed coefficients of Ef).were
calibrated using average biomass per tig@ (kg dry matter ~ Minimised by optimising thefc parameter (Eq. All) us-
per tree) and stem densitw{ (trees hal) data from the mg_the_PEST parameter estimation software (Doherty, 2(_)04)
combined broadleaf and needleleaf data sets. These variabl¥4ch implements the Levenberg-Marquardt down-gradient
can be plotted in the form of the self-thinning “law” (e.g. search algorithm. This returned a valuefgf 0.013+ 0.007

comes density-independent. (Hereafter all log functions re-
fer to logip). The self-thinning part of the trajectory forms
the upper bound of a plot of logf{) vs. logV) (Fig. 3),

Westoby, 1984): (10). All other POP parameters were held fixed at their prior
values (Haverd et al., 2013) to ensure that the model param-
l0g1o(M) = a + B10g;o(N), (7)  eter setis equally valid for the savanna landscape (to which

the model was initially applied) as for simulation of forest
which describes the ageing trajectory of forest stands aftestands in the present study.
they exit the initial density-independent growth phase and Data points not lying on the upper bound were not selected
before the stand is sufficiently self-thinned that mortality be- for calibration because these observations are not expected to
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be influenced by crowding mortality. The key indicator of the age. For this reason, and in the interest of model parsimony,
calibrated model’s skill is its representation of the leaf—stemwe do not attempt to represent a declining biomass trend in
allometry plots (log(Mfol) vs. log(Mstem)) (Sect. 3.1, Figs. 4 very old stands here); and (iii) stands which have undergone
(i) and (iv)), of which none of the observation points were managed thinning, particularly prevalent amongst needleleaf
used directly in calibration. stands. Hence the discrepancy between linear fits to the pre-
Calibration results are shown in Fig. 3. This biomass—dictions and observations (Table 2) is expected.
density plot reveals excellent agreement between the regres- In contrast, the linear fits to the CABLE-POP predictions
sion line fit to the POP simulation pointg & —1.4440.08 and observations in the leaf—stem allometry plots (iii and iv)
(lo) ande = 6.9+ 0.2 (1o), R? = 0.97) and the regression (see also Table 1) agree very well, and generally better than
line fit to the upper bound data point§ £ —1.45+ 0.06  the corresponding fits derived for other LSMs by Wolf et
(lo) ande = 6.9+ 0.2 (1o), R2 = 0.97). Note that the fitto  al. (2011). Note here thatl;o; and Msiemare average foliage
the C-U data set as a whole yields very different parametersind stem biomass per tree (kg DM trég
(8 = —1.67 +0.05 () ande = 7.1+ 0.2 (1o), R2 = 0.67), As noted by Wolf et al. (2011), a major impediment to val-
which do not reflect the self-thinning trajectory, underlining idating models directly against measured biomass is the need
the importance of selecting upper-bound data for the purpos#o consider the many idiosyncrasies of each forest stand (e.g.
of calibrating the self-thinning description in POP (&Y. species mix, climate, water/nutrient limitations, timing of
CABLE parameters were held fixed at their default PFT- disturbances, management). Nonetheless CABLE-POP sim-
specific values, except for allocation coefficients of evergreerulations of biomass in broadleaf forest stands (Fig. 3v) are
needleleaf forests and deciduous broadleaf forests, whickargely unbiased (slope =0.940.04 when intercept set to
were manually tuned to match the intercept of the leaf-zero) and capture a high proportion of the variance=
stem allometry plots. Resulting proportions of NPP allo- 0.57). Total biomass in needleleaf stands (Fig. 3vi) is less
cated to leaf, wood and fine roots respectively are [0.21 0.29vell predicted (slope =0.94 0.3 when intercept set to zero,
0.50] (evergreen needleleaf) and [0.33 0.37 0.30] (deciduous? = 0.23), a likely consequence of intensive management,
broadleaf). Corresponding values for evergreen broadleaparticularly deliberate thinning. Thinning is performed for
forests were held fixed at their default values of [0.20 economic reasons (e.g. Aruga et al., 2013) or to promote
0.35 0.45] because this PFT is underrepresented in the dattand health (e.g. Ronnberg et al., 2013) and would reduce
(Fig. 2). tree density while leaving the average stem biomass initially
unaffected, resulting in a shift to the right for affected stands
in Fig. 3iv (consistent with the high density of outliers). This

