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Abstract. Global terrestrial atmosphere–ecosystem carbon
dioxide fluxes are well constrained by the concentration and
isotopic composition of atmospheric carbon dioxide. In con-
trast, considerable uncertainty persists surrounding regional
contributions to the net global flux as well as the impacts of
atmospheric and biological processes that drive the net flux.
These uncertainties severely limit our ability to make confi-
dent predictions of future terrestrial biological carbon fluxes.
Here we use a simple light-use efficiency land surface model
(the Vegetation Photosynthesis Respiration Model, VPRM)
driven by remotely sensed temperature, moisture, and phe-
nology to diagnose North American gross ecosystem ex-
change (GEE), ecosystem respiration, and net ecosystem ex-
change (NEE) for the period 2001 to 2006. We optimize
VPRM parameters to eddy covariance (EC) NEE observa-
tions from 65 North American FluxNet sites. We use a sep-
arate set of 27 cross-validation FluxNet sites to evaluate a
range of spatial and temporal resolutions for parameter esti-
mation. With these results we demonstrate that different spa-
tial and temporal groupings of EC sites for parameter estima-
tion achieve similar sum of squared residuals values through
radically different spatial patterns of NEE. We also derive
a regression model to estimate observed VPRM errors as a
function of VPRM NEE, temperature, and precipitation. Be-
cause this estimate is based on model-observation residuals it
is comprehensive of all the error sources present in modeled
fluxes. We find that 1 km interannual variability in VPRM
NEE is of similar magnitude to estimated 1 km VPRM NEE
errors.

1 Introduction

Terrestrial ecosystems remove roughly 25 percent of an-
nual anthropogenic fossil fuel carbon dioxide (CO2) via
gross primary production (GPP) in excess of respiration
(Keeling et al., 1996). More completely, net ecosystem ex-
change (NEE) – the balance between photosynthesis and
heterotrophic respiration – controls the magnitude of atmo-
sphere to ecosystem CO2 uptake. Diagnosing terrestrial bi-
ological carbon dioxide fluxes with confidence is a neces-
sary step toward understanding biological and climatological
drivers of these fluxes. Because these fluxes are first-order in-
fluences on the accumulation of carbon dioxide in the atmo-
sphere (Denman et al., 2007), understanding their mechanics
is necessary to forecast impacts of past and future fossil fuel
emissions. In spite of this, atmosphere-based methods to es-
timate global NEE (e.g.,Peters et al., 2007; Janssens et al.,
2003) and ground-based approaches (e.g.,Potter et al., 2007;
Janssens et al., 2003) have produced conflicting estimates,
demonstrating substantial uncertainty surrounding these ef-
forts to describe terrestrial carbon cycle mechanics.

Several recent studies demonstrate the discrepancy in
diagnosed NEE between “top-down” approaches (i.e.,
atmosphere-based) and “bottom-up” approaches (i.e.,
ground-based methods rooted in eddy covariance (EC) flux
measurements combined with ecosystem models).Janssens
et al. (2003) assembled top-down and bottom-up estimates
for late 20th Century annual cumulative European NEE and
found that the top-down estimates are larger by roughly
100 Tg CO2 per year. This 100 Tg difference is between
30 % and 100 % of their best-estimate annual total of 100
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to 300 Tg per year.Peters et al.(2007) estimated a North
American uptake for 2001 to 2005 of roughly 700 Tg CO2
per year using a top-down approach, whilePotter et al.
(2007) estimated uptake of 100 to 200 Pg CO2 per year over
the same period using a bottom-up method.Schwalm et al.
(2011) found conflicting estimates of global NEE anoma-
lies estimated from upscaled FluxNet observations when
compared against top-down inversion anomaly estimates.

A number of studies have explored approaches to estimate
regional NEE using some combination of land surface mod-
els and eddy covariance fluxes (bottom-up methods).Potter
et al. (2007) chose a set of four North American EC towers
to represent characteristic North American ecosystems and
used them to evaluate the performance of the NASA-CASA
ecosystem model run with a global set of previously pub-
lished parameter values. They then used the NASA-CASA
model to estimate North American annual cumulative NEE.
This approach requires no computationally intensive data as-
similation (e.g. parameter estimation), but achieves such sav-
ings at the cost of considering only a small portion of the
NEE observations that are now available.

Xiao et al.(2008) used a modified regression tree to cre-
ate a model suite to explain observed NEE as a function of
a variety of satellite-derived ecological measures. A regres-
sion tree is a method to empirically derive a best-fit statistical
model based on a set of linear models. They derived the mod-
els using data from 42 AmeriFlux EC sites in the coterminous
United States, producing a set of empirical models capable of
upscaling the tower observations to the continental scale. The
model that best explained the observed NEE used a combi-
nation of MODIS surface reflectances, enhanced vegetation
index (EVI), land surface temperature, and normalized dif-
ference water index (NDWI). Though statistical, this model
structure is quite similar to light-use efficiency (LUE) based
models such as the Vegetation Photosynthesis Respiration
Model (VPRM) of (Mahadevan et al., 2008).

Yuan et al.(2010) develops the EC-LUE model and uses
it to produce global estimates of gross primary production
(GPP) and evapotranspiration (ET), whileYang et al.(2007)
use a machine learning approach coupled with remote sens-
ing data to extrapolate eddy-covariance-estimated GPP to
the coterminous USA, and also use their method to estimate
maximum light-use efficiency.

Jung et al.(2010) describe a method to upscale FluxNet
eddy covariance ET observations to the global scale using
machine learning algorithms. This method could in concept
be applied to NEE as well, though the machine learning ap-
proach is purely empirical and does not attempt to incorpo-
rate any ecological understanding.

Schwalm et al.(2010) andSchwalm et al.(2011) present
methods to globally upscale FluxNet observations by plant
functional type. These methods depend on the commonly
employed assumption that plant functional types are good
predictors of landcape NEP.

Beer et al.(2010) compared five different diagnostic GPP
models with sharply contrasting structures, including two
machine learning approaches, an NEE–biome region look-
up table, and a LUE model. Each of these approaches was
then used to estimate regional NEE values and uncertainties.
TheBeer et al.study explicitly considered many sources of
uncertainty in the models considered. For the light-use effi-
ciency model, the authors estimated site-specific parameter
probability density functions (PDFs) at a number of FluxNet
eddy covariance sites around the globe. The Bayesian frame-
work of the study allowed the authors to consider PDFs from
multiple uncertainty sources: parameter value uncertainty as
well as driver data uncertainty. By taking random draws from
these parameter PDFs,Beer et al.(2010) constructed a popu-
lation of global GPP estimates driven by their distribution of
parameter values. This population then provided confidence
intervals for their global GPP estimates.

Each study outlined above presents a framework to use
ecosystem modeling to combine the information in eddy co-
variance flux tower observations with the information con-
tained in an ecosystem model structure and allows estima-
tion of regional biological CO2 fluxes. These studies exhibit
many ways to treat uncertainty sources, ranging in complex-
ity from not including uncertainty to Bayesian consideration
of multiple uncertainty sources. The set of available eddy co-
variance NEE observations has increased dramatically in re-
cent years (http://www.fluxdata.org); none of the above stud-
ies, however, take advantage of the wide spatial coverage of
these observations except to perform site-specific calibration
of model parameters.

Hilton et al. (2013) used North American eddy covari-
ance NEE observations from 65 different locations from the
FluxNet project (http://www.fluxdata.org) to optimize pa-
rameter values for a simple land surface model (VPRM,Ma-
hadevan et al., 2008). The 65 tower locations span North
America in both space and plant functional type. That study
presents extensive experiments varying the temporal and spa-
tial periods for parameter estimation to determine an optimal
strategy, producing nine different spatial and temporal reso-
lutions.

Here we use VPRM and the assimilated data from this ex-
tensive tower network to diagnose annual integrated gross
ecosystem exchange (GEE), ecosystem respiration (R), and
NEE for the coterminous United States of America, Alaska,
and Canada for the period 2002 to 2006. We use eddy covari-
ance observations from a further 27 FluxNet tower locations
to quantitatively cross-validate the parameter optimizations.
This rigorous cross-validation analysis is a crucial step in a
model-based carbon flux upscaling; without such an exercise
it is difficult to measure the spatial accuracy, or lack thereof,
of estimating unobserved fluxes using a model and data as-
similation. Cross-validation would not be possible without
the recent growth of eddy covariance observation networks:
if only a handful of observation locations exist, as in the
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recent past, we cannot afford to withhold data from parame-
ter estimation.

We also extend the analysis to derive empirical confi-
dence intervals for NEE diagnoses based on observed NEE
residuals and NEE drivers. Because this uncertainty is de-
rived from eddy-covariance-observation–model NEE residu-
als, it considers all of the uncertainty sources that are present
in model-based upscaling: eddy covariance observation er-
ror, model structural error, model parameterization error, and
random natural ecosystem variability. This comprehensive
and quantitative uncertainty analysis is also, to our knowl-
edge, unique.

2 Methods

2.1 Land surface model

The Vegetation Photosynthesis and Respiration Model
(VPRM, Mahadevan et al., 2008) is a light-use efficiency
(LUE)-based land surface model. Ecosystem respiration is
treated as a linear function of surface air temperature:

R = αT + β, (1)

with slopeα and interceptβ; β determines the basal rate of
respiration that occurs at near-freezing temperatures. Gross
Ecosystem Exchange (GEE) is modeled as

GEE= λ × Tscale× Pscale× Wscale× EVI (2)

×
1

1+ PAR/PAR0
× PAR,

with PAR denoting photosynthetically active radiation and
EVI the satellite derived enhanced vegetation index (Huete
et al., 2002). Pscale (satellite derived),Wscale (satellite de-
rived), andTscale (literature derived) are scaling terms that
take values between 0.0 and 1.0 and attenuate GEE according
to phenology, moisture conditions, and temperature, respec-
tively. Parameterλ encodes light-use efficiency, and param-
eter PAR0 encodes the LUE curve half-saturation value.Ma-
hadevan et al.(2008) provide detailed description of VPRM
structure and performance. As described more fully inHilton
et al. (2013), the relatively simple structure of VPRM and
its small number of parameters make it computationally in-
expensive. This makes relatively sophisticated parameter es-
timation methods possible and makes VPRM a useful tool
for diagnosing carbon fluxes, estimating flux uncertainty, and
exploring the impacts of model parameterization and model
error spatial covariance.

2.2 Land surface model parameterization

Hilton et al.(2013) presented estimated values forλ, PAR0,
α, andβ using data from 65 North American eddy covari-
ance towers (Fig.1, Table1). For parameter estimation, the
eddy covariance data were partitioned in three different ways
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Fig. 1. The 65 eddy covariance flux tower sites from the FluxNet
network (http://www.fluxdata.org) that provide observations for
VPRM parameterization and VPRM flux residual calculation. ENF
– evergreen needleleaf forest, DBF – deciduous broadleaf forest,
MF – mixed forest, CS – closed shrubland, OS – open shrubland,
WS – woody savanna, Gr – grassland, Wet – permanent wetland,
Crop – cropland.

in space (individual sites, plant functional types (PFTs), and
all sites together), and three different ways in time (monthly,
annual, and all available data). This produced nine unique
VPRM parameter sets with differing spatial and temporal op-
timization “resolutions”: single sites–monthly, PFT–annual,
etc.

As argued byHilton et al.(2013), an ideal model parame-
ter estimation scheme should permit parameter values to vary
at space and timescales matching variations in NEE. Because
NEE varies on numerous space and timescales, the space and
timescales in which NEE variations are deemed “of interest”
(as opposed to “noise”) will vary with the modeling goals and
spatial domain to be modeled. The range of temporal param-
eterization windows considered (annual, seasonal, monthly,
and 10 day) allow variation consistent with a number of first
order NEE drivers: annual climate variation, seasonal eco-
logical cycles, and synoptic weather. Evaluating PFT-specific
parameters as well as parameters estimated across many sites
helps to evaluate the performance of PFTs as a land surface
classification method for NEE diagnosis.

