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Abstract. Tropical forests vary substantially in aboveground
properties such as canopy height, canopy structure, and plant
species composition, corresponding to underlying variations
in soils and geology. Forest properties are often difficult to
detect and map in the field, however, due to the remoteness
and inaccessibility of these forests. Spectral mixture analysis
of Landsat imagery allows mapping of photosynthetic and
nonphotosynthetic vegetation quantities (PV and NPV), cor-
responding to biophysical properties such as canopy open-
ness, forest productivity, and disturbance. Spectral unmix-
ing has been used for applications ranging from deforesta-
tion monitoring to identifying burn scars from past fires, but
little is known about variations in PV and NPV in intact
rainforests. Here we use spectral unmixing of Landsat im-
agery to map PV and NPV in northern Amazonia, and to test
their relationship to soils and plant species composition. To
do this we sampled 117 sites crossing a geological bound-
ary in northwestern Amazonia for soil cation concentrations
and plant species composition. We then used the Carnegie
Landsat Analysis System to map PV and NPV for these sites
from multiple dates of Landsat imagery. We found that soil
cation concentrations and plant species composition consis-
tently explain a majority of the variation in remotely sensed
PV and NPV values. After combining PV and NPV into a
single variable (PV–NPV), we determined that the influence
of soil properties on canopy properties was inseparable from
the influence of plant species composition. In all cases, pat-
terns in PV and NPV corresponded to underlying geological
patterns. Our findings suggest that geology and soils regulate

canopy PV and NPV values in intact tropical forests, possi-
bly through changes in plant species composition.

1 Introduction

Tropical forests vary greatly in aboveground properties such
as canopy height, canopy structure, and plant species com-
position, due to underlying variations in soils and geological
formations. Changes in these aboveground properties have
been observed over thousands of kilometers (Malhi et al.,
2004; ter Steege et al., 2006) and distances as short as 2–
3 km (Higgins et al., 2011; Salovaara et al., 2005; Tuomisto
et al., 2003b). Due to the inaccessibility of these forests and
challenges of sampling in these environments, however, field
data on forest properties are often difficult to obtain. Satel-
lite imagery offers a unique opportunity to explore tropical
forests for broad-scale variations in aboveground properties
that might otherwise be impossible to detect, and to compare
these to underlying geological or edaphic properties.

Landsat is the most widely available and commonly used
source of satellite imagery for tropical forests, and re-
flectance in individual Landsat bands is known to correspond
to variations in soils and plant species composition (Higgins
et al., 2012; Salovaara et al., 2005; Tuomisto et al., 2003a).
Analysis of Landsat data can also be used to give insight
into the biophysical properties of tropical forests. Individ-
ual pixels in Landsat imagery typically represent reflected
radiation from a mix of features including live or dead veg-
etation, bare ground, or human development. Using spectral
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mixture analysis (SMA), mixed spectra for individual pixels
can be decomposed into their component spectra, also known
as endmembers (Somers et al., 2011). Typical endmembers
for forested ecosystems are photosynthetic vegetation (PV),
nonphotosynthetic vegetation (NPV), and bare substrate (As-
ner et al., 2005b). The products of this process are maps of
percentages of PV, NPV, or bare substrate across full Landsat
images.

Photosynthetic vegetation endmembers are typically de-
fined from aboveground measurements of intact canopy, col-
lected aerially or from high spatial and spectral resolution
orbital sensors such as Earth Observing-1 Hyperion (As-
ner et al., 2005a). High PV values thus translate into con-
tinuous green, leafy canopy with little exposed woody ma-
terial, litter, or bare ground. Nonphotosynthetic vegetation
and bare substrate endmembers are usually calculated us-
ing ground-based spectroscopic measurements. Nonphoto-
synthetic endmembers are defined from ground litter, ex-
posed tree trunk and branches, and deforestation residue;
bare substrate endmembers are constructed from a range of
soil types with varying water content and organic matter.
High NPV thus translates into forests with open canopies
and greater amounts of exposed woody or senescent mate-
rial; high bare substrate values translate into forest removal,
exposed soils and rock, or human habitation.