3 Results would also explain the overestimation of low-biomass stands
by CABLE-POP in Fig. 3vi because biomass would be re-
3.1 Comparison with observations moved in the early stages of a stand. Furthermore, as stated

by Law et al. (2013), multi-stage thinning can also lead to an

Figure 4 shows results of CABLE-POP simulations. Eachenhanced storage of long-term biomass, which explains why
simulation point represents a single patch with age matche@ABLE-POP overestimates the younger stands’ biomass but
to the age of the corresponding C—U data point. POP paramdoes not reach the maximum values of the needleleaf stands
eters were kept the same as for the POP calibration run, witlin the C-U data. Uncertainties in woody increment predic-
no distinction between PFTs. The initial stem density was setion may also contribute to poor predictions of total biomass
to 2 stems m2, to approximately match the upper limit of in needleleaf stands.
in the observations. Figure 5 shows biomass component fractions extracted

The CABLE-POP simulations in the density-biomass from CABLE-POP patch-scale simulations, and compared
plots (i and ii) lie along the upper bound of the observations.with estimates derived from the Cannell and Usoltsev
It is not expected that the model should capture the distribu-databases by Wolf et al. (2011). The CABLE-POP simula-
tion of the scattered observations below this bound: these oltions reproduce the major features of the data, particularly the
servations are likely to correspond to (i) young stands in thesharp decline in the fraction of foliage biomass, and the rela-
density-independent growth phase (with density highly de-tively large foliage biomass fraction associated with needle-
pendent on initial stem density, the variability of which is not leaf stands compared to broadleaf stands. In contrast, de-
captured in POP); (ii) very old stands of declining biomassfault CABLE simulations fail to capture the sharp decline in
in which N is decreasing whil@/ is approximately constant the fraction of foliage biomass, because they assume a fixed
(the total biomass of a very old stand ultimately declines,turnover time for biomass turnover (40 year for broadleaf and
in part due to reduced productivity arising from physiologi- 70 year for needleleaf). The root component is dominated
cal decline and nutrient limitations (Dewar, 1993; Gower etby the coarse-root fraction, which in our simulations was a
al., 1996). In a global context, this effect will be important constant proportion of woody biomass. Therefore we do not
mainly in the few global regions in which natural disturbance expect CABLE-POP or default CABLE to reproduce the ob-
regimes and human management scarcely limit mean stanserved decline in root : shoot ratio with total biomass.
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Figure 4. Evaluation of CABLE-POP predictions against Cannell-Usoltsev data, separated into broadleaf and needleleaf classes respectively:
(i) and(ii) biomass—density plotjii) and(iv) leaf—stem allometry plot (M, and Mstem are average foliage and stem biomass per tree (kg

DM tree~1)), including results derived for other LSMs by Wolf et al. (2011); &vidand(vi) total biomass: predictions vs. observations. In

(i-iv), lines denote linear fits to the observations and predictions. Solid lines denote linear regression fits to the data points (see Table 1 for
regression coefficients).

3.2 POP mortality dynamics 6i shows the ageing trajectory of each patch in biomass—
density space, with points representing every fifth year. The

Figure 6 illustrates the dynamic behaviour of POP mortalityIow—productlon patch exhibits an initial increase in density

via stand-alone POP simulations of two undisturbed patche S recrl_J_itment augm_ents the _p_op_ulation duri_ng initial years
with low and high extremes of annual stem biomass incre-(F'9- 6Vil), before rapidly transitioning to a regime of declin-
ment: StemNPE: 0.05 kg C n2yr—1 (low production) and ing s_tem den5|ty,_ characterlsed_by a slopgmf as resource-
StemNPR= 0.20 kg C n2yr— (high production). For refer- _medlated gtress |ndL_Jces mortality, cgncelh_ng any netincrease
ence, CABLE simulations of the C—U stands give average anl" Stand biomass (Fig. 6v). The ageing trajectory of the low-
nual stem biomass increments of{+0.06 1o (broadleafy ~ Production patch never reaches the upper bound of the C-U
and (016+0.05 1v) (needleleaf) kg C m?year!. Figure data (representing self-thinning due to crowding mortality)
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Table 2. Reduced major axis regression coefficients associated with biomass—density, leaf-stem allometry and stem biomass plots of Fig. 4.