Upscaling tower measurements intrinsically requires
model parameters that are applicable in spatial locations
without tower observations, making the single-site param-
eters not useful for the task. This leaves the six parameter
sets from the PFT and all-sites-together spatial groupings
available for upscaling. In addition to those six, PFT–10-day
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Table 1. 65 North American eddy covariance sites used to parameterize VPRM and calculate VPRM flux errors. PFTs are taken from the
International Geosphere-Biosphere Programme (IGBP) land cover classification scheme (Loveland and Belward, 1997). The PFT classifica-
tions are taken from literature citations or investigator descriptions where available, and otherwise derived from MODIS 1 km land surface
classifications. Data are from the 2007 FluxNet synthesis dataset.

Site code Site name Latitude Longitude Land cover Reference
(◦ N) (◦ E)

CA-Ca1 British Columbia – Campbell River – Mature Forest Site 49.870 −125.340 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Ca2 British Columbia – Campbell River – Clearcut Site 49.870 −125.290 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Ca3 British Columbia – Campbell River – Young Plantation Site 49.520 −124.900 1 – Evergreen Needleleaf ForestHumphreys et al.(2006)
CA-Gro Ontario – Groundhog River-Mature Boreal Mixed Wood 48.220 −82.160 5 – Mixed Forest McCaughey et al.(2006)
CA-Let Lethbridge 49.710 −112.940 10 – Grasslands Flanagan and Adkinson(2011)
CA-Mer Eastern Peatland – Mer Bleue 45.410 −75.520 11 – Permanent Wetlands Lafleur et al.(2003)
CA-NS2 UCI-1930 burn site 55.910 −98.520 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS3 UCI-1964 burn site 55.910 −98.380 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS4 UCI-1964 burn site wet 55.910 −98.380 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS5 UCI-1981 burn site 55.860 −98.490 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS6 UCI-1989 burn site 55.920 −98.960 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-NS7 UCI-1998 burn site 56.640 −99.950 1 – Evergreen Needleleaf ForestGoulden et al.(2006)
CA-Oas Sask – SSA Old Aspen 53.630 −106.200 4 – Deciduous Broadleaf ForestBlack et al.(2000)
CA-Obs Sask – SSA Old Black Spruce 53.990 −105.120 1 – Evergreen Needleleaf ForestBergeron et al.(2007)
CA-Ojp Sask – SSA Old Jack Pine 53.920 −104.690 1 – Evergreen Needleleaf ForestHoward et al.(2004)
CA-Qcu Quebec Boreal Cutover Site 49.270 −74.040 7 – Open Shrublands Giasson et al.(2006)
CA-Qfo Quebec Mature Boreal Forest Site 49.690 −74.340 1 – Evergreen Needleleaf ForestBergeron et al.(2007)
CA-SF2 Sask – Fire 1989 54.250 −105.880 6 – Closed Shrublands Mkhabela et al.(2009)
CA-SF3 Sask – Fire 1998 54.090 −106.010 6 – Closed Shrublands Mkhabela et al.(2009)
CA-SJ1 Sask – 1994 Harv. Jack Pine 53.910 −104.660 1 – Evergreen Needleleaf ForestZha et al.(2009)
CA-SJ2 Sask – 2002 Harvested Jack Pine 53.950 −104.650 1 – Evergreen Needleleaf ForestZha et al.(2009)
CA-WP1 Western Peatland – LaBiche-Black Spruce/Larch Fen 54.960 −112.460 11 – Permanent Wetlands Flanagan and Syed(2011)
US-ARM ARM Southern Great Plains site – Lamont – Oklahoma 36.610 −97.490 12 – Croplands Fischer et al.(2007)
US-Atq Atqasuk – Alaska 70.470 −157.410 11 – Permanent Wetlands Oechel et al.(2000)
US-Aud Audubon Research Ranch – Arizona 31.590 −110.510 10 – Grasslands Wilson and Meyers(2007)
US-Blo Blodgett Forest – California 38.900 −120.630 1 – Evergreen Needleleaf ForestGoldstein et al.(2000)
US-Bn1 Delta Junction 1920 Control site 63.920 −145.370 1 – Evergreen Needleleaf ForestLiu et al. (2005)
US-Bn2 Delta Junction 1987 Burn site 63.920 −145.370 4 – Deciduous Broadleaf ForestLiu et al. (2005)
US-Bn3 Delta Junction 1999 Burn site 63.920 −145.740 7 – Open Shrublands Liu et al. (2005)
US-Bo1 Bondville – Illinois 40.010 −88.290 12 – Croplands Meyers and Hollinger(2004)
US-Bo2 Bondville – Illinois (companion site) 40.010 −88.290 12 – Croplands Meyers and Hollinger(2004)
US-Brw Barrow – Alaska 71.320 −156.630 11 – Permanent Wetlands Harazono et al.(2003)
US-CaV Canaan Valley – West Virginia 39.060 −79.420 10 – Grasslands Wilson and Meyers(2007)
US-Dk1 Duke Forest-open field – North Carolina 35.970 −79.090 10 – Grasslands Stoy et al.(2006)
US-Dk2 Duke Forest-hardwoods – North Carolina 35.970 −79.100 4 – Deciduous Broadleaf ForestStoy et al.(2006)
US-Dk3 Duke Forest – loblolly pine – North Carolina 35.980 −79.090 1 – Evergreen Needleleaf ForestStoy et al.(2006)
US-FPe Fort Peck – Montana 48.310 −105.100 10 – Grasslands Wilson and Meyers(2007)
US-Goo Goodwin Creek- Mississippi 34.250 −89.970 10 – Grasslands Wilson and Meyers(2007)
US-Ha1 Harvard Forest EMS Tower – Massachusetts (HFR1) 42.540 −72.170 4 – Deciduous Broadleaf ForestUrbanski et al.(2007)
US-Ha2 Harvard Forest Hemlock Site – Massachusetts 42.540 −72.170 1 – Evergreen Needleleaf ForestHadley and Schedlbauer(2002)
US-Ho1 Howland Forest (main tower) – Maine 45.200 −68.740 1 – Evergreen Needleleaf ForestHollinger et al.(1999)
US-Ho2 Howland Forest (west tower) – Maine 45.210 −68.750 1 – Evergreen Needleleaf ForestHollinger et al.(2004)
US-KS1 Florida-Kennedy Space Center (slash pine) 28.460 −80.670 1 – Evergreen Needleleaf ForestBracho et al.(2008)
US-KS2 Florida-Kennedy Space Center (scrub oak) 28.610 −80.670 6 – Closed Shrublands Powell et al.(2006)
US-Los Lost Creek – Wisconsin 46.080 −89.980 6 – Closed Shrublands Sulman et al.(2009)
US-Me2 Metolius-intermediate aged ponderosa pine – Oregon 44.450 −121.560 1 – Evergreen Needleleaf ForestThomas et al.(2009)
US-Me4 Metolius-old aged ponderosa pine – Oregon 44.500 −121.620 1 – Evergreen Needleleaf ForestAnthoni et al.(2002)
US-MMS Morgan Monroe State Forest – Indiana 39.320 −86.410 4 – Deciduous Broadleaf ForestSchmid et al.(2000)
US-MOz Missouri Ozark Site 38.740 −92.200 4 – Deciduous Broadleaf ForestGu et al.(2006)
US-Ne1 Mead – irrigated continuous maize site – Nebraska 41.100 −96.290 12 – Croplands Verma et al.(2005)
US-Ne2 Mead – irrigated maize-soybean rotation site – Nebraska 41.100 −96.280 12 – Croplands Verma et al.(2005)
US-Ne3 Mead – rainfed maize-soybean rotation site – Nebraska 41.180 −96.440 12 – Croplands Verma et al.(2005)
US-NR1 Niwot Ridge Forest – Colorado (LTER NWT1) 40.030 −105.550 1 – Evergreen Needleleaf ForestMonson et al.(2002)
US-PFa Park Falls/WLEF – Wisconsin 45.950 −90.270 5 – Mixed Forest Davis et al.(2003)
US-SO2 Sky Oaks – Old Stand – California 33.370 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SO3 Sky Oaks – Young Stand – California 33.380 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SO4 Sky Oaks – California 33.370 −116.620 6 – Closed Shrublands Luo et al.(2007)
US-SP1 Slashpine-Austin Cary – 65 yr nat regen-FL 29.740 −82.220 1 – Evergreen Needleleaf ForestPowell et al.(2008)
US-SP2 Slashpine-Mize-clearcut-3 yr-regen-FL 29.760 −82.240 1 – Evergreen Needleleaf ForestBracho et al.(2012)
US-SP3 Slashpine-Donaldson-mid-rot – 12 yr-FL 29.750 −82.160 1 – Evergreen Needleleaf ForestBracho et al.(2012)
US-Syv Sylvania Wilderness Area – Michigan 46.240 −89.350 5 – Mixed Forest Desai et al.(2005)
US-Ton Tonzi Ranch – California 38.430 −120.970 8 – Woody Savannas Ma et al.(2007)
US-UMB Univ. of Mich. Biological Station – Michigan 45.560 −84.710 4 – Deciduous Broadleaf ForestGough et al.(2008)
US-Var Vaira Ranch – Ione – California 38.410 −120.950 10 – Grasslands Ma et al.(2007)
US-WCr Willow Creek – Wisconsin 45.810 −90.080 4 – Deciduous Broadleaf ForestCook et al.(2004)
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parameters were calculated as well. The sum of squared er-
rors (SSE) were computed for the seven VPRM parameter
sets that are useful for upscaling, using observations from
27 “cross-validation” eddy covariance sites (Table2; Fig. 2;
Sect.2.3) that were not used for parameter estimation.

To evaluate model performance we use SSE at the 27
cross-validation sites and penalized sum of squared errors
(PSSE, e.g.Hilborn and Mangel, 1997) at all 92 sites (the
27 cross-validation sites plus the 65 parameterization sites).
PSSE is given by

PSSE=
SSE

nobs− 2npars
, (3)

with SSE the sum of squared errors,npars the number of
unique model parameter values, andnobs the number of data
points available. Among cross-validation sites withheld from
parameter estimation, we can detect overfitting when the
SSE begins to increase with the number of parameters. Be-
cause model parameterization, by definition, fits the model
to observed data, SSE among parameterization sites should
only decrease with additional parameters. PSSE provides a
method to detect overfitting among parameterization sites.

We chose SSE because a statistically proper likelihood
function would require integrating likelihood functions for
all of the sources of error that contribute to model error.
These include model structural error, model parameteriza-
tion error, eddy covariance observation error, and “natural
variability” (microscale flucutations in the atmosphere, cli-
mate, and ecosystem behavior). Distributions, and therefore
likelihood functions, may be approximated for these error
sources. Reducing their integrated product to a computation-
ally tractable form is difficult and beyond the scope of this
study. In the absence of a statistically proper likelihood func-
tion, we chose to use the mathematically simple SSE. This
is equivalent to a maximum likelihood approach if the model
errors may be assumed to be independent and identically dis-
tributed (i.i.d). Model errors are probably not i.i.d. (Ricciuto
et al., 2008), but we have made this simplification in light of
the points mentioned above.

2.3 Data

The 2007 FluxNet synthesis dataset (http://www.fluxdata.
org) assembled eddy covariance observations from field sites
around the world. The data were gap-filled and assigned
quality scores using published methods (Papale et al., 2006;
Moffat et al., 2007). The present study uses non-gap-filled
NEE from 92 eddy covariance sites from the United States
and Canada: 65 flux towers to estimate VPRM parameters
(Table1, Fig. 1), plus 27 “cross-validation” sites (Table2,
Fig. 2). The cross-validation sites used in this study were not
used for VPRM parameterization because of data availability
difficulties. After all necessary VPRM input data were even-
tually obtained for these sites, they were used to evaluate the
performance of the optimized VPRM.
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Fig. 2. The 27 eddy covariance flux tower “cross-validation” sites
from the 2007 FluxNet synthesis dataset that were not used for
VPRM parameterization or for VPRM NEE error covariance pa-
rameter estimation. Plant functional type abbreviations: ENF – ev-
ergreen needleleaf forest, DBF – deciduous broadleaf forest, MF –
mixed forest, CS – closed shrubland, OS – open shrubland, WS –
woody savanna, Gr – grassland, Wet – permanent wetland, Crop –
cropland.

VPRM uses temperature and photosynthetically active ra-
diation (PAR) to drive GEE and respiration. To run VPRM
at the continental scale, air temperature and downward sur-
face radiation values were obtained from the reanalysis prod-
ucts of Sheffield et al.(2006). The Sheffield et al.(2006)
products attempt to correct known biases (Brotzge, 2004) to
the NCEP-NCAR reanalysis products (Kalnay et al., 1996).
VPRM was driven with the three-hourly, 1◦

× 1◦ product for
temperature and PAR.