Spectral unmixing has provided valuable insight into the
condition of tropical forest vegetation and changes in tropi-
cal forests through time. Fractional cover maps of PV, NPV,
and bare substrate have been used to identify patterns of se-
lective logging across tropical forests (Asner et al., 2005a;
Oliveira et al., 2007; Souza et al., 2005; Allnutt et al., 2013),
and to detect subcanopy burn scars (Alencar et al., 2011). In
temperate ecosystems, PV values have been found to be su-
perior to the normalized differential vegetation index (NDVI)
in remotely sensed calculations of vegetation productivity
(Huang et al., 2012). Beyond the tropics, SMA has been used
extensively on both global and regional scales for decom-
posing images into a variety of constituent surface covers
(Somers et al., 2011).

Despite the use of fractional cover to detect human distur-
bance and fire in tropical forests, little is known about natu-
ral variations of PV and NPV in intact forests. Recent studies
have found broad-scale patterns in plant species composition,
soil properties, and underlying geology in western Amazo-
nian forests (Higgins et al., 2011; Tuomisto et al., 2003b,
1995; Salovaara et al., 2005). This raises the possibility that
these geological, edaphic, and compositional drivers may
translate into changes in the abundance of photosynthetic and
nonphotosynthetic vegetation displayed by the canopy, and
that this might be detected by spectral unmixing. If true, this
would suggest that there are structural and functional differ-
ences between these forest types.

Here we tested whether variations in PV and NPV in intact
forests in northwestern Amazonia are sensitive to changes
in soils and plant species composition. We concentrated our

study on two regions of northwestern Amazonia that are
known to contain boundaries between two widespread ge-
ological formations: the Pebas and Nauta formations. These
formations differ substantially in plant species composition
and soil properties (Higgins et al., 2011, 2012), making them
ideally suited for this purpose. Moreover, we have previously
established over 100 plant inventories and soil samples for
these study areas, distributed among the two formations.

We used the Carnegie Landsat Analysis System (CLAS) to
quantify the fractional cover of PV and NPV throughout both
study regions (Asner et al., 2005b), and calculated mean PV
and NPV values for all inventories. We then calculated the
relationship between PV and NPV values for these invento-
ries, and either soil fertility or plant species composition. We
also partitioned the variation in PV and NPV between soils
and species composition, in order to determine which was
more important in regulating changes in fractional PV and
NPV cover.

By comparing these field data with PV and NPV values
calculated from Landsat imagery, we calculated the degree
to which quantities of photosynthetic and nonphotosynthetic
vegetation are controlled by variations in plant species com-
position, soil properties, or a combination of both. To our
knowledge, this is the one of the first times that PV and NPV
data have been related to patterns in plant species composi-
tion or soil properties in intact tropical forests (see also Car-
valho et al., 2013).

2 Materials and methods

2.1 Study areas

We conducted our fieldwork in two study areas, Pastaza–
Tigre and Curaray, each of which were centered on bound-
aries between the Pebas and Nauta formations (Fig. 1a–c).
The Pebas Formation consists of relatively cation-rich sedi-
ments deposited during low-energy semi-marine conditions
of the mid- to late Miocene and recently exposed by recent
river incision (Hoorn et al., 2010; Räsänen et al., 1995). The
Nauta Formation consists of relatively cation-poor sediments
deposited by high-energy fluvial conditions during the Plio-
Pliocene (Rebata et al., 2006). These two geological forma-
tions are widespread across northwestern Amazonia and ac-
count for the majority of land surface in northeastern Ama-
zonian Peru (INGEMMET, 2000).