Slope Intercept R2 N
log(M) vs. log(V), C-U (BL) —1.63+0.07 695+0.24 0.70 178
log(M) vs. log(V), CABLE-POP (BL) —1.914+005  847+0.17 090 178
log(M) vs. log(Vv), C-U (NL) —1.574+0.06 67+0.18 0.66 304
log(M) vs. log(V), CABLE-POP (NL) —1.52+0.02 699+0.09 0.92 304
log(Mso)) Vs. log(Msten), C—U (BL) 069+0.02 -089+0.04 0.84 178
log(Msq) vs. logMsteny), CABLE-POP (BL) 064+0.02 —-096+0.02 0.85 178
log(Msq) vs. logMsteny), C—U (NL) 074+0.02 -0.60+0.04 0.79 304
log(Mso)) Vs. log(Mstem), CABLE-POP (NL) 068+0.01 —0.59+0.02 0.94 304
*CABLE-POP stem biomass vs. C-U stem biomass (BL) .948-0.04 0 057 178
*CABLE-POP stem biomass vs. C—U stem biomass (NL) .998-0.04 0 024 304

* Standard linear regression, with intercept forced through zero.

because the stand is relatively sparse (Fig. 6ii) and resourcet Discussion
stress mortality prevents crowding (Fig. 6iii). In contrast, the
high-production patch (Fig. 6i) experiences only a brief in- 4.1 Limitations of big wood models
crease in density (Fig. 6viii), before transitioning to a regime
of declining stem density following a trajectory analogous The term “big wood approximation” was coined by Wolf
to the upper bound of the C-U data (slopet.45), corre- €t al. (2011) to describe the representation of woody veg-
sponding to domination of crowding mortality (Fig. 6iv) due etation biomass dynamics in the majority of LSMs consid-
to high crown projective cover (Fig. 6ii) and initially low ered in their review. These effectively treat woody biomass
resource limitation mortality (Fig. 6iv). Resource-limitation (Mwood) as a single carbon pool obeying first-order kinet-
mortality governs the level and rate of approach to equilib-ics, with a rate coefficienk( linearly scaling a single woody
rium biomass at which mortality (population level) cancels biomass pool: 8fwood/df = —k Mwood+ @woodNPP, where
the aggregate effects of individual tree growth, i.e. a slopecwoodis the fraction of NPP allocated to wood. The big wood
of —1 on the ageing trajectory (Fig. 6i). Resource-limitation approach is unrealistic as it compounds the differential re-
mortality rises more slowly initially than crowding mortal- sponses to environmental drivers and system state of tree
ity (Fig. 6iii, iv), responding to declining growth efficiency growth (generally positive) and population growth (positive
with size (trees investing more in maintenance costs of grow-0r negative, depending on the balance between recruitment
ing tall), while crowding occurs relatively rapidly as indi- and mortality). Cohorts of different age will face different
viduals spread horizontally to maximise their light uptake mortality rates depending on the microenvironment imposed
and growth. Turnover rate coefficients (Fig. 6iii, iv) sim- by realised stand structure, and this in turn will vary among
ulated by POP increase with age, in contrast to the timeatches in alandscape, depending on the disturbance history.
invariant turnover rate coefficients assumed by default CA-This suggests that it is important to specifically simulate the
BLE, and other LSMs employing the big wood assumption. size distribution of trees in forest vegetation and account for
The big wood assumption leads to relative higher mortality inhow changes in this distribution may alter the response of
younger stands, particularly in the low-productivity example €cosystem functions like biomass carbon turnover to forcing
(Fig. 6iii). The big wood assumption also leads to turnover variables.
rate coefficients being invariant with productivity. One con-  As plotted in Fig. 6iii and iv modelled biomass turnover
sequence of this is illustrated in Figs. 5 and 6, which showrate — an emergent property in POP — increases with stand
that for the fixed rate coefficient chosen here (0.02 yBar ~ age (as commonly observed in real forest stands; Franklin et
the biomass of the low-productivity patch is adequately sim-al., 1987) before reaching an equilibrium value, which differs
ulated, but that of the higher productivity patch is signifi- between stands of differing productivity. In accordance with
cantly underestimated compared with the POP simulations. the discussion of Wolf et al. (2011), this suggests that big
Figure 6vii and viii show that there are fewer size (age) wood models cannot be expected to perform well for globally
classes at higher NPP, reflecting stronger dominance by thénportant young forest stands, instead being more applicable
tallest cohort in high-production stands, where deep shadingo relatively rare older stands at equilibrium biomass.
beneath the upper canopy promotes high resource-limitation A second limitation of big wood models, also emphasised
mortality for all but the dominant cohort, as expected from by Wolf et al. (2011), is that they are not readily amenable
Egs. 84). to validation against forest inventory data, such as those used
in this study. This is because they do not carry information
about tree density. Wolf et al. (2011) attempted to circumvent
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CABLE-POP Broadleaf CABLE-POP Needleleaf to follow different trajectories depending on productivity and