VPRM is also driven by satellite-derived moisture and
phenology. MODIS products MOD13A2 (enhanced vegeta-
tion index (EVI); Huete et al., 2002, 1999), MCD12Q1 (land
cover;Friedl et al., 2002; Strahler et al., 1999), MCD12Q2
(vegetation dynamics;Zhang et al., 2003), and MCD43B4
(Bidirectional Reflectance Distribution Function (BRDF) re-
flectances;Schaaf et al., 2002) provided these drivers. EVI
data reported with quality ratings of “lowest quality” and
“not useful” (VI quality bits 2–3 equal to 11) were discarded.
Gaps from discarded MODIS data were not filled; VPRM
fluxes were not calculated in these instances. EVI and BRDF
data are reported at one-kilometer, 16-day resolution; land
cover and vegetation dynamics are reported at 500 m, an-
nual resolution and were processed from 500 m resolution
to 1000 m resolution using software tools provided by the
MODIS Land quality assessment group (Roy et al., 2002).
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Table 2.27 North American eddy covariance cross-validation sites.

Site code Site name Latitude Longitude Land cover Reference
(◦ N) (◦ E)

CA-SJ3 Sask – SSA 1975 Harv Yng Jack Pine 53.880 −104.650 1 – Evergreen Needleleaf ForestZha et al.(2009)
US-SP4 Slashpine-Rayonier-mid-rot – 12 yr-FL 29.800 −82.200 1 – Evergreen Needleleaf ForestClark et al.(2004)
CA-SF1 Sask – Fire 1977 54.490 −105.820 1 – Evergreen Needleleaf ForestAmiro et al.(2006)
CA-TP2 Ontario – Turkey Point Young White Pine 42.770 −80.460 1 – Evergreen Needleleaf ForestPeichl and Arain(2006)
US-FR2 Freeman Ranch Mesquite Juniper – Texas 29.950 −98.000 8 – Woody Savannas Heinsch et al.(2004)
US-NC1 NC Clearcut 35.810 −76.710 1 – Evergreen Needleleaf ForestSun et al.(2010)
US-NC2 NC Loblolly Plantation 35.800 −76.670 1 – Evergreen Needleleaf ForestSun et al.(2010)
US-Ivo Ivotuk – Alaska 68.490 −155.750 6 – Closed Shrublands Epstein et al.(2004)
US-SRM Santa Rita Mesquite- Arizona 31.820 −110.870 8 – Woody Savannas Scott et al.(2009)
CA-TP3 Ontario – Turkey Point Middle-aged White Pine 42.710 −80.350 1 – Evergreen Needleleaf ForestPeichl and Arain(2006)
CA-TP4 Ontario – Turkey Point Mature White Pine 42.710 −80.360 1 – Evergreen Needleleaf ForestPeichl and Arain(2006)
CA-TP1 Ontario – Turkey Point Seedling White Pine 42.660 −80.560 1 – Evergreen Needleleaf ForestPeichl and Arain(2006)
US-WBW Walker Branch Watershed – Tennessee 35.960 −84.290 4 – Deciduous Broadleaf ForestHanson et al.(2005)
CA-Man BOREAS NSA – Old Black Spruce 55.880 −98.480 1 – Evergreen Needleleaf ForestDunn et al.(2007)
US-LPH Little Prospect Hill – Massachusetts 42.540 −72.180 5 – Mixed Forest Borken et al.(2006)
US-Bar Bartlett Experimental Forest- New Hampshire 44.060 −71.290 4 – Deciduous Broadleaf ForestSmith et al.(2002)
US-Me1 Metolius – Eyerly burn – Oregon 44.580 −121.500 1 – Evergreen Needleleaf ForestBond-Lamberty et al.(2004)
US-Me3 Metolius-second young aged pine- Oregon 44.320 −121.610 1 – Evergreen Needleleaf ForestHibbard et al.(2005)
US-Wi1 Intermediate hardwood (IHW) 46.730 −91.230 4 – Deciduous Broadleaf ForestNoormets et al.(2008)
US-Wi2 Intermediate red pine (IRP) 46.690 −91.150 1 – Evergreen Needleleaf ForestNoormets et al.(2008)
US-Wi4 Mature red pine (MRP) 46.740 −91.170 1 – Evergreen Needleleaf ForestNoormets et al.(2007)
US-Wi5 Mixed young jack pine (MYJP) 46.650 −91.090 1 – Evergreen Needleleaf ForestNoormets et al.(2007)
US-Wi6 Pine barrens #1 (PB1) 46.620 −91.300 7 – Open Shrublands Noormets et al.(2007)
US-Wi7 Red pine clearcut (RPCC) 46.650 −91.070 7 – Open Shrublands Noormets et al.(2008)
US-Wi8 Young hardwood clearcut (YHW) 46.720 −91.250 4 – Deciduous Broadleaf ForestNoormets et al.(2007)
US-Wi9 Young Jack pine (YJP) 46.620 −91.080 1 – Evergreen Needleleaf ForestNoormets et al.(2008)
CA-WP2 Poor Fen 55.540 −112.330 11 – Permanent Wetlands Adkinson et al.(2011)

2.4 Ecosystem–atmosphere carbon dioxide flux
calculation

VPRM gross ecosystem exchange (GEE), ecosystem respira-
tion (R), and net ecosystem exchange (NEE) were calculated
for the 48 coterminous United States, Alaska, and Canada
at three-hourly temporal resolution and one kilometer spatial
resolution for 2002 to 2006. The MODIS products with 16-
day temporal resolution were simply repeated at each three-
hourly interval across the 16 days. Three-hourly diagnoses
of GEE,R, and NEE were integrated to annual values and
used to calculate annual anomalies (defined as the annual
integrated value minus the 2002 to 2006 mean annual inte-
grated value).

2.5 NEE residual spread estimation

This study seeks upscaled NEE diagnoses accompanied by
uncertainty estimates. There are several methods of vary-
ing complexity available to quantify this uncertainty. A joint
Bayesian inversion of VPRM parameters and VPRM NEE
variance against eddy covariance NEE observations using a
joint likelihood function would extract information from the
available data with maximum mathematical rigor (though is
still vulnerable to aggregation errors in grouping scheme,
e.g. plant functional types, as well as errors in observations
and driver data). Statistically rigorous likelihood functions

for model NEE error, however, remain an ongoing research
topic, and the calculation itself is computationally expensive.

The method employed here uses an empirically derived
statistical model to characterize VPRM NEE residual spread
– a middle ground between the joint Bayesian inversion with
MCMC and the simple interpolation.

It is known that eddy covariance observation error is pro-
portional to NEE magnitude itself (Richardson et al., 2006).
Typical magnitude for this random EC observation error
is roughly 20 to 30 g C m−2 yr−1 (Richardson et al., 2006;
Goulden et al., 1996), roughly an order of magnitude smaller
than the VPRM annual NEE residuals. Random eddy covari-
ance observation error is a component of VPRM NEE er-
ror, making it reasonable to posit that VPRM NEE residual
magnitude is correlated to VPRM NEE magnitude. Further-
more, the structure of VPRM (Eqs.1 and 2) assumes that
temperature, water availability, and greenness (EVI) are pri-
mary drivers of NEE. It seems reasonable, then, that VPRM
residuals would be affected by these influences as well.

Systematic bias in eddy covariance observations (such as
underestimation of NEE under low-turbulence conditions) is
also an important contributor to land surface model uncer-
tainty (Williams et al., 2009). Typically a friction velocity
(u∗) threshold is used to identify and remove conditions of
low turbulence (e.g.Baldocchi, 2003); uncertainty inu∗ was
recently estimated to contribute as much as 150 g C m−2 yr−1
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to overall land surface model uncertainty (Reichstein et al,
unpublished data, cited inWilliams et al., 2009)

Using non-gap-filled observations from the 65 eddy co-
variance sites used to estimate VPRM parameter values, an-
nual integrated NEE residuals were calculated as the in-
tegrated sum of non-gap-filled NEE observations minus
VPRM NEE, both at EC site-specific native reporting res-
olution (generally 30 min, 60 min at a few sites). Residuals
were calculated only at time stamps where both quantities
were available. With these integrated residuals squared dif-
ferences were calculated for each site year:

NEE′

sq diff ≡ (NEE′
− NEE′)2. (4)

NEE′ denotes annually integrated VPRM residual, andNEE′

denotes the mean of NEE′ across all site years. NEE′

sq diff

is closely related to statistical varianceσ 2 (σ 2
≡

∑N
i=1(xi −

x)2/(N −1)). Estimating NEE′sq diff in terms of known quan-
tities provides a method to estimate the spread of VPRM
NEE errors that can be upscaled along with the flux diag-
noses.

Regression models for NEE′

sq diff were derived from sub-
sets of these candidate explanatory variables: VPRM an-
nual integrated NEE, total annual precipitation, annual mean
surface air temperature, annual mean EVI, PFT, and year.
The set of models consisting of all combinations within the
categorical variables, the linear numerical terms, and the
quadratic numerical terms was searched exhaustively using
the glmulti package (Calcagno, 2011) for R (R Development
Core Team, 2007) and the results ranked by Akaike’s In-
formation Criterion (AIC,Akaike, 1976). Annual mean EVI
was calculated as the mean of 16-day MODIS EVI values
(see Sect.2.3). Annual total precipitation and annual mean
temperature were calculated as the sum and mean, respec-
tively, of the monthly mean 1◦ × 1◦ Sheffield et al.(2006)
reanalysis products.

3 Results

3.1 Land surface model parameter set ranking

As described in Sect.2.2, we ranked the parameter sets that
are useful for upscaling (this excludes the three individual-
site-based parameter sets) by sum of squared errors (SSE).
Figure3 presents these SSE values, plotted against the num-
ber of unique parameter values. The solid curve plots the SSE
for the 27 cross-validation sites not used for VPRM parame-
ter estimation, and the dashed curve plots the penalized sum
of squared errors (PSSE; defined in Sect.2.2) for all 92 sites
(the 27 cross-validation sites and the 65 sites used to param-
eterize VPRM). Figure3 suggests that the monthly and 10-
day VPRM parameter sets overfit the data. The PFT–all-data
VPRM parameters achieved the lowest cross-validation SSE
as well as a PSSE only slightly above the lowest PSSE; there-
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Fig. 3. VPRM sum of squared errors vs. number of unique param-
eter values. Shown are the seven VPRM parameter sets available
for upscaling. Parameter sets are labeled as (space grouping)−(time
grouping) used for VPRM parameter estimation. Left vertical axis
shows sum of squared errors (SSE) for the 27 cross-validation sites
not used to estimate VPRM parameters (Fig.2, Table1); right ver-
tical axis shows penalized sum of squared errors (PSSE) for the 27
cross-validation sites combined with the 65 sites used to parame-
terize VPRM (Fig.1, Table1). Note the log-scale on the horizontal
axis.

fore, those parameters are used for most of the analyses pre-
sented here.

3.2 VPRM NEE residual evaluation

To evaluate the quality of VPRM NEE diagnoses, Fig.4
presents the histogram of VPRM NEE residuals calcu-
lated at eddy covariance site reporting intervals (30 min
at most sites; 60 min at a few sites), calculated using
PFT–all-data VPRM parameters. The mean residual of
4.66× 10−4 µmol CO2 m−2 s−1 corresponds to an annually
integrated flux of 0.18 g C m−2 yr−1, small compared to
a typical observed EC annual NEE between 100 and
300 g C m−2 yr−1. This suggests that the parameter optimiza-
tion achieved its task of optimizing VPRM to observed fluxes
at hourly timescales. A normal distribution with the same
mean and standard deviation is overlaid; the observed residu-
als show a higher peak around their mean but otherwise cor-
respond closely to the normal distribution.