The Pastaza–Tigre study region was located between the
Pastaza and Tigre rivers (Fig. 1a and b), and was accessed
by a service road for the Lot 1AB oil pipeline. The Cu-
raray study area was located to the southwest of the Curaray
River (Fig. 1a and c), and was accessed by helicopter during
seismic oil exploration. We established a total of 117 linear
transects at these study areas, consisting of 65 transects at
Pastaza–Tigre and 52 at Curaray, along which we sampled
plants and soils. We restricted our sampling to non-inundated
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Figure 1. Patterns in geology, soils, plant species composition, and PV and NPV at sites in northern Peru.(A) Geological map for northern
Peru (INGEMMET, 2000) with extents of maps in(B) to (G) indicated by solid and dashed lines. Red outline in gray inset indicates position
of (A) relative to boundaries of Peru (center) and Ecuador (top left).(B) and(C) Nonmetric multidimensional scaling (NMDS) scores and
the log-transformed sum of Ca, Mg, Na, and K concentrations (LSC) overlaid upon Landsat data for Pastaza–Tigre and Curaray study areas,
respectively. Points indicate inventory sites and are sized by LSC values and colored by NMDS values, such that larger sizes indicate higher
LSC values and blue tones indicate higher NMDS values. Landsat bands four, five and seven correspond to red, green, and blue. Yellow line
indicates the boundary between the Pebas and Nauta formations; the Nauta Formation is to the west of the boundary in(B) and inside the
boundary in(C). The Pastaza River is located in the far west in(B); the Tigre River runs northwest to southeast through the center of(B);
and the Curaray River runs from west to east in the north and east of(C). (D) and(E) PV images for the Pastaza–Tigre and Curaray study
areas generated from Landsat imagery for 8 September 2006 and 30 August 2000, respectively. Light tones indicate higher values and dark
tones indicate lower values. Extent of(E) is indicated by dashed lines in(A). (F) and(G) NPV images for Pastaza–Tigre and Curaray, as per
(D) and(E).
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(i.e., terra firme) primary rainforest. Due to the proximity of
both study areas to the Equator (between two and three de-
grees south), the climate at both areas is relatively aseasonal,
and these forests do not exhibit pronounced phonology.

2.2 PV and NPV data

We used the USGS GLOVIS service (http://glovis.usgs.gov/)
to identify and download available cloud and haze-free Land-
sat images for our study areas, totaling five images for
Pastaza–Tigre and three for Curaray (Table 1). These in-
cluded images from both the Landsat 5 and 7 missions, and
for the latter only images prior to the scan line corrector sys-
tem failure were acquired. We then used the Carnegie Land-
sat Analysis System (CLAS) to calculate the proportion of
each Landsat pixel occupied by PV or NPV for each of the
eight Landsat images, based on all six non-thermal bands
(Table 1). CLAS uses an automated Monte Carlo unmix-
ing (AutoMCU) approach, in which endmember fractions
are calculated from an iterative drawing from spectral end-
member libraries until a stable solution is produced (Asner et
al., 2005b). CLAS has previously been used to estimate PV
and NPV values across the Legal and Peruvian Amazonia,
including our study areas, and has been optimized for use
in these forests (Asner et al., 2005a; Oliveira et al., 2007).
As such, the uncertainties associated with these estimates are
low and range from 1 to 4 %, depending on type of vegeta-
tion (Asner et al., 2005b). The products of this process were
PV and NPV images of the same size and spatial resolution
as the original Landsat images, in which pixel values gave
the estimated percentage cover of photosynthetic or nonpho-
tosynthetic vegetation. As such, when we refer to photo-
synthetic or nonphotosynthetic vegetation quantities in this
manuscript, we are specifically referring to the percentage
cover values estimated by CLAS. In total, we generated PV
and NPV images for five dates for the Pastaza–Tigre study
area, and three dates for Curaray (Table 1).

We used 250 m buffer areas for each transect (Tuomisto et
al., 2003a) to calculate PV and NPV statistics for each tran-
sect, and repeated this for all image dates throughout both
study regions. Before calculating values for Pastaza–Tigre
transects, we edited the buffer areas to remove areas that
overlapped with road features. We also omitted, for single
image dates, PV and NPV values for any transects that con-
tained clouds or cloud shadows (Table 1). On average, buffer
areas for both Pastaza–Tigre and Curaray contained 550 pix-
els of PV and NPV data, and all analyses were conducted
with ArcGIS v. 10 (ESRI Inc., Redlands, CA, USA).