1 age, as illustrated in Fig. 6 and discussed above. We applied

Eq. 8) to CABLE-POP grid cell estimates of total biomass

to derive a post hoc prediction of stem density, and hence

0.5 average foliage and stem biomass per tree, analogous to the

approach of Wolf et al. (2011). Results are shown in Fig. 7,

and indicate that the grid-cell results (deduced via Bj. (

% 200 400 % 200 400 with o« = 6.22 andg = —1.32 (Wolf et al., 2011, Table 5))
CABLE-Default Broadleaf ~ CABLE-Default Needleleaf lie on a significantly different line to the patch-level CABLE-

1 POP simulations (individual points shown in Fig. 4iii, iv), for

which the internal model stem density was used to deduce

average foliage and stem biomass per tree. The same was

true when values af = 6.9 andg = —1.44 were used, cor-

responding to a fit to lod{) vs. log(V) used in the present

study (Fig. 3). Allometric data from global forest invento-

0 200 400 0 200 400 ries are thus of limited value for evaluating/constraining big

Cannell-Broadleaf Cannell-Needleleaf wood models, which do not carry number-density informa-

tion.

Predicted global carbon fluxes diverge markedly between
Earth system models, both in the magnitude and shape (sign,
timing of change) of the subsequent trajectory (Ahlstrom et
al., 2012; Anav et al., 2013). One cause of such divergence
is that models, many employing a big wood simplification

200 400 200 400 for biomass dynamics, differ markedly in terms of woody
Usoltsev-Broadleaf Usoltsev-Needleleaf biomass turnover and its response to future climate angl CO
forcing. In projections with ESMs that account for carbon cy-
cle feedbacks, this translates into divergence in the simulated
climate (Friedlingstein et al., 2006, 2013). We concur with
Wolf et al. (2011) and argue that big wood models lack eco-
logical realism and cannot be expected to simulate woody
biomass turnover in a realistic manner under changing cli-

200 400 00 200 400 mate forcing. They should be phased out from use in carbon
Biomass [t DM ha™}] Biomass [t DM ha™}] cycle studies.
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Figure 5. Biomass component fractions as a function of total 4.2 Limitations of the POP approach
biomass: top: CABLE-POP patches; second row: default CABLE;
third and bottom rows: data-derived estimates reproduced fromrhe approach presented and demonstrated in this paper offers
Wolf et al. (2011). a potential alternative, suitable as a replacement for the big
wood approximation, for the representation of biomass struc-
tural dynamics for woody vegetation in large-scale models.
POP is not a replacement for a full-featured DVM. It does not
represent biogeochemical processes, nor in its current form
'gompetitive interactions among PFTs, nor biophysical feed-
backs associated with age-structured vegetation. Further, age
effects on LAl and NPP are not accounted for because of the
simplifying assumption that NPP (and therefore LAl) is uni-
log(N) = —a/(B+ 1) +log(M x N) /(B + 1), (8)  formamong patches, while structure is assumed to vary.
POP is designed to be readily coupled to a biogeochemi-
whereM x N is total biomass, ant anda are respectively cal LSM as implemented in many current climate and Earth
the slope and intercept of a reduced major axis regressiosystem models. Such LSMs generally do not feature compet-
fit to log(M) vs. log(V) observations for the whole (global) ing plant types, but may have fixed tiles representing grid-
data set (Fig. 4). As an approach for estimatvat a grid-  cell fractions dominated by different types of vegetation.
cell level, this assumes that forests throughout the world ard®OP simulates size structure dynamics separately for each
following the same log density—log biomass trajectory. We (woody) vegetation tile, based on the principle of asymmet-
suggest this is unlikely, as individual stands may be expectedic (i.e. size-dependent) competition between co-occurring