Having demonstrated that the parameter optimization per-
forms well at hourly intervals we turn now to the annual
timescale. Figure5 examines the distribution at the an-
nual timescale, showing the VPRM NEE residuals integrated
by site year. Because NEE gapfilling would introduce a
new source of error to VPRM residuals, the annual inte-
grated residuals in Fig.5 are calculated from non-gap-filled
NEE observations. The mean integrated residual value of
1.6 g C m−2 yr−1 demonstrates that VPRM optimization also
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Fig. 4. Histogram of VPRM NEE residuals at eddy covariance
site reporting temporal resolution (30 min or 60 min), PFT–all-data
VPRM parameters. NEE residuals are calculated as observed NEE
(non-gap-filled) minus VPRM NEE. A normal distribution proba-
bility density function with the same mean and standard deviation
is overlaid.

performed well at the annual scale. This observed residual
distribution also follows a normal distribution (overlaid) rea-
sonably well.

Satisfied now that VPRM residuals are small relative to
EC-observed fluxes, we investigate whether 1 km VPRM di-
agnosed annual NEE for North America seems reasonable
when compared to EC-observed annual NEE. Figure6 com-
pares the distribution of annually integrated VPRM NEE di-
agnoses for the modeling domain (Sect.2.4) with the dis-
tribution of annually integrated NEE observations from the
2007 FluxNet synthesis dataset for the sites in Table1. To
obtain a meaningful comparison to model diagnoses, we
use the FluxNet synthesis dataset gap-filled NEE observa-
tions in this case. The gapfilling used the methods ofPa-
pale et al.(2006) and Moffat et al. (2007). VPRM repro-
duces well the mode of the observed distribution as well
as the right-hand tail (sources of CO2 to the atmosphere).
The left tail of the observed NEE distribution contains more
density than the VPRM diagnoses, suggesting that VPRM
estimates lower sinks of atmospheric CO2 than the gap-
filled FluxNet 2007 synthesis dataset in some cases. The
FluxNet synthesis dataset contains a handful of site years
with sinks of atmospheric CO2 approaching or even exceed-
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Fig. 5.Histogram of VPRM annual integrated NEE residuals, PFT–
all-data VPRM parameters. These are the residuals in Fig.4 inte-
grated by site year. The residuals are calculated as ((annual inte-
grated observed NEE, non-gap-filled) minus (VPRM annual inte-
grated NEE)).

ing 1000 g C m−2 yr−1. VPRM was optimized to these data,
and the left-side tail of the VPRM diagnosed NEE distribu-
tions does contain more mass than the right side.

Overall, the VPRM performance summarized by Figs.4,
5, and6 are encouraging for the ability of the parameter es-
timation process to optimize VPRM to eddy covariance ob-
servations at both hourly and annual timescales.

3.3 VPRM fluxes

Figures7, 8, and9 show annually integrated VPRM GEE,
R, and NEE, respectively, for 2002. The larger-scale (order
> 100 km) spatial patterns are representative of the integrated
fluxes for 2003 to 2006 (not shown). NEE is the difference
between GEE andR, both much larger in magnitude. This
raises detectability issues for NEE: this difference between
two larger and roughly equal quantities is easily polluted by
errors from GEE andR estimation. Therefore, rather than
focus on integrated annual NEE values or aggregated conti-
nental NEE, this study instead focuses on year-to-year NEE
differences and NEE differences across different VPRM pa-
rameter sets.

Year to year flux differences are reported here as annual
anomalies, calculated as integrated annual flux minus mean
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Fig. 6. Histograms of annually integrated NEE. Observations are
the 2007 FluxNet synthesis gap-filled annual NEE.

integrated annual flux (2002–2006). VPRM integrated an-
nual flux anomalies for 2002–2006 are shown in Figs.10
(GEE),11 (R), and12 (NEE).

3.4 Estimated spread of VPRM fluxes

Determining whether these flux diagnoses are able to de-
tect meaningful interannual variability (IAV) requires a mea-
sure of the variance of annual integrated NEE. Section2.5
describes the empirical derivation of a statistical model to
predict the squared difference between the annual integrated
VPRM residual and its mean (NEE′

sq diff, Eq. 4) across site
years. Of the candidate models, the best-fitting model (low-
est AIC) was

NEE′

sq diff = 2.66× 10−1 NEE2
VPRM +

5.72 NEEVPRM + 9.86× 102 T +

3.95× 10−2 pcp2
+ 2.05× 103. (5)

NEEVPRM is annual integrated VPRM NEE, T is annual
mean temperature (◦C), and pcp is annual total precipitation
(mm). The fit achieved a multipleR squared of 0.289, with
the coefficients significant atp < 0.001 (NEE2

VPRM), p <

0.05 (pcp2), p < 0.1 (T ), and no significance for NEEVPRM
(p = 0.12).

The regression model in Eq.5 was tested at the cross-
validation EC sites (Table2, Fig. 2). Figure13 (top panel)
shows observed vs. predicted NEE′

sq diff with the 95 %

Fig. 7. The 2002 annual integrated VPRM GEE, g C m−2 yr−1.
PFT–all-data VPRM parameters. Black areas are outside of the
study domain.

Fig. 8. The 2002 annual integrated VPRM respiration,
g C m−2 yr−1. PFT–all-data VPRM parameters. Black areas
are outside of the study domain.

Fig. 9. The 2002 annual integrated VPRM NEE, g C m−2 yr−1.
PFT–all-data VPRM parameters. Black areas are outside of the
study domain.
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a) 2002 b) 2003 c) 2004

d) 2005

e) 2006

e) 2006

Fig. 10.Annual anomaly, annual integrated VPRM GEE, calculated using PFT–all-data VPRM parameters. Units are g C m−2 yr−1. Anoma-
lies are calculated as annual integrated VPRM GEE minus the 2002–2006 mean annual integrated VPRM GEE. Thus negative values denote
lesser than average atmosphere to ecosystem CO2 flux. Black areas are outside of the study domain.

a) 2002 b) 2003 c) 2004

d) 2005 e) 2006

Fig. 11.Annual anomaly, annual integrated VPRM respiration, calculated using PFT–all-data VPRM parameters. Units are g C m−2 yr−1.
Anomalies are calculated as annual integrated VPRMR minus the 2002–2006 mean annual integrated VPRMR. Thus negative values denote
greater than average atmosphere to ecosystem CO2 flux. Black areas are outside of the study domain.
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a) 2002 b) 2003 c) 2004

d) 2005 e) 2006

Fig. 12.Annual anomaly, annual integrated VPRM NEE, calculated using PFT–all-data VPRM parameters. Units are g C m−2 yr−1. Anoma-
lies are calculated as annual integrated VPRM NEE minus the 2002–2006 mean annual integrated VPRM NEE. Thus negative values denote
greater than average atmosphere to ecosystem CO2 flux. Black areas are outside of the study domain.

prediction interval. The prediction intervals at each point are
calculated from the regression slope and intercept variances,
which are estimated from the residuals of the regression fit.
Of 56 site years in the cross-validation data set, one obser-
vation is outside of the 95% prediction interval. The bottom
panel of Fig.13 shows histograms of the observed and pre-
dicted values. The distributions are similar, except for pre-
dicted values around zero. This highlights a shortcoming of
the regression model approach: negative predicted NEE′

sq diff
values are possible. This should emphasize that, as with any
regression model, predictions are only valid when the ex-
planatory variables take values within the ranges used to fit
the model.

Figure14shows the square root of estimated NEE′

sq diff for
the modeling area for 2002, providing an estimate of VPRM
error magnitude. The spatial patterns for 2003 to 2006 (not
shown) are similar. The estimated VPRM errors are broadly
of similar magnitude to the VPRM NEE differences between
years (Fig.12).

3.5 Modeled flux equifinality

Figure 15 presents the June-July-August VPRM NEE for
the southeastern USA for two different parameter sets: all-
sites–all-data (top panel) and PFT–all-data (bottom panel).
These two parameter sets result in similar cross-validation

SSE (Fig.3). The starkly different spatial patterns of grow-
ing season NEE from the two parameter sets with similar
cross-validation SSE demonstrate the problem of equifinal-
ity in land surface model results. The NEE differences be-
tween the two parameterizations are of similar magnitude to
the estimated VPRM NEE errors of Fig.14.

4 Discussion

4.1 Model parameterization

The five lowest cross-validation SSE values in Fig.3 are not
drastically different from one another, though the penalized
SSE values for the two most parsimonious parameter sets
(all–all and all–annual) are significantly higher. In combina-
tion with the parameter distributions presented inHilton et al.
(2013), this result might suggest that order 100 parameters
are optimal for flux upscaling. The two parameter sets con-
sidered in Fig.3 that use parameterization temporal windows
shorter than annual (monthly and 10 day) produced notably
higher cross-validation SSE values and higher penalized SSE
values than the other five parameter sets, suggesting these pa-
rameterizations overfit the observations.

Considered in conjunction with the differing spatial be-
haviors in Fig.15, the similar PSSE values among the better-
performing parameter sets in Fig.3 suggest an instance of
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Fig. 13. Results from an empirical regression model (Eq.5) for
VPRM NEE residual spread. Units are (g C m−2 yr−1)2. Top panel
shows observed values vs. predicted values at 27 cross-validation
sites (Table2). Observed values are outside of the 95 % prediction
interval where the solid line falls outside of the dashed lines. One
of 56 predicted values (2 %) is outside the 95 % prediction inter-
val. The bottom panel shows histograms for observed values and
model-predicted values.

Fig. 14. The 2002 estimated square root of NEE residual squared
difference (Eq.4), calculated using PFT–all-data VPRM parame-
ters. Units are g C m−2 yr−1. Estimates are calculated by a statis-
tical model (Eq.5, Sect.2.5) with explanatory variables annual in-
tegrated VPRM NEE, annual total precipitation, and annual mean
surface temperature. The 2003–2006 estimated annual errors (not
shown) show similar spatial patterns.

equifinality: PFT–all-data parameters and all-sites–all-data
parameters produce comparable sums of 30 min squared
residuals via strongly divergent spatial outcomes.

Fig. 15. The 2004 VPRM June-July-August integrated NEE. Top
panel shows all-sites–all-data parameters, bottom panel shows PFT–
all-data parameters. Units are g C m−2 yr−1. Black areas were not
calculated for this figure.

4.2 Spatial behavior of modeled fluxes

The broad spatial patterns in the NEE, GPP, andR results
presented here (Figs.7, 8, and9) largely agree with other
analyses (e.g.,Beer et al., 2010; Xiao et al., 2011; Running
et al., 2004). As we would expect given the prominence of
the vegetation index in VPRM structure (Eq.2), the patterns
of strong GPP reflect areas of relatively dense vegetation as
measured by vegetation index (Huete et al., 2002) or biomass
(Myneni et al., 2001).

The relatively large respiration diagnoses for the south-
eastern USA in Fig.8 is also present in the 2003 to 2006
diagnoses. This area, roughly covering the US states of
Louisiana, Mississippi, Alabama, Georgia, and South Car-
olina, is dominated by the mixed forest PFT in the MODIS
land cover classification (Sect.2.3). The three mixed for-
est eddy covariance sites used for VPRM parameterization
are in Wisconsin, USA and Ontario, Canada. Rather than
conclude that the mixed forests of the U.S. Gulf Coast are
much stronger sources of biological CO2 than other classes
of southern forests or more northerly mixed forests, sev-
eral alternative explanations seem more likely. First, per-
haps the carbon cycle mechanics of northern mixed forests
do not describe well the behavior of southerly mixed forests
and diagnose erroneously strong respiration when applied in
southerly regions. Second, three eddy covariance sites may
provide insufficient data to characterize this (or any) PFT.
Lastly, stand age is an important driver of NEE (Litvak et al.,
2003), and is ignored by the modeling methods employed
here.

The region of positive NEE in Fig.15, bottom panel corre-
sponds to the region of large diagnosed respiration discussed
above. Once again, instead of concluding that respiration is
causing the mixed forests of the southeastern USA to re-
lease on the order of 150 g C m−2 yr−1 to the atmosphere,
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the explanations discussed previously (exclusively northerly
mixed forest parameterization sites; insufficient quantity of
mixed forest parameterization sites; potentially important
ecological drivers not included in VPRM) seem more plausi-
ble.

The differences in growing season NEE in the southeast-
ern USA between the two parameter sets shown in Fig.15
highlights a question: what are the most appropriate pa-
rameterization time and space windows for a land surface
model? In contrast, other results of this work might suggest
de-emphasizing this line of inquiry. For example, the total
30 min cross-validation SSE values (Fig.3) across the five
most optimally fitting VPRM parameter sets are nearly equal,
suggesting that the choice of parameter optimization spatial
and temporal windows is perhaps of secondary importance.
In that case, the drastically lesser computational cost makes
coarser spatial and temporal windows preferable.