2.3 Plant and soil data

The tree species inventory in Amazonian forests is noto-
riously difficult due to large numbers of species, tall and
difficult-to-identify individuals, and poorly known taxonomy
(Higgins and Ruokolainen, 2004). Establishing a tree in-

ventory network that could sample the full geological and
edaphic ranges of our study areas was thus not feasible, and
we focused our plant inventories on a single plant group,
the pteridophytes (ferns and lycophytes). Pteridophytes are
known to capture a majority of the patterns observed in tree
inventories at sites across the neotropics (Ruokolainen et al.,
1997, 2007; Tuomisto et al., 1995; Jones et al., 2013), and
due to their ease of sampling and identification, this method
allows an average of one inventory per day. As a result, this
group is a common tool for the study of biodiversity patterns
in western Amazonia (Higgins et al., 2011; Tuomisto et al.,
1995, 2003c), and has been used in multiple studies to re-
late remotely sensed imagery to patterns in plant composi-
tion in Amazonian forests (Higgins et al., 2012; Salovaara et
al., 2005; Tuomisto et al., 2003a, b).

Our field data consisted of 117 linear transects of
5× 500 m – 65 transects at Pastaza–Tigre and 52 at Curaray
– along which we had previously collected presence–absence
data for pteridophytes (Higgins et al., 2011). Only individu-
als with at least one leaf (for ferns) or stem (for lycophytes)
longer than 10 cm were recorded, and epiphytic and climb-
ing individuals were recorded only if they had green leaves
≤ 2 m above ground. Permits for collection and export of
plant specimens for identification were obtained from the Pe-
ruvian National Institute of Natural Resources (INRENA),
and we deposited vouchers for all species at herbaria in Peru
(AMAZ and USM) and Finland (TUR; Thiers, continuously
updated, 2014).

In addition, we collected soil samples at 50 m, 250 m, and
450 m along each transect. Each of these three soil samples
consisted of five subsamples of the top 10 cm of mineral
soil, collected in an area of 4 m× 4 m (Higgins et al., 2011).
These five subsamples were located such that one subsample
was located in the center of the transect, and the remaining
four subsamples were placed at 2 m forward along the tran-
sect, back along the transect, to the left , and to the right.
These subsamples were then combined in the field into a sin-
gle sample, and equal dry weights of the three samples were
combined into one sample per transect for analysis. Soil sam-
ples were analyzed at MTT Agrifood (Jokioinen, Finland) for
pH; loss on ignition (a measure of organic matter content); P
concentration (Bray method); and extractable Al, Ca, K, Mg
and Na (in 1M ammonium acetate). In addition, percentages
of sand, silt and clay were determined at MTT Agrifood (Cu-
raray samples; sieving and pipette methods) and the Univer-
sity of Turku Department of Geology (Turku, Finland; laser
diffraction).

We used nonmetric multidimensional scaling (NMDS) to
reduce our floristic data to a single variable for comparison
to soil properties, PV, and NPV values (Higgins et al., 2012).
Like other ordination methods, NMDS is a data-reduction
technique that identifies the dominant trends in a multidi-
mensional data set – e.g., the simultaneous change in oc-
currence of multiple plant species along an environmental
gradient – and produces a smaller number of dimensions

Biogeosciences, 11, 3505–3513, 2014 www.biogeosciences.net/11/3505/2014/

http://glovis.usgs.gov/


M. A. Higgins et al.: Variation in PV and NPV along edaphic and compositional gradients 3509

Table 1. Correlation coefficients (r2) for linear regressions of PV or NPV values against NMDS or LSC, by study area and Landsat image
date (all values significant atP < 0.001).

r2, PV versus: r2, NPV versus:

Study area Datea # Transectsb NMDS LSC NMDS LSC Symbol

Pastaza–Tigre 01-01-05 65 0.55 0.56 0.25 0.30
97-08-30 63 0.73 0.68 0.66 0.66
02-10-07 64 0.81 0.74 0.70 0.67
96-08-11 65 0.71 0.74 0.68 0.71
06-09-08 65 0.61 0.64 0.64 0.66

Curaray 96-07-10 52 0.26 0.35 0.56 0.66
00-08-30 48 0.44 0.39 0.63 0.63
96-08-11 50 0.52 0.52 0.65 0.66

a Format is YY-MM-DD where YY indicates year, MM indicates month, and DD indicates day.
b Number of cloud or shadow-free transects available for analysis, out of a total of 65 for Pastaza–Tigre and 52 for Curaray.

that are more suitable for analyses. In the case of a partic-
ularly strong environmental gradient, one NMDS variable
can explain the majority of variation between sites in a data
set consisting of multiple plant species. We calculated one-
dimensional NMDS solutions for our plant inventories using
the one complement of the Jaccard index as a distance mea-
sure. For this analysis we ran a maximum of 400 iterations
from 40 random starting configurations, and applied an in-
stability criterion of 105. All NMDS calculations were per-
formed with PC-ORD v. 4.41.