this problem by applying a fit to biomass—density (l(

vs. log(V)) as a post hoc estimate of density, which was then
used to evaluate component biomass per tree, as required e
for the leaf—stem allometry plots (Fig. 4iii, iv). (Results are
denoted “other LSMs” in these plots\) was thus estimated
using
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Figure 6. POP dynamics, as illustrated by undisturbed patch simulations at low and high extremes of annual stem increment (StemNPP
= 0.05kg cnr? year! and StemNPR= 0.20 kg cnr? year ). (i) Biomass—density plot, showing the ageing trajectories of each patch
(every 5th year plotted). Linear fits to the C—U data and their upper bound are shown for reféietioee course of crown projective cover

for each patch; andii) and(iv) time course of mortality, its components and turnover rate coefficient for patches witfiiijoand high

(iv) annual stem increments. Dotted lines (blue) represent mortality based on a fixed turnover rate (dotted black line) of G.0ehyiéay

and(vi) time course of stem biomass for patches with [@vand high(vi) annual stem increments. Solid lines indicate contributions form
different cohorts. Dotted lines represent biomass accumulation assuming a fixed turnover rate of 0:h2ayeiévii) and(viii) time course

of stem density for patches with logvii) and high(viii) annual stem increments. Solid lines indicate contributions from different cohorts.

individuals, but with no competition among PFTs (tiles). ing (Smith et al., 2014). We plan to introduce PFTs and to
Competition between trees and grasses, deciduous and evatistinguish canopy and understorey strata in a later develop-
green vegetation, andg@nd G, plants provides an important ment of the approach.

explanation for global biome distributions and may modulate In its current form, vegetation structure represented in POP
the responses of vegetation to future climate andJJd@c- only feeds back on woody biomass turnover represented in
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Figure 7. Leaf-Stem allometry plots fqfi) broadleaf andii) needleleaf PFTs. C—U data and CABLE-POP patch results are the same as
in Fig. 3 (iii) and(iv). CABLE-POP grid-cell results are from deducing stem density from total grid-cell biomass (average over multiple
patches, weighted by probability of time since last disturbance with a mean disturbance interval of 100 year)8)iaad.|sing this to
computeM;sg and Mstemfrom grid-cell foliage and stem biomass components.

the host LSM. Other feedbacks, such as the acclimation ob Conclusions
allocation with age/size (Lloyd, 1999) and age-related de-
cline in forest growth (e.g. Zaehle et al., 2006), could alsoBY discriminating individual and population growth and ex-
be implemented using the modular approach presented herglicitly representing asymmetric competition among age/size
Indeed, such feedbacks are represented in the ORCHIDEECIasses of trees co-occurring within forest stands, POP over-
FM model (Bellassen et al., 2010), which adopts a simi-comes a key limitation of the big wood approach and proved
larly modular approach: the forest management module (FM)’:\ble to reproduce allometric relationships reflecting link-
in ORCHIDEE-FM is supplied with stem biomass incre- ages between productivity, biomass and density in widely
ment from the host LSM (ORCHIDEE) and returns biomassdistributed temperate and boreal forests. Coupled to a bio-
turnover. In other respects FM and POP are different. In pargeochemical land surface model, able to prognose woody
ticular, POP is distinguished by its representation of sub-biomass productivity at stand (or grid cell) level, POP may
grid-scale disturbance-mediated heterogeneity. Further, thB€ calibrated and evaluated against forest inventory data,
stand dynamics of POP are applicable from sparse woodys demonstrated in this study. This is achieved without a
savannas to closed forest. In contrast, FM was developefharked increase in model complexity or computational de-
specifically for forests: it represents management effects, andnand, thanks to a modular design that separates the role of
natural mortality is based exclusively on stand self-thinning. the parent land surface model (prognosing whole-ecosystem
The parameterisation of crowding mortality Eq. (5) is in- Production) and the population dynamics model (partitioning
dependent of growth rates and assumes only that the propothe production among cohorts, computing mortality for each
tionality between log biomass and log density revealed by theand returning the stand-level integral as whole-ecosystem
observed data continues to hold true in a future simulationbiomass turnover to the parent model) (Fig. 1).
This assumption is reasonable if mortality depends more on The present paper focuses on stand-level demographics
biomass than on growth rate. The robustness of this proporand its influence on the accumulation and turnover of stem
tionality across wide climatic gradients is clear from the ob- carbon biomass. At the landscape level, the incidence and in-
served data as plotted in Fig. 3. tensity of disturbance events — such as wildfires, storms or
The present paper is concerned with the patch-scale dyanthropogenic interventions, such as forest harvest or land
namics — not the landscape scaling component of POP, whicHS€ conversions — provide an additional, regionally important
was presented and applied in Haverd et al. (2013). Howevergontrol on biomass accumulation and turnover (Shevliakova
we expect that the equilibrium assumption implicit in the €t al., 2009). Such landscape-level effects are accounted for
Poisson-based method of weighting patches of different timé?y our model, for example along a rainfall-mediated wild-
since last disturbance will be robust to a gradually Changingﬁre and biomass gradient in savannah vegetation of northern
disturbance regime (typical for most climate change studies)Australia (Haverd et al., 2013).
though the approach will break down in the case of a step
change in mean disturbance interval.
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Appendix A: Detailed description of POP A3 Biomass partitioning