Notable in the annual anomaly diagnoses (Figs.10(GEE),
11 (R), and12 (NEE)) is the much larger variability of GEE
as compared toR. That GEE variability is reflected in NEE
variability as well. This could be a consequence of VPRM’s
structural treatment of respiration as a linear function of tem-
perature (Eq.1). In contrast VPRM GEE (Eq.2) considers
a number of other variables in addition to temperature. In-
creased interannual variability (IAV) in GEE may simply re-
flect that there are more constituent quantities to vary.

Much of the stronger GEE IAV (Fig.10) occurs in the up-
per midwestern USA. The 2006, for example, showed a par-
ticularly strong VPRM GEE diagnosis centered around the
US state of Indiana. This area is dominated by agriculture
– the cropland PFT in the MODIS IGBP landcover classifi-
cation. Within the cropland PFT different agricultural prod-
ucts are known to vary in the strength of their carbon uptake.
Corn, for example, has particularly strong atmospheric CO2
uptake (Lokupitiya et al., 2009). Without parameterizations
specific to particular crops, model NEE diagnosis can be poor
(Lokupitiya et al., 2009). There are only five agricultural EC
sites in the group used to parameterize VPRM (Table1). This
makes it possible that the model parameterization suffers
from the same representativeness problem that may cause po-
tentially spurious VPRM respiration spatial structure in the
southeastern USA. Many farms rotate crops from one season
to the next; for example, corn in yeary followed by soybeans
in yeary +1. If reflected in remotely sensed ecosystem vari-
ables (e.g. vegetation indices or moisture) this sort of rotation
could itself cause the GEE interannual variation seen in the
VPRM annual anomalies. Similarly, if the cropland VPRM
parameter estimation EC sites (US-Ne1, US-Ne2, US-Ne3,
US-Bo1, and US-Bo2) were consistently planted with a par-
ticular crop during the periods used for parameter estimation,
VPRM should not be expected to perform well for differ-
ent crops. Looking to other potential causes for large year to
year changes in the upper midwestern USA, VPRMR diag-
noses in that region show little year to year variation, remov-
ing temperature anomalies as a driver of GEE IAV. From the

structure of VPRM GEE (Eq.2) this leaves moisture avail-
ability, PAR, and vegetation index as primary candidates for
driving GEE variability.

4.3 VPRM uncertainty estimation

In spite of itsr2 of 0.289, Eq.5 performed well across 27
cross-validation sites on two performance measures: First,
55 of 56 predicted errors (98 %) fall within the 95 % predic-
tion confidence interval (Fig. 13, top panel). Second – and
crucially – the distribution of predicted errors matches the
distribution of observed errors (Fig. 13, bottom panel) at the
cross-validation sites. This suggests that the distribution of
diagnosed VPRM NEE error magnitudes is consistent with
observations.

The multipler2 value of 0.289 achieved by Eq.5 may at
a glance appear relatively low. However, our ultimate goal
in this exercise is a spatial estimate of VPRM NEE uncer-
tainty. In this context it is more important to successfully di-
agnose the distribution of error magnitudes than to accurately
capture every local rise and fall of the error magnitude as a
function of its drivers. This is because spatial aggregation
of high-resolution VPRM error diagnoses will smooth out
the high-resolution inaccuracies without sacrificing the more
important regional accuracy.Hilton et al.(2013) provides the
spatial error covariances needed to perform this aggregation.

Though the regression model estimation methods devel-
oped here are applied to estimate VPRM NEE error magni-
tude, the approach is equally applicable to estimating errors
in an ecosystem model diagnosis of GEE orR; this change
would be subject only to quality of the partitioning of EC
NEE observations into GEE andR.

As noted in Sect.1, several recent studies have attempted
continent-scale carbon flux diagnoses; those diagnoses gen-
erally do not report uncertainty.Beer et al.(2010) reported
spatial estimates of GPP accompanied by globally aggre-
gated uncertainties. The work presented here reports spatial
GPP,R, and NEE diagnoses, and further extends the liter-
ature by estimating annual continental NEE uncertainty in
space.

Beer et al.(2010) estimate GPP uncertainty for their LUE
model by randomly resampling from within their population
of parameters; these parameters are optimized to eddy co-
variance observations at each observation site. Because the
parameters are optimized to flux observations, these uncer-
tainty estimates include observation errors and model param-
eterization errors. Driver data uncertainty is quantified by an-
alyzing uncertainty separately for three different reanalysis
products.

The difference between EC-observed NEE and model
NEE includes contributions from the error sources described
in Sect.2.2: eddy covariance observation error, VPRM pa-
rameterization error, driver data error, VPRM structural er-
rors, and natural variability. Because the uncertainty esti-
mates presented here are derived from model-data residuals,
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all land surface model error sources other than systematic
eddy covariance observation bias are considered implicitly
by this approach. This makes these estimates inclusive of a
broader range of error sources relative to most approaches
that focus on propagating specific errors through a model cal-
culation. The method also avoids the need to quantify distri-
butions of specific error sources, but sacrifices the possibil-
ity of partitioning the estimated error into contributions from
constituent sources.

Because it is based on model-data residuals, the regres-
sion model method presented here represents a different ap-
proach to flux diagnosis uncertainty from the method ofBeer
et al. (2010), which individually samples different model
error contributors such as parameterization uncertainty and
meteorological driver data uncertainty. Direct comparison
is difficult because the uncertainty estimates presented here
quantify NEE errors for North America, whileBeer et al.es-
timate globally aggregated GPP uncertainty. It is simple in
concept, however, to extend the methods shown here to GPP
uncertainty and to the global scale.

4.4 NEE error covariance nugget

The estimated nugget values from the VPRM NEE error
spatial covariance (Hilton et al., 2013) quantify combined
eddy covariance observation error and “microscale varia-
tion”, that is, the behavior of the difference in VPRM NEE
error between two locations that are closer to one another
than the closest pairs of towers among the 65 used for co-
variance parameter estimation. The median estimated sea-
sonal nugget values range from 5.42×10−5 (individual-site–
monthly VPRM parameters) through 0.775 (PFT–all-data pa-
rameters) to 0.884 (all-sites–all-data parameters), with units
of flux squared: (µmol CO2 m−2 s−1)2. Converted to stan-
dard deviation and integrated annually (g C m−2 yr−1) these
nuggets are 21.0, 586, and 603.

In units of standard deviation the annual integrated NEE
error nugget of 21.0 g C m−2 yr−1 from the individual-site–
monthly VPRM parameters is essentially equal to the an-
nual total eddy covariance random observation error of
±20 g C m−2 yr−1 estimated byRichardson and Hollinger
(2005). The 65 eddy covariance sites used for fitting include
26 pairs that are within 10 km of each other, so there are
many data points at small separation distances to quantify
the nugget.

At coarser spatial and temporal parameter estimation res-
olutions (PFT–all-data, all-sites–all-data, etc.) the NEE error
standard deviations of roughly 600 g C m−2 yr−1 calculated
from the nuggets are of similar magnitude to the errors es-
timated from VPRM NEE and climate drivers (Fig.13) for
high-productivity PFTs (e.g. forests, croplands).

These results suggest that when VPRM is optimized to
NEE observations at short temporal scales (order one month)
the VPRM NEE nugget is dominated by eddy covariance ob-
servation error – that is, under these conditions VPRM per-

forms quite well in close proximity (order one kilometer)
to an optimization location. Eddy covariance observation er-
ror is independent of VPRM optimization spatial and tem-
poral windows, so its contribution to either nugget should re-
main constant across these windows. The much larger nugget
when the temporal optimization window is all available ob-
servations therefore suggests that microscale VPRM NEE er-
ror increases dramatically from its value when VPRM is op-
timized monthly for individual sites. This means that VPRM
can perform quite poorly even in close proximity to an opti-
mization location in these cases.

Light-use efficiency models such as VPRM make climate-
driven diagnoses of NEE (Eqs.1 and2). Widespread VPRM
annual NEE error magnitudes (Fig.14, this section) on the
order of VPRM NEE interannual variability (Fig.12) imply
that climate (or, at least, climate viewed through the prism of
VPRM) cannot reliably explain NEE interannual variability.

4.5 Caveats

The results reported here were compiled using VPRM, a sim-
ple LUE-based land surface model, and are therefore most
directly informative toward similar models. Questions of spa-
tial and temporal resolution for model parameterization arise
for more complicated mechanistic ecosystem models as well.
Whether optimizing more complex model structures would
result in similar total PSSE values for strongly contrasting
spatial and temporal optimization windows (as reported here
in Fig. 3) is a question for further analysis. Regardless, this
work suggests that applying model parameterizations outside
of the climate and ecosystem conditions where the parameter
values were optimized can produce suspicious spatial struc-
tures such as the widespread flux of CO2 to the atmosphere
across the southeastern USA in Fig.15 (bottom panel) and
Fig. 8.

The 27 cross-validation sites (Fig.2, Table2) generally
have shorter observational records than the sites used for
VPRM parameterization. Repeating the cross-validation ex-
periment with different, perhaps randomly selected subsets
might be a useful exercise.

In addition, forest stand age since disturbance is a first
order determinant of NEE magnitude (Litvak et al., 2003).
Structurally, VPRM does not consider stand age (Eqs.2 and
1), and the work presented here does not attempt to assess
disturbance history. For this reason, this work does not em-
phasize integrated NEE magnitudes or attempt regional NEE
aggregation.

Likewise, the NEE residual magnitude statistical model
derived here (Sect.2.5) was fit using observed NEE resid-
uals and observed climatic drivers. While estimating uncer-
tainty directly from observed residuals is a strength of the
approach, as with any regression these results cannot pro-
duce meaningful estimates where the driver variables depart
the range of values used for fitting.
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5 Conclusions

This work presents high-resolution diagnoses of North
American NEE and NEE interannual variability accompa-
nied by NEE error estimates, all derived from a simple light-
use efficiency-based land surface model (VPRM). Several
different model optimization spatial and temporal resolutions
achieve similar fits when evaluated by total sum of squared
errors at cross-validation sites and penalized sum of squared
errors at the model parameterization sites. Cross-validation
is useful for identifying parameterizations that overfit assim-
ilated data, however. Cross-validation SSE eliminated two of
seven parameterizations we considered for upscaling. Penal-
ized SSE from the parameterization sites eliminated another
three. This sort of method to evaluate model parameter sets
is computationally inexpensive and would make a welcome
addition to future flux diagnoses.

Two of our model parameterizations achieved similar
cross-validation SSE, but reached their NEE diagnoses
through starkly contrasting spatial distributions of NEE.
Modeling efforts that do not consider multiple spatial and
temporal parameterization resolutions risk missing the struc-
tural uncertainty that this equifinality reveals, and that radi-
cally different fluxes across space may not be readily distin-
guishable when viewed through the lens of aggregated model
errors.

The results here demonstrate that modeled annual inte-
grated flux magnitude, annual mean surface temperature, and
annual total precipitation provide reasonable (and computa-
tionally inexpensive) empirical predictors of NEE error mag-
nitude. Estimated NEE errors are of equal magnitude to di-
agnosed NEE interannual variability. That a climate-driven
land surface model cannot reliably separate year-to-year dif-
ferences in model NEE from model error suggests that NEE
interannual variability has important drivers outside of large-
scale climate, or, alternatively, that the present network of
North American eddy covariance NEE observation sites pro-
vide insufficient constraints on NEE and NEE error to reveal
a strong climate–NEE interannual variability connection.

Acknowledgements.Data were processed using SciPy (Jones et al.,
2001) and Matplotlib (Hunter, 2007) as well as the R language
and platform for statistical computing (R Development Core Team,
2007), using the gstat (Pebesma, 2004), geoR (Ribeiro Jr. and Dig-
gle, 2001), and DEoptim (Ardia and Mullen, 2009) packages. Fund-
ing for this research was provided by the NOAA Office of Global
Programs and the US Department of Energy Terrestrial Carbon Pro-
cesses Program. We wish to thank the many agencies that provided
support for eddy covariance tower construction and maintenance.
The Metolius AmeriFlux research was supported by the Office of
Science (BER), U.S. Department of Energy, grant no. DE-FG02-
06ER64318. The Metolius old-aged ponderosa pine study was sup-
ported by NASA (grant no. NAG5-7531), and the Office of Science
(BER), US Department of Energy (grant no. FG0300ER63014).
Data collection for the US-ARM site was supported by the Office
of Biological and Environmental Research of the US Department of

Energy under contract DE-AC02-05CH11231 as part of the Atmo-
spheric Radiation Measurement Program. Research at the Morgan
Monroe State Forest site was supported by the Office of Science
(BER), US Department of Energy, grant no. DE-FG02-07ER64371.