2.4 Regression analyses using CLAS data

We used simple linear regressions to calculate the percent
of variation in PV and NPV explained by soils and floristic
composition for all images in both study regions (Table 1).
For these analyses, floristic composition was represented by
a single NMDS axis, and cation concentration was repre-
sented by the log-transformed sum of four cations (Ca, Mg,
Na, and K; abbreviated as LSC).

In addition, due to differences in illumination between
image dates, we observed consistently higher PV and NPV
values for some dates versus others. To normalize for these
between-date variations, and to calculate a single value for
comparisons to soil and plant inventory data, we used the dif-
ference between PV and NPV (PV – NPV; Asner and Warner,
2003). For each Landsat image date, we subtracted the mean
NPV of each transect from its mean PV. We then averaged the
PV–NPV values for each transect across all image dates, re-
sulting in a single PV–NPV value for each transect. We then
used linear or multiple regressions to calculate the percent
of the variation in these PV–NPV values that was explained
by NMDS values, LSC values, or the two together (Table 2).
These calculations were performed separately for both study
areas, and we excluded transects which contained clouds or
cloud shadows (as described above).

Table 2. Correlation coefficients (r2) for regressions of mean PV–
NPV values against LSC, NMDS, and LSC & NMDS (all values
significant atP < 0.001).

Study area LSC NMDS LSC & NMDS

Pastaza–Tigre 0.71 0.69 0.72
Curaray 0.63 0.60 0.67

We then used these results to partition the variation in
PV–NPV at both study areas into three components (Peres-
Neto et al., 2006): variation explained uniquely by variation
in LSC values; variation explained uniquely by variation in
NMDS values; or variation explained equally by both. We
calculated the percentage of variation in PV–NPV explained
uniquely by LSC or NMDS values as “C− A” or “C − B”,
respectively, where “A” represented the percent variation in
PV–NPV explained by NMDS values alone (simple linear
regression); “B” represented the variation explained by LSC
values alone; and “C” represented the variation explained by
the combination of LSC and NMDS values (multiple regres-
sion). We calculated the percent of variation that was ex-
plained equally by LSC and NMDS values as the percent-
age of variation explained by the combination of LSC and
NMDS minus the percentage explained uniquely by both
(i.e., “C− (C− A) − (C− B)” simplifying to “A + B − C”).

3 Results

3.1 Soil properties and plant species composition

As previously reported (Higgins et al., 2011), the geological
patterns in our study area corresponded to abrupt changes in
soil cation concentrations. Cation concentrations on the Pe-
bas Formation were 10 times greater than on the Nauta For-
mation at the Pastaza–Tigre and Curaray region, and 7 times
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greater at the Curaray region (Fig. 1b and c; sum of concen-
trations of Ca, Mg, Na, and K). These changes in soils also
corresponded to clear changes in plant species composition
(Fig. 1b and c). In total, our inventories included 147 and
127 species at Pastaza–Tigre and Curaray, with a mean of 34
and 30 species per transect. Single-axis NMDS ordinations
for these pteridophyte inventories explained 80 and 90 % of
the floristic pattern in the full data sets at the Curaray and
Pastaza–Tigre, respectively, as measured by comparing the
distances between inventories based on NMDS scores to the
distances between based on the one complement of the Jac-
card index. This indicated both strong compositional patterns
in these data, and supported the use of these NMDS axes in
comparisons to the soil, PV, and NPV data. Linear models
using the log-transformed sum of four cations (Ca, Mg, Na,
and K) explained 90 and 71 % of the variation in NMDS ordi-
nation scores for sites at Pastaza–Tigre and Curaray, respec-
tively (P < 0.001).