Al State variables and governing equation Stem biomass increment for each patsly' (kg C mi2) is
assumed equal to the grid-scale value, accumulated over the
In POP, state variables are the sub-grid-scale (patch-specifiQOP model time steps (y). It is partitioned among cohorts
densities of woody plant individualsy, (m~2) in age/size  as a basis for the characterisation of structure, in turn affect-
classes, with an arbitrary number of age/size cohorts, Wherﬁ]g survivorship and growth_ An assumption may be made
y is the simulation year in which the cohort was created.  that individuals capture resources in a varying proportion to

Population dynamics are governed by their size, following a power relationship to biomass with an
dv, exponent £). As resource uptake, and therefore productiv-
T (mR,y + mC.,y) Ny, (A1) ity, is essentially linked to surface area (of leaves and roots),

and assuming no change in linear proportions with growth,
then an exponent of/& may be assumed based on allomet-

. 1 _
wheremg , andmc,, are cohort mortalities (yr) due to re ric scaling theory (Enquist and Niklas, 2001).

source limitation and crowding respectivedy, is initialised On this basis, annual stem biomass increment may be

as r_ecrunment .densn_y, and is episodically resgt (accord'ngbartitioned among cohorts in proportion to the population-
to disturbance intensity) when the patch experiences distur:

bance. Below, we describe the formulations of recruitment;welghted current biomass of individuals within each cohort:
biomass accumulation (partitioning of grid-scale stem incre-

ment amongst cohorts); cohort structure; and mortality, dis-ACy  (Cy/Ny)*Ny AC
turbance and landscape heterogeneity. The model time stepAr Y (C;/N;)S N; At
(A7) is 1 year.

(A5)

whereC, is the stem biomass summed across individuals of
A2 Recruitment cohortn,.

A new cohort is created each year, with density (may be zerop4 Cohort structure
given by

Cohort structure is characterised by height and canopy cover.
Ny(y) = Nmaxit (F), (A2) Height (H,, m) is determined from stem biomass by the al-

) ) . . lometric relations (Huang et al., 1992; Smith et al., 2001):
whereNmax is the maximum establishment density expected

under optimal conditions for seedling growth with assumed

value of 0.2n72. F is a proxy for growth conditions in the H, = kD§/3, (AB)
seedling layer, expressed as a fraction of optimum, set here as’

a function of (patch-dependent) stem biomé@sg C m2), where D, is mean tree stem diameter (m). A default value
with an exponent of 23 accounting for the proportional in- of 50 is chosen for the scaling coefficidnbased on fitting
crease in resource-uptake surfaces (leaves and fine roots) rétq. (A6) to height-diameter data for European tree species
ative to stem biomass assuming no change in linear proporsynthesised in Widlowski et al. (2003):

tions with size:

T2
y ZDy (A7)

F= exp<—0.6C2/3) . (A3) Y

g (volumeVy of a cylinder, n¥; 7 the ratio of the circumfer-

The functionuw (F) is a non-rectangular hyperbola, modifie X !
W(E) g VP ence to the radius of a circle) and

following Fulton (1991) to account for the reduction of re-

cruitment to the adult population under conditions of growth -1_

o i X . ; =V, pw (A8)
suppression in the seedling population (essentially enhance Y
seedling mortality due to resource stress): (absolute stem biomass for an individual in cohiitwith