This work used eddy covariance data acquired by the FLUXNET
community and in particular by the following networks: Ameri-
Flux (US Department of Energy, Biological and Environmental
Research, Terrestrial Carbon Program (DE-FG02-04ER63917
and DE-FG02-04ER63911)), FluxNet-Canada (supported by
CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan),
GreenGrass, LBA, NECC, USCCC. We acknowledge the financial
support to the eddy covariance data harmonization provided by
CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute
for Biogeochemistry, National Science Foundation, University
of Tuscia, Université Laval and Environment Canada and US
Department of Energy and the database development and technical
support from Berkeley Water Center, Lawrence Berkeley National
Laboratory, Microsoft Research eScience, Oak Ridge National
Laboratory, University of California – Berkeley, University of
Virginia.

Edited by: M. Williams

References

Adkinson, A., Syed, K., and Flanagan, L.: Contrasting re-
sponses of growing season ecosystem CO2 exchange to vari-
ation in temperature and water table depth in two peatlands
in northern Alberta, Canada, J. Geophys. Res., 116, G01004,
doi:10.1029/2010JG001512, 2011.

Akaike, H.: An information criterion (AIC), Math. Sci., 14, 5–9,
1976.

Amiro, B., Orchansky, A., Barr, A., Black, T., Chambers, S., III,
F. C., Goulden, M., Litvak, M., Liu, H., McCaughey, J., McMil-
lan, A., and Randerson, J.: The effect of post-fire stand age on the
boreal forest energy balance, Agr. Forest Meteorol., 140, 41–50,
doi:10.1016/j.agrformet.2006.02.014, 2006.

Anthoni, P., Unsworth, M., Law, B., Irvine, J., Baldocchi, D., Tuyl,
S., and Moore, D.: Seasonal differences in carbon and water va-
por exchange in young and old-growth ponderosa pine ecosys-
tems, Agr. Forest Meteorol., 111, 203–222, 2002.

Ardia, D. and Mullen, K.: DEoptim: Differential Evolution Opti-
mization in R, R package version 2.0-1,http://CRAN.R-project.
org/package=DEoptim(last access: 1 June 2012), 2009.

Baldocchi, D.: Assessing the eddy covariance technique for evalu-
ating carbon dioxide exchange rates of ecosystems: past, present
and future, Glob. Change Biol., 9, 479–492, doi:10.1046/j.1365-
2486.2003.00629.x, 2003.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carval-
hais, N., Rodenbeck, C., Arain, M. A., Baldocchi, D., Bonan, G.
B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas,
M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O.,
Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Pa-
pale, D.: Terrestrial Gross Carbon Dioxide Uptake: Global Dis-
tribution and Covariation with Climate, Science, 329, 834–838,
doi:10.1126/science.1184984, 2010.

Bergeron, O., Margolis, H., Black, T., Coursolle, C., Dunn, A., Barr,
A., and Wofsy, S.: Comparison of carbon dioxide fluxes over

www.biogeosciences.net/11/217/2014/ Biogeosciences, 11, 217–235, 2014

http://dx.doi.org/10.1029/2010JG001512
http://dx.doi.org/10.1016/j.agrformet.2006.02.014
http://CRAN.R-project.org/package=DEoptim
http://CRAN.R-project.org/package=DEoptim
http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x
http://dx.doi.org/10.1046/j.1365-2486.2003.00629.x
http://dx.doi.org/10.1126/science.1184984


232 T. W. Hilton et al.: Continental-scale CO2 flux diagnosis with uncertainties

three boreal black spruce forests in Canada, Glob. Change Biol.,
13, 89–107, 2007.

Black, T., Chen, W., Barr, A., Arain, M., Chen, Z., Nesic, Z., Hogg,
E., Neumann, H., and Yang, P.: Increased carbon sequestration by
a boreal deciduous forest in years with a warm spring, Geophys.
Res. Lett., 27, 1271–1274, 2000.

Bond-Lamberty, B., Wang, C., and Gower, S.: A global rela-
tionship between the heterotrophic and autotrophic compo-
nents of soil respiration?, Glob. Change Biol., 10, 1756–1766,
doi:10.1111/j.1365-2486.2004.00816.x, 2004.

Borken, W., Davidson, E., Savage, K., Sundquist, E., and Steudler,
P.: Effect of summer throughfall exclusion, summer drought, and
winter snow cover on methane fluxes in a temperate forest soil,
Soil Biol. Biochem., 38, 1388–1395, 2006.

Bracho, R., Powell, T., Dore, S., Li, J., Hinkle, C., and Drake, B.:
Environmental and biological controls on water and energy ex-
change in Florida scrub oak and pine flatwoods ecosystems, J.
Geophys. Res., 113, G02004, doi:10.1029/2007JG000469, 2008.

Bracho, R. G., Starr, G., Gholz, H., Martin, T. A., Cropper, J. W. P.,
and Loescher, H. W.: Controls on carbon dynamics by ecosystem
structure and climate for southeastern U.S. slash pine plantations,
Ecol. Monogr., 82, 101–128, doi:10.1890/11-0587.1, 2012.

Brotzge, J.: A two-year comparison of the surface water and energy
budgets between two OASIS sites and NCEP-NCAR reanalysis
data, J. Hydrometeorol., 5, 311–326, 2004.

Calcagno, V.: glmulti: GLM model selection and multimodel in-
ference made easy, R package version 1.0.1,http://CRAN.
R-project.org/package=glmulti(last access: 14 August 2013),
2011.

Clark, K., Gholz, H., and Castro, M.: Carbon dynamics along a
chronosequence of slash pine plantations in north Florida, Ecol.
Appl., 14, 1154–1171, 2004.

Cook, B. D., Davis, K. J., Wang, W. Q., Desai, A., Berger,
B. W., Teclaw, R. M., Martin, J. G., Bolstad, P. V., Bak-
win, P. S., Yi, C. X., and Heilman, W.: Carbon exchange
and venting anomalies in an upland deciduous forest in north-
ern Wisconsin, USA, Agr. Forest Meteorol., 126, 271–295,
doi:10.1016/j.agrformet.2004.06.008, 2004.

Davis, K., Bakwin, P.S.and Yi, C., Berger, B., Zhao, C., Teclaw, R.,
and Isebrands, J.: The annual cycles of CO2 and H2O exchange
over a northern mixed forest as observed from a very tall tower,
Glob. Change Biology, 9, 1278–1293, 2003.

Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P.,
Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob,
D., Lohmann, U., Ramachandran, S., da Silva Dias, P., Wofsy, S.,
and Zhang, X.: Couplings Between Changes in the Climate Sys-
tem and Biogeochemistry, in: Climate Change 2007: The Physi-
cal Science Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate
Change, edited by: Solomon, S., Qin, D., Manning, M., Chen,
Z., Marquis, M., Averyt, K., Tignor, M., and Miller, H., Cam-
bridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 2007.

Desai, A., Bolstad, P., Cook, B., Davis, K., and Carey, E.: Compar-
ing net ecosystem exchange of carbon dioxide between an old-
growth and mature forest in the upper Midwest, USA, Agr. Forest
Meteorol., 128, 33–55, 2005.

Dunn, A., Barford, C., Wofsy, S., Goulden, M., and Daube, B.: A
long-term record of carbon exchange in a boreal black spruce

forest: means, responses to interannual variability, and decadal
trends, Glob. Change Biol., 13, 577–590, doi:10.1111/j.1365-
2486.2006.01221.x, 2007.

Epstein, H., Calef, M., Walker, M., Stuart Chapin III, F., and
Starfield, A.: Detecting changes in arctic tundra plant commu-
nities in response to warming over decadal time scales, Glob.
Change Biol., 10, 1325–1334, 2004.

Fischer, M., Billesbach, D., Berry, J., Riley, W., and Torn, M.:
Spatiotemporal variations in growing season exchanges of CO2,
H2O, and sensible heat in agricultural fields of the Southern
Great Plains, Earth Interact., 11, 1–21, 2007.

Flanagan, L. B. and Adkinson, A. C.: Interacting controls on pro-
ductivity in a northern Great Plains grassland and implications
for response to ENSO events, Glob. Change Biol., 17, 3293–
3311, doi:10.1111/j.1365-2486.2011.02461.x, 2011.

Flanagan, L. B. and Syed, K. H.: Stimulation of both photosynthesis
and respiration in response to warmer and drier conditions in a
boreal peatland ecosystem, Glob. Change Biol., 17, 2271–2287,
doi:10.1111/j.1365-2486.2010.02378.x, 2011.

Friedl, M., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney,
D., Strahler, A. H., Woodcock, C. E., Gopal, S., Schneider, A.,
Cooper, A., Baccini, A., Gao, F., and Schaaf, C.: Global land
cover mapping from MODIS: algorithms and early results, Re-
mote Sens. Environ., 83, 287–302, 2002.

Giasson, M., Coursolle, C., and Margolis, H.: Ecosystem-level CO2
fluxes from a boreal cutover in eastern Canada before and after
scarification, Agr. Forest Meteorol., 140, 23–40, 2006.

Goldstein, A., Hultman, N., Fracheboud, J., Bauer, M., Panek, J.,
Xu, M., Qi, Y., Guenther, A., and Baugh, W.: Effects of climate
variability on the carbon dioxide, water, and sensible heat fluxes
above a ponderosa pine plantation in the Sierra Nevada (CA),
Agr. Forest Meteorol., 101, 113–129, 2000.

Gough, C., Vogel, C., Schmid, H., Su, H., and Curtis, P.: Multi-year
convergence of biometric and meteorological estimates of forest
carbon storage, Agr. Forest Meteorol., 148, 158–170, 2008.

Goulden, M., Munger, W., Fan, S., Daube, B., and Wofsy, S.: Mea-
surements of carbon sequestration by long-term eddy covariance:
methods and a critical evaluation of accuracy, Glob. Change
Biol., 2, 169–182, 1996.

Goulden, M., Winston, G., McMillan, A., Litvak, M., Read, E.,
Rocha, A., and Rob Elliot, J.: An eddy covariance mesonet to
measure the effect of forest age on land-atmosphere exchange,
Glob. Change Biol., 12, 2146–2162, 2006.

Gu, L., Meyers, T., Pallardy, S., Hanson, P., Yang, B., Heuer, M.,
Hosman, K., Riggs, J., Sluss, D., and Wullschleger, S.: Direct
and indirect effects of atmospheric conditions and soil moisture
on surface energy partitioning revealed by a prolonged drought at
a temperate forest site, J. Geophys. Res.-Atmos., 111, D16102,
doi:10.1029/2006JD007161, 2006.

Hadley, J. and Schedlbauer, J.: Carbon exchange of an old-growth
eastern hemlock(Tsuga canadensis) forest in central New Eng-
land, Tree Physiol., 22, 1079–1092, 2002.

Hanson, P., Wullschleger, S., Norby, R., Tschaplinski, T., and Gun-
derson, C.: Importance of changing CO2, temperature, precipita-
tion, and ozone on carbon and water cycles of an upland-oak for-
est: incorporating experimental results into model simulations,
Glob. Change Biol., 11, 1402–1423, 2005.

Biogeosciences, 11, 217–235, 2014 www.biogeosciences.net/11/217/2014/

http://dx.doi.org/10.1111/j.1365-2486.2004.00816.x
http://dx.doi.org/10.1029/2007JG000469
http://dx.doi.org/10.1890/11-0587.1
http://CRAN.R-project.org/package=glmulti
http://CRAN.R-project.org/package=glmulti
http://dx.doi.org/10.1016/j.agrformet.2004.06.008
http://dx.doi.org/10.1111/j.1365-2486.2006.01221.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01221.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02461.x
http://dx.doi.org/10.1111/j.1365-2486.2010.02378.x
http://dx.doi.org/10.1029/2006JD007161


T. W. Hilton et al.: Continental-scale CO2 flux diagnosis with uncertainties 233

Harazono, Y., Mano, M., Miyata, A., Zulueta, R., and Oechel, W.:
Inter-annual carbon dioxide uptake of a wet sedge tundra ecosys-
tem in the Arctic, Tellus B, 55, 215–231, 2003.