3.2 Photosynthetic and nonphotosynthetic vegetation

These patterns in geology, soils, and floristic composition
were translated into clear patterns of PV and NPV. Forests
growing on the Pebas Formation had higher PV and lower
NPV values than forests growing on the Nauta Forma-
tion (Fig. 1d–g). These differences in fractional cover were
strongly explained by differences in cation concentrations
between the two geological formations (Fig. 2c, d, g and
h), such that increased cation concentrations resulted in
increased PV and decreased NPV. On average, the log-
transformed sum of four cations (Ca, Mg, Na, and K) ex-
plained 67 and 60 % variation in PV and NPV values at
Pastaza–Tigre, and 42 and 65 % at Curaray (P < 0.001 for
all regressions; Table 1).

These differences in PV and NPV were equally well ex-
plained by variations in plant species composition (Fig. 2a,
b, e and f), such that increased NMDS values – correspond-
ing to the transition from the cation-poor Nauta Formation
to the richer Pebas Formation – resulted in increased PV and
decreased NPV (P < 0.001 for all regressions; Table 1). On
average, NMDS scores explained 68 and 59 % variation in
PV and NPV values at Pastaza–Tigre, and 41 and 61 % at
Curaray. Furthermore, the effects of soil fertility and floris-
tic composition on PV or NPV, as indicated by the slope of
the regressions, were identical despite date-to-date variations
due to illumination or seasonal effects (Fig. 2a–h). This indi-
cated a strong and consistent relationship between soil fertil-
ity, floristic composition, and endmember abundances. Last,
due to uncertainties in the estimates of PV and NPV caused
by these date-to-date variations in imagery or the CLAS algo-
rithm, these correlations are probably conservative estimates
of the strength of these relationships, and the actual correla-
tion values may be greater.

To disentangle the contributions of soil fertility and
species composition to PV and NPV results, we combined

Figure 2. Relationship between plant species composition, soil
cation concentrations, and productivity at sites in northern Peru.(A)
to (H) Linear regressions of the log-transformed sum of Ca, Mg, Na,
and K concentrations (LSC) or nonmetric multidimensional scaling
(NMDS) values against PV or NPV for Pastaza–Tigre sites (A to D)
or Curaray sites (E to H). Each regression line represents a single
Landsat image date, and lines are color coded by date. Image dates
and correlation coefficients are provided in Table 1.P < 0.001 for
all regressions.

PV and NPV into a single metric (PV–NPV), and partitioned
the variation in this metric between floristic composition and
soil cation concentrations. In combination, soil cation con-
centrations and NMDS values explained a total of 72 and
67 % of the variation in PV–NPV values at Pastaza–Tigre
and Curaray, respectively (Fig. 3, Table 2). Of this, only 3
and 7 % was explained uniquely by soils, and only 1 and 4 %
by floristic composition. The large majority (68 and 56 %) of
variation in PV–NPV values was explained equally by varia-
tion in either soils or floristic composition. This finding sug-
gests that changes in endmember abundance due to cation
concentrations were inseparable from changes due to floris-
tic composition (Fig. 3, Table 2). This in turn suggests that
variations in PV and NPV due to soil fertility may be medi-
ated by changes in plant species composition.

4 Discussion

Our analysis of Landsat data for northwestern Amazonia re-
vealed widespread and consistent patterns in photosynthetic
and nonphotosynthetic vegetation, corresponding closely to
patterns in geology, soils, and plant species composition. Us-
ing data from 117 field sites, we found that soil properties
and plant species composition explained up to 68 % of vari-
ation in PV and NPV in Amazonian forests, and that this
increased to 72 % if PV and NPV were combined into a sin-
gle metric. In addition, the contributions of soil and plant
species composition to variations in PV and NPV were in-
separable, suggesting that the effect of soils on PV and NPV
values may be mediated by variations in species composition.
These findings suggest that geology, soils, and plant species
composition may produce structural and functional patterns
in Amazonian forests. They also suggest that PV and NPV, in
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Figure 3. Contributions of soil fertility and plant species compo-
sition to PV–NPV values. Pie charts representing the percentage
of variation in PV–NPV values explained by NMDS values alone
(red), LSC values (yellow), or equally by both (orange), for the
Pastaza–Tigre and Curaray study areas; correlation coefficients are
provided in Table 2.

addition to their previously demonstrated uses in identifying
forest disturbance, might also be used to identify biophysical
patterns in Amazonian forests (Alencar et al., 2011; Asner et
al., 2005a).