” wood densitypy, set here to 300 kg 1T¥).
w(F)=expla1- ., (Ad) Combining Egs. (A6—A8),
F+1—/(F+1)2—-4F
3/4 acy A
wheref is a shape parameter set to 0.95 arid a shape pa- Hy =k / (ﬂ) . (A9)
y

rameter in the range 0.1-10 with higher values correspond-
ing to a greater suppression of recruitment (e.g. in shadeas  Mortality

intolerant tree species). A value of 3.5 fitted to data for Nor-

way spruce (a shade-tolerant boreal tree) (Fulton, 1991) iMortality is defined as a proportional reduction in cohort
adopted as a default value. density (Eq. Al). Adapting and simplifying the approach
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of the LPJ-GUESS DVM (Smith et al., 2001) we aggregaterespective values of 200 and 1.67, based on literature values
multiple causes of mortality in real tree stands within a gen-compiled by Widlowski et al. (2003).

eralised resource-limitation mortality that increases with size  Additional mortality occurs as a result of disturbances; see
(and therefore age) and under conditions of declining pro-below.

ductivity, whether caused by interference in resource uptake

among neighbours (Westoby, 1984), abiotic factors such aé\6 Disturbance and landscape heterogeneity

drought or secondary biotic factors (e.g. pathogen attacks?_ L . ,
(Franklin et al., 1987). Resource limitation leads to a decline-@ndscape heterogeneity is accounted for by simulating a

in growth efficiency (GE, i.e. growth rate as a function of nl_,lmber of patche_s (within a grid cell) \_NhiCh differ by age

size), characterised by the ratio of stem biomass incremerfime since _Iast d|stl_erance). Each grld-(_:ell state variable
to current stem biomass for a given cohort. Below a certain(€-9- Stém biomass) is computed as a weighted mean of the
threshold G, mortality increases markedly (Pacala et al,, Patch state variables, with patch weight corresponding to

1993). We characterise the response of resource-limitation e Probability p) of the patch occurring in the landscape.

mortality to growth efficiency by a logistic curve with the D_isturbancg is treated as a Poisson process, with time (
inflection point at this threshold: since last disturbance distributed exponentially amongst the

patches, according to the grid-cell mean disturbance interval
(A10) (M)

MR, max

" 1+ (GE,/GEmin)?”
where GE = AC,/C3, s takes the same value as in Eq. (A5) px) =

andm g, max is the upper asymptote for mortality as GE de- | thjs work we heldx fixed in time, but it could also be
clines, set to 0.3 yeat following Smith et al. (2001). The prescribed a time-dependent variable.
exponent, assigned a default value of 5, governs the steep- pjsturbances (periodic events that recur randomly at the
ness of response around GE =& which may be regarded  |ocal scale, destroying all (catastrophic disturbance) or a
as a calibration parameter. fraction of biomass (partial disturbance) in a patch) signif-
An additional crowding mortality component¢ y) isin-jcantly affect biomass residence time, vegetation structure
cluded to allow for self-thinning in forest canopies. Self- 50 thereby resource use and productivity at a large spatial
thinning is dependent on the assumption that some treegcgle. At the level of a grid cell or large landscape, patches of
(within a cohort) have a slight advantage in pre-empting gifferent ages (years since last disturbance) should occur at
resources, creating a positive feedback to growth and ultifrequencies corresponding to the expected likelihood of a lo-
mately resulting in death of the most suppressed individualsqg| gisturbance sometime in the corresponding period, given
In contrast, in POP, the total stem biomass increment for a coz known expected disturbance return time. The latter is pre-
hort is equally partitioned amongst all members. Thereforegcriped in this work, but could be computed prognostically,
we require the following new parameterisation which eMu- g g. by a wildfire module incorporated within CABLE.
lates the contribution to self-thinning associated with within- 5 partial disturbance event in an affected patch is simu-
cohort competition. lated by removing a size-dependent fraction of the biomass
Crowding mortality is expressed as (and hence stems) in each cohort. In this work this fraction
) 1 AC, is specified using an observation-based relationship between
mc,y =min [E exp(ac (1-1/cpcy)) fe. m] (Al1l)  gree size and the probability of tree survival following a fire of
] Y specified intensity (see Appendix A3). Following either type
such that it never exceeds growth. Herfgcy=  of disturbance event (catastrophic or partial), recruitment oc-
(1—exp(—Acy)) is crown projective COVErAc,y Crown  cyrs and the patch persists in the landscape, and its age since
projected area (F m~2) of all crowns in theyth and taller  the particular type of disturbance is set to zero.
cohorts, ac a coefficient which determines the onset of Importantly, patch weightings by age are evaluated after
crowding mortality with respect topc and fc is a tunable  growth, recruitment, non-disturbance-related mortality and
scaling factor.ac was set to 10.0, corresponding to an disturbance. It is particularly important that the weightings
onset of crowding mortality atpc~0.8. This value was  pe calculated after disturbance: otherwise patches of age zero
chosen to be sufficiently high such that crowding mortality is would not be represented.
insignificant in the Australian savanna simulations (Haverd Vegetation structure changes more from year to year early
et al., 2013), thus retaining the validity of the parametersijn vegetation development following a disturbance than later.
relating tomg in Eq. (A10) as used in this earlier study. After a period corresponding to a few average tree generation
Crown projected area is evaluated as times, a steady state is reached with no further net changes
Ao = Nokan DX (A12) ?n vegetation strgcture (provided there are no trenqls in forg-
ey = Hykallomy - ing data). To strike a balance between computational effi-
where N, is stem density (mP); D, is stem diameter at ciency and “accuracy” in characterising landscape structure,
breast height (m), anflyiom and krp are parameters set to we simulate patches with a sequence iofgé max=5-7)