Heinsch, F., Heilman, J., McInnes, K., Cobos, D., Zuberer, D., and
Roelke, D.: Carbon dioxide exchange in a high marsh on the
Texas Gulf Coast: effects of freshwater availability, Agr. Forest
Meteorol., 125, 159–172, 2004.

Hibbard, K., Law, B., Reichstein, M., and Sulzman, J.: An analysis
of soil respiration across northern hemisphere temperate ecosys-
tems, Biogeochemistry, 73, 29–70, 2005.

Hilborn, R. and Mangel, M.: The ecological detective: confronting
models with data, Princeton University Press, Princeton, NJ,
USA, 1997.

Hilton, T. W., Davis, K. J., Keller, K., and Urban, N. M.: Improv-
ing North American terrestrial CO2 flux diagnosis using spatial
structure in land surface model residuals, Biogeosciences, 10,
4607–4625, doi:10.5194/bg-10-4607-2013, 2013.

Hollinger, D., Goltz, S., Davidson, E., Lee, J., Tu, K., and Valen-
tine, H.: Seasonal patterns and environmental control of carbon
dioxide and water vapour exchange in an ecotonal boreal forest,
Glob. Change Biol., 5, 891–902, 1999.

Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M.,
Hughes, H., Leclerc, M. Y., Lee, J. T., Richardson, A. D.,
Rodrigues, C., Scott, N., Achuatavarier, D., and Walsh, J.:
Spatial and temporal variability in forest-atmosphere CO2 ex-
change, Glob. Change Biol., 10, 1689–1706, doi:10.1111/j.1365-
2486.2004.00847.x, 2004.

Howard, E., Gower, S., Foley, J., and Kucharik, C.: Effects of log-
ging on carbon dynamics of a jack pine forest in Saskatchewan,
Canada, Glob. Change Biol., 10, 1267–1284, 2004.

Huete, A., Justice, C., and van Leeuwen, W.: MODIS vegetation
index (MOD 13) algorithm theoretical basis document, Ver-
sion 3, available at:http://modis.gsfc.nasa.gov/data/atbd/atbd_
mod13.pdf(last access: 1 June 2012), 1999.

Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Fer-
reira, L.: Overview of the radiometric and biophysical perfor-
mance of the MODIS vegetation indices, Remote Sens. Environ.,
83, 195–213, 2002.

Humphreys, E., Black, T., Morgenstern, K., Cai, T., Drewitt,
G., Nesic, Z., and Trofymow, J.: Carbon dioxide fluxes in
coastal Douglas-fir stands at different stages of development af-
ter clearcut harvesting, Agr. Forest Meteorol., 140, 6–22, 2006.

Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, 2007.

Janssens, I., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.,
Folberth, G., Schlamadinger, B., Hutjes, R., Ceulemans,
R., Schulze, E.-D., Valentini, R., and Dolman, A.: Eu-
rope’s Terrestrial Biosphere Absorbs 7 to 12 % of Euro-
pean Anthropogenic CO2 Emissions, Science, 300, 1538–1542,
doi:10.1126/science.1083592, 2003.

Jones, E., Oliphant, T., Peterson, P., and others: SciPy: Open source
scientific tools for Python,http://www.scipy.org/(last access: 14
August 2013), 2001.

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield,
J., Goulden, M. L., Bonan, G., Cescatti, A., Chen, J., de Jeu,
R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle, D., Go-
bron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani,
L., Mu, Q., Mueller, B., Oleson, K., Papale, D., Richard-
son, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy,

N., Weber, U., Williams, C., Wood, E., Zaehle, S., and
Zhang, K.: Recent decline in the global land evapotranspira-
tion trend due to limited moisture supply, Nature, 467, 951–954,
doi:10.1038/nature09396, 2010.

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D.,
Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu,
Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Hig-
gins, W., Janowiak, J., Mo, K., Ropelewski, C., and Wang, J.:
The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol.
Soc., 77, 437–471, 1996.

Keeling, R., Piper, S., and Heimann, M.: Global and hemispheric
CO2 sinks deduced from changes in atmospheric O2 concentra-
tion, Nature, 381, 218–221, 1996.

Lafleur, P., Roulet, N., Bubier, J., Frolking, S., and Moore, T.: In-
terannual variability in the peatland-atmosphere carbon dioxide
exchange at an ombrotrophic bog, Global Biogeochem. Cy., 17,
1036, doi:10.1029/2002GB001983, 2003.

Litvak, M., Miller, S., Wofsy, S. C., and Goulden, M.: Ef-
fect of stand age on whole ecosystem CO2 exchange in the
Canadian boreal forest, J. Geophys. Res.-Atmos., 108, 8225,
doi:10.1029/2001JD000854, 2003.

Liu, H., Randerson, J., Lindfors, J., and Chapin III, F.: Changes
in the surface energy budget after fire in boreal ecosystems of
interior Alaska: An annual perspective, J. Geophys. Res, 110,
D13101, doi:10.1029/2004JD005158, 2005.

Lokupitiya, E., Denning, S., Paustian, K., Baker, I., Schaefer, K.,
Verma, S., Meyers, T., Bernacchi, C. J., Suyker, A., and Fischer,
M.: Incorporation of crop phenology in Simple Biosphere Model
(SiBcrop) to improve land-atmosphere carbon exchanges from
croplands, Biogeosciences, 6, 969–986, doi:10.5194/bg-6-969-
2009, 2009.

Loveland, T. and Belward, A.: The IGBP-DIS global 1km land
cover data set, DISCover: first results, Int. J. Remote Sens., 18,
3289–3295, 1997.

Luo, H., Oechel, W., Hastings, S., Zulueta, R., Qian, Y., and Kwon,
H.: Mature semiarid chaparral ecosystems can be a significant
sink for atmospheric carbon dioxide, Glob. Change Biol., 13,
386–396, 2007.

Ma, S., Baldocchi, D., Xu, L., and Hehn, T.: Inter-annual variability
in carbon dioxide exchange of an oak/grass savanna and open
grassland in California, Agr. Forest Meteorol., 147, 157–171,
2007.

Mahadevan, P., Wofsy, S., Matross, D., Xiao, X., Dunn, A.,
Lin, J., Gerbig, C., Munger, J., Chow, V., and Gottlieb, E.:
A Satellite-Based Biosphere Parameterization for Net Ecosys-
tem CO2 Exchange: Vegetation Photosynthesis and Respira-
tion Model (VPRM), Global Biogeochem. Cy., 22, GB2005,
doi:10.1029/2006GB002735, 2008.

McCaughey, J., Pejam, M., Arain, M., and Cameron, D.: Car-
bon dioxide and energy fluxes from a boreal mixedwood forest
ecosystem in Ontario, Canada, Agr. Forest Meteorol., 140, 79–
96, 2006.

Meyers, T. and Hollinger, S.: An assessment of storage terms in
the surface energy balance of maize and soybean, Agr. Forest
Meteorol., 125, 105–115, 2004.

Mkhabela, M., Amiro, B., Barr, A., Black, T., Hawthorne, I.,
Kidston, J., McCaughey, J., Orchansky, A., Nesic, Z., Sass,
A., Shashkov, A., and Zha, T.: Comparison of carbon dynam-
ics and water use efficiency following fire and harvesting in

www.biogeosciences.net/11/217/2014/ Biogeosciences, 11, 217–235, 2014

http://dx.doi.org/10.5194/bg-10-4607-2013
http://dx.doi.org/10.1111/j.1365-2486.2004.00847.x
http://dx.doi.org/10.1111/j.1365-2486.2004.00847.x
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf
http://dx.doi.org/10.1126/science.1083592
http://www.scipy.org/
http://dx.doi.org/10.1038/nature09396
http://dx.doi.org/10.1029/2002GB001983
http://dx.doi.org/10.1029/2001JD000854
http://dx.doi.org/10.1029/2004JD005158
http://dx.doi.org/10.5194/bg-6-969-2009
http://dx.doi.org/10.5194/bg-6-969-2009
http://dx.doi.org/10.1029/2006GB002735


234 T. W. Hilton et al.: Continental-scale CO2 flux diagnosis with uncertainties

Canadian boreal forests, Agr. Forest Meteorol., 149, 783–794,
doi:10.1016/j.agrformet.2008.10.025, 2009.

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richard-
son, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina,
G., Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D.,
Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Com-
prehensive comparison of gap-filling techniques for eddy covari-
ance net carbon fluxes, Agr. Forest Meteorol., 147, 209–232,
doi:10.1016/j.agrformet.2007.08.011, 2007.

Monson, R., Turnipseed, A., Sparks, J., Harley, P., Scott-Denton,
L., Sparks, K., and Huxman, T.: Carbon sequestration in a high-
elevation, subalpine forest, Glob. Change Biol., 8, 459–478,
2002.

Myneni, R. B., Dong, J., Tucker, C. J., Kaufmann, R. K.,
Kauppi, P. E., Liski, J., Zhou, L., Alexeyev, V., and Hughes,
M. K.: A large carbon sink in the woody biomass of
Northern forests, P. Natl. Acad. Sci., 98, 14784–14789,
doi:10.1073/pnas.261555198, 2001.

Noormets, A., Chen, J., and Crow, T.: Age-Dependent Changes in
Ecosystem Carbon Fluxes in Managed Forests in Northern Wis-
consin, USA, Ecosystems, 10, 187–203, doi:10.1007/s10021-
007-9018-y, 2007.

Noormets, A., Desai, A., Cook, B., Euskirchen, E., Ricciuto, D.,
Davis, K., Bolstad, P., Schmid, H., Vogel, C., Carey, E., Su,
H., and Chen, J.: Moisture sensitivity of ecosystem respira-
tion: Comparison of 14 forest ecosystems in the Upper Great
Lakes Region, USA, Agr. Forest Meteorol., 148, 216–230,
doi:10.1016/j.agrformet.2007.08.002, 2008.

Oechel, W., Vourlitis, G., Hastings, S., Zulueta, R., Hinzman, L.,
and Kane, D.: Acclimation of ecosystem CO2 exchange in the
Alaskan Arctic in response to decadal climate warming, Nature,
406, 978–981, 2000.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C.,
Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T.,
and Yakir, D.: Towards a standardized processing of Net Ecosys-
tem Exchange measured with eddy covariance technique: algo-
rithms and uncertainty estimation, Biogeosciences, 3, 571–583,
doi:10.5194/bg-3-571-2006, 2006.

Pebesma, E.: Multivariable geostatistics in S: the gstat package,
Comput. Geosci., 30, 683–691, 2004.

Peichl, M. and Arain, M.: Above-and belowground ecosystem
biomass and carbon pools in an age-sequence of temperate pine
plantation forests, Agr. Forest Meteorol., 140, 51–63, 2006.

Peters, W., Jacobson, A. R., Sweeney, C., Andrews, A. E., Con-
way, T. J., Masarie, K., Miller, J. B., Bruhwiler, L. M. P., Pétron,
G., Hirsch, A. I., Worthy, D. E. J., van der Werf, G. R., Ran-
derson, J. T., Wennberg, P. O., Krol, M. C., and Tans, P. P.: An
atmospheric perspective on North American carbon dioxide ex-
change: CarbonTracker, P. Natl. Acad. Sci., 104, 18925–18930,
doi:10.1073/pnas.0708986104, 2007.

Potter, C., Klooster, S., Huete, A., and Genovese, V.: Terrestrial Car-
bon Sinks for the United States Predicted from MODIS Satellite
Data and Ecosystem Modeling, Earth Interact., 11, 1–21, 2007.

Powell, T., Bracho, R., Li, J., Dore, S., Hinkle, C., and Drake, B.:
Environmental controls over net ecosystem carbon exchange of
scrub oak in central Florida, Agr. Forest Meteorol., 141, 19–34,
2006.

Powell, T., Gholz, H., Clark, K., Starr, G., Cropper, W., and Martin,
T.: Carbon exchange of a mature, naturally regenerated pine for-
est in north Florida, Glob. Change Biol., 14, 2523–2538, 2008.