Our findings raise the question of the cause of these pat-
terns and their biological significance. At both study areas,
and using eight Landsat image dates, we observed increased
NPV and reduced PV when moving from the richer soils of
the Pebas Formation to the poorer soils of the Nauta For-
mation. We believe this may be explained by two factors:
thinning of the forest canopy when moving from rich to poor
soils, and increased allocation to leaf thickness and defen-
sive compounds. Reduced allocation to leaf area would re-
sult in lower PV, and in increased NPV due to increased ex-
posure of woody material such as tree branches or boles. In
addition, increased allocation to leaf defensive compounds
or thickness might also increase nonphotosynthetic chemical
expression in foliage, including structural compounds such
as lignin and defensive compounds such as tannins, resulting
in increased NPV. These compounds could in turn obscure
photosynthetic compounds, resulting in reduced PV.

This scenario is consistent with plot-level studies in Ama-
zonia, which show a trade-off between allocation to plant de-
fensive compounds at low soil cation concentrations; and al-
location to light acquisition (e.g., stem and leaf growth) at
high soil cation concentrations (Fine et al., 2004, 2006). At
low cation concentrations plants invest more heavily in de-
fending scarce nutrients, while at high concentrations plants
invest more heavily in light acquisition and photosynthesis
(Asner et al., 2014). Our findings suggest that these trade-
offs occur at broad scales: from assemblages of species with
higher allocations to photosynthetic material on rich-soil for-
mations; to assemblages of species with higher allocations to

nonphotosynthetic material (e.g., defensive compounds and
thicker leaves) on poor-soil geological formations.

There are two alternative explanations, however, for the
observed regional-scale variations in canopy PV and NPV.
First, it is possible that gap formation rates on these two ge-
ological formations differ such that a higher frequency of
gaps on the Nauta Formation translates into higher NPV and
lower PV values on this formation. Recent high-resolution
lidar studies of canopy structure at these sites, however, in-
dicate that gaps are more frequent on the richer soils of the
Pebas Formation (M. A. Higgins and G. P. Asner, unpub-
lished data), suggesting that gap dynamics do not affect PV
and NPV values in these forests.

Second, it is possible that terrain differences between the
two geological formations are responsible for the observed
differences in fractional cover, such that increased slope on
one formation causes greater inter-crown shadowing and thus
higher NPV and lower PV. Slopes are indeed greater on the
Nauta Formation in the Pastaza–Tigre study area, as visible
in NASA Shuttle Radar Topography Mission (SRTM) data
(Higgins et al., 2011). However, this relationship is reversed
at the Curaray study area, where slopes are greater on the
Pebas Formation and instead correspond to lower NPV and
higher PV. These findings suggest that terrain is not a domi-
nant determinant of PV or NPV values in our study areas.

The patterns we observe might also indicate changes in
forest productivity between the two formations. Productiv-
ity is calculated from remotely sensed data as the quantity
of photosynthetically active radiation absorbed by vegetation
(APAR) multiplied by the light-use efficiency of that vegeta-
tion (ε; Field et al., 1993; Running, 1990). APAR has tra-
ditionally been estimated using the normalized differential
vegetation index (NDVI), but PV has recently replaced NDVI
in some of these models (Huang et al., 2008, 2012; Xiao et
al., 2004a, b; Yang et al., 2012). PV is thus directly propor-
tional to productivity with the caveat that PV cannot account
for variations in productivity due to changes in light-use effi-
ciency. This suggests that the PV patterns observed here may
translate directly into patterns in forest productivity, such that
productivity is higher on the richer soils of the Pebas Forma-
tion and lower on the poorer soils of the Nauta Formation.

Last, our findings suggest that spectral mixture analysis
of multispectral imagery for Amazonian forests may facili-
tate the detection of more than just changes in canopy cover
caused by disturbance and fire. Here we observe clear PV
and NPV patterns in intact forests, corresponding to soils and
species composition, suggesting that spectral mixture analy-
sis might assist in mapping biodiversity in remote forests.
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