MR,y

rexp(—Ax). (A13)
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maximum ages with equally spaced cumulative probabilitiesA8 Tree foliage projective cover

(assuming an exponential distribution of patch ages, with ex-

pected value equal to the mean disturbance interval). To enlIree foliage projective cover is calculated following (Haverd
sure a wide spread of ages in any given year, we additionallyt al., 2012) as * Pgap, WherePyapis defined here the proba-
simulate @patch_reps= 4 — 7) replicate patches for each max- bility of radiation penetrating the entire canopy from directly
imum age, with the first disturbance occurring in year 1 above (i.e. zero zenith angle):

2a, 3a..npatch_repd, and thereafter everyipatch_repg” years .

(Where ‘nipatch_repg” is the maximum age of the patch). Pgap= e~ *Ac=Puc) (A15)

A7 Patch weightings In Equation (A15) A is the number density of crowng, is
the projected area of a crown envelope (i.e. an opaque crown)

Each patch is characterised by time since last disturbanceand P, is the mean expected gap (or porosity) through a
and its weighting in the landscape is given by the probabil-single crown or partial crown. The overbar denotes a mean
ity of this age occurring in an exponential distribution. When over the distribution of crown heights and dimensions: thus
two disturbance types (catastrophic and partial) are considA (1 — Py) is the mean area of the projected objects that fill
ered, each patch is characterised by two ages correspondiribe crown volume. Crowns are approximated as spheroids.
to times since each disturbance type and two weights, on&Ve assume that crown horizontal and vertical diameters are
for each age. The patch weighting is then the product of themonotonic functions of tree height), such that the mean
weights for each age, divided by the number of patches withprojected area is
the same combination of two ages, and normalised such that
patch weights sum to one. himax

We evaluate weights for each unique time since each disAc¢ (1 — Pwc) = / Ac(h) (1 — Pyc(h))p(h)dh, (A16)
turbance as follows: first we construct an ordered list gt
unique ages since last disturbance. Each uniquesageas-
sociated with lower and upper integer bounbls @ndby ), where p(h) is the tree height probability distribution, and
spanning the range of ages to be represented; byhese  /imin andimax are the lower and upper extremes of the tree

hmin

bounds are set as follows: heights, respectively. The crown porosiByc is approxi-
mated as
0, i=1
bi=1a, i>la_1=a —1 (A14) Pyc & ¢~ CFasmean (A17)

byi-1+1, i>lai-1#a -1 Here G is the projection of the leaf area in the direction of

0, ai=0 the beam (assumed here to be 0.5, corresponding to a spheri-
a;, (i=1a >0)or cal leaf angle distribution). angheanis the mean path length
bui = (>lai=a—1). through the crown approximated as
int[(ai +ai11)/2], l<i <nage Smean= V/Ac, (A18)
ai, [ =nage

with V the crown volume and,; the foliage area volume
The weighting for each ags is evaluated as the sum of the density, equated here with the ratio of tree LAl to total crown
exponential frequencies, = A exp(—ix) (Wherex istheex-  volume. We assumed a vertical-to-horizontal-crown-radius
pectation value of the time since disturbance arntle inte-  ratio of 1.5.
gral age), of integral ages frobm; to by inclusive.
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