R Development Core Team: R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria,http://www.R-project.org(last access: 4 June
2012), ISBN 3-900051-07-0, 2007.

Ribeiro Jr., P. and Diggle, P.: geoR: a package for geostatistical
analysis, R-NEWS, 1, 14–18,http://CRAN.R-project.org/doc/
Rnews/(last access: 1 June 2012), ISSN 1609-3631, 2001.

Ricciuto, D., Butler, M., Davis, K., Cook, B., Bakwin, P., Andrews,
A., and Teclaw, R.: A Bayesian synthesis inversion of simple res-
piration and GEP models with eddy covariance data in a northern
Wisconsin forest: Determining the causes of interannual variabil-
ity, Agr. Forest Meteorol., 148, 309–327, 2008.

Richardson, A., Hollinger, D., Burba, G., Davis, K., Flanagan, L.,
Katul, G., Munger, J., Ricciuto, D., Stoy, P., Suyker, A., Verma,
S., and Wofsy, S.: A multi-site analysis of random error in tower-
based measurements of carbon and energy fluxes, Agr. Forest
Meteorol., 136, 1–18, 2006.

Richardson, A. D. and Hollinger, D. Y.: Statistical model-
ing of ecosystem respiration using eddy covariance data:
Maximum likelihood parameter estimation, and Monte Carlo
simulation of model and parameter uncertainty, applied to
three simple models, Agr. Forest Meteorol., 131, 191–208,
doi:10.1016/j.agrformet.2005.05.008, 2005.

Roy, D., Borak, J., Devadiga, S., Wolfe, R., Zheng, M., and De-
scloitres, J.: The MODIS land product quality assessment ap-
proach, Remote Sens. Environ., 83, 62–76, 2002.

Running, S., Nemani, R., Heinsch, F., Zhao, M., Reeves, M., and
Hashimoto, H.: A continuous satellite-derived measure of global
terrestrial primary production, BioScience, 54, 547–560, 2004.

Schaaf, C. B., Gao, F., Strahler, A. H., Lucht, W., Li, X., Tsang,
T., Strugnell, N. C., Zhang, X., Jin, Y., Muller, J.-P., Lewis, P.,
Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale,
M., Doll, C., d’Entremont, R. P., Hu, B., Liang, S., Privette, J. L.,
and Roy, D.: First operational BRDF, albedo nadir reflectance
products from MODIS, Remote Sens. Environ., 83, 135–148,
doi:10.1016/S0034-4257(02)00091-3, 2002.

Schmid, H., Grimmond, C., Cropley, F., Offerle, B., and Su, H.:
Measurements of CO2 and energy fluxes over a mixed hardwood
forest in the mid-western United States, Agr. Forest Meteorol.,
103, 357–374, 2000.

Schwalm, C. R., Williams, C. A., Schaefer, K., Arneth, A., Bonal,
D., Buchmann, N., Chen, J., Law, B. E., Lindroth, A., Luys-
saert, S., Reichstein, M., and Richardson, A. D.: Assimilation
exceeds respiration sensitivity to drought: A FLUXNET syn-
thesis, Glob. Change Biol., 16, 657–670, doi:10.1111/j.1365-
2486.2009.01991.x, 2010.

Schwalm, C. R., Williams, C. A., Schaefer, K., Baker, I., Collatz,
G. J., and Rödenbeck, C.: Does terrestrial drought explain global
CO2 flux anomalies induced by El Niño?, Biogeosciences, 8,
2493–2506, doi:10.5194/bg-8-2493-2011, 2011.

Scott, R. L., Jenerette, G. D., Potts, D. L., and Huxman, T. E.: Ef-
fects of seasonal drought on net carbon dioxide exchange from
a woody-plant-encroached semiarid grassland, J. Geophys. Res.-
Biogeo., 114, n/a–n/a, doi:10.1029/2008JG000900, 2009.

Biogeosciences, 11, 217–235, 2014 www.biogeosciences.net/11/217/2014/

http://dx.doi.org/10.1016/j.agrformet.2008.10.025
http://dx.doi.org/10.1016/j.agrformet.2007.08.011
http://dx.doi.org/10.1073/pnas.261555198
http://dx.doi.org/10.1007/s10021-007-9018-y
http://dx.doi.org/10.1007/s10021-007-9018-y
http://dx.doi.org/10.1016/j.agrformet.2007.08.002
http://dx.doi.org/10.5194/bg-3-571-2006
http://dx.doi.org/10.1073/pnas.0708986104
http://www.R-project.org
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://dx.doi.org/10.1016/j.agrformet.2005.05.008
http://dx.doi.org/10.1016/S0034-4257(02)00091-3
http://dx.doi.org/10.1111/j.1365-2486.2009.01991.x
http://dx.doi.org/10.1111/j.1365-2486.2009.01991.x
http://dx.doi.org/10.5194/bg-8-2493-2011
http://dx.doi.org/10.1029/2008JG000900


T. W. Hilton et al.: Continental-scale CO2 flux diagnosis with uncertainties 235

Sheffield, J., Goteti, G., and Wood, E.: Development of a 50-year
high-resolution global dataset of meteorological forcings for land
surface modeling, J. Climate, 19, 3088–3111, 2006.

Smith, M., Ollinger, S., Martin, M., Aber, J., Hallett, R., and
Goodale, C.: Direct estimation of aboveground forest produc-
tivity through hyperspectral remote sensing of canopy nitrogen,
Ecol. Appl., 12, 1286–1302, 2002.

Stoy, P., Katul, G., Siqueira, M., Juang, J., Novick, K., Uebelherr,
J., and Oren, R.: An evaluation of models for partitioning eddy
covariance-measured net ecosystem exchange into photosynthe-
sis and respiration, Agr. Forest Meteorol., 141, 2–18, 2006.

Strahler, A., Muchoney, D., Borak, J., Friedl, M., Gopal, S., Lam-
bin, E., and Moody, A.: MODIS Land Cover Product Algorithm
Theoretical Basis Document (ATBD) MODIS Land Cover and
Land-Cover Change, USGS, NASA,http://modis.gsfc.nasa.gov/
data/atbd/atbd_mod12.pdf, (last access: 4 June 2012), 1999.

Sulman, B. N., Desai, A. R., Cook, B. D., Saliendra, N., and
Mackay, D. S.: Contrasting carbon dioxide fluxes between a
drying shrub wetland in Northern Wisconsin, USA, and nearby
forests, Biogeosciences, 6, 1115–1126, doi:10.5194/bg-6-1115-
2009, 2009.

Sun, G., Noormets, A., Gavazzi, M., McNulty, S., Chen, J., Domec,
J., King, J., Amatya, D., and Skaggs, R.: Energy and water bal-
ance of two contrasting loblolly pine plantations on the lower
coastal plain of North Carolina, USA, Forest Ecol. Manag., 259,
1299–1310, 2010.

Thomas, C., Law, B., Irvine, J., Martin, J., Pettijohn, J., and Davis,
K.: Seasonal hydrology explains interannual and seasonal vari-
ation in carbon and water exchange in a semiarid mature pon-
derosa pine forest in central Oregon, J. Geophys. Res., 114,
G04006, doi:10.1029/2009JG001010, 2009.

Urbanski, S., Barford, C., Wofsy, S., Kucharik, C., Pyle, E., Bud-
ney, J., McKain, K., Fitzjarrald, D., Czikowsky, M., and Munger,
J.: Factors controlling CO2 exchange on timescales from hourly
to decadal at Harvard Forest, J. Geophys. Res., 112, G02020,
doi:10.1029/2006JG000293, 2007.

Verma, S. B., Dobermann, A., Cassman, K. G., Walters, D. T.,
Knops, J. M., Arkebauer, T. J., Suyker, A. E., Burba, G. G.,
Amos, B., Yang, H., Ginting, D., Hubbard, K. G., Gitelson, A. A.,
and Walter-Shea, E. A.: Annual carbon dioxide exchange in irri-
gated and rainfed maize-based agroecosystems, Agr. Forest Me-
teorol., 131, 77–96, doi:10.1016/j.agrformet.2005.05.003, 2005.

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin,
P., Verbeeck, H., Carvalhais, N., Jung, M., Hollinger, D. Y.,
Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M.,
and Wang, Y. P.: Improving land surface models with FLUXNET
data, Biogeosciences, 6, 1341–1359, doi:10.5194/bg-6-1341-
2009, 2009.

Wilson, T. and Meyers, T.: Determining vegetation indices from
solar and photosynthetically active radiation fluxes, Agr. Forest
Meteorol., 144, 160–179, doi:10.1016/j.agrformet.2007.04.001,
2007.

Xiao, J., Zhuang, Q., Baldocchi, D., Law, B., Richardson, A.,
Chen, J., Oren, R., Starr, G., Noormets, A., Ma, S., Verma,
S., Wharton, S., Wofsy, S., Bolstad, P., Burns, S., Cook, D.,
Curtis, P., Drake, B., Falk, M., Fischer, M., Foster, D., Gu,
L., Hadley, J., Hollinger, D., Katul, G., Litvak, M., Martin, T.,
Matamala, R., McNulty, S., Meyers, T., Monson, R., Munger,
J., Oechel, W., U, K. P., Schmid, H., Scott, R., Sun, G.,
Suyker, A., and Torn, M.: Estimation of net ecosystem car-
bon exchange for the conterminous United States by combining
MODIS and AmeriFlux data, Agr. Forest Meteorol., 148, 1827–
1847, doi:10.1016/j.agrformet.2008.06.015, 2008.

Xiao, J., Zhuang, Q., Law, B. E., Baldocchi, D. D., Chen, J.,
Richardson, A. D., Melillo, J. M., Davis, K. J., Hollinger, D. Y.,
Wharton, S., Oren, R., Noormets, A., Fischer, M. L., Verma,
S. B., Cook, D. R., Sun, G., McNulty, S., Wofsy, S. C., Bol-
stad, P. V., Burns, S. P., Curtis, P. S., Drake, B. G., Falk, M.,
Foster, D. R., Gu, L., Hadley, J. L., Katul, G. G., Litvak, M.,
Ma, S., Martin, T. A., Matamala, R., Meyers, T. P., Monson,
R. K., Munger, J. W., Oechel, W. C., Paw, U. K. T., Schmid,
H. P., Scott, R. L., Starr, G., Suyker, A. E., and Torn, M. S.:
Assessing net ecosystem carbon exchange of U.S. terrestrial
ecosystems by integrating eddy covariance flux measurements
and satellite observations, Agr. Forest Meteorol., 151, 60–69,
doi:10.1016/j.agrformet.2010.09.002, 2011.

Yang, Z., Washenfelder, R., Keppel-Aleks, G., Krakauer, N., Ran-
derson, J. T., Tans, P. P., Sweeney, C., and Wennberg, P. O.: New
constraints on Northern Hemisphere growing season net flux,
Geophys. Res. Lett., 34, L12807, doi:10.1029/2007GL029742,
2007.

Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K.,
Desai, A. R., Goldstein, A. H., Gianelle, D., Rossi, F., Suyker,
A. E., and Verma, S. B.: Global estimates of evapotranspi-
ration and gross primary production based on {MODIS} and
global meteorology data, Remote Sens. Environ., 114, 1416–
1431, doi:10.1016/j.rse.2010.01.022, 2010.

Zha, T., Barr, A. G., Black, T. A., McCaughey, J. H., Bhatti, J.,
Hawthorne, I., Krishnan, P., Kidston, J., Saigusa, N., Shashkov,
A., and Nesic, Z.: Carbon sequestration in boreal jack pine
stands following harvesting, Glob. Change Biol., 15, 1475–1487,
doi:10.1111/j.1365-2486.2008.01817.x, 2009.

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J.
C. F., Gao, F., Reed, B. C., and Huete, A.: Monitoring vegetation
phenology using MODIS, Remote Sens. Environ., 84, 471–475,
doi:10.1016/S0034-4257(02)00135-9, 2003.

www.biogeosciences.net/11/217/2014/ Biogeosciences, 11, 217–235, 2014

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf
http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf
http://dx.doi.org/10.5194/bg-6-1115-2009
http://dx.doi.org/10.5194/bg-6-1115-2009
http://dx.doi.org/10.1029/2009JG001010
http://dx.doi.org/10.1029/2006JG000293
http://dx.doi.org/10.1016/j.agrformet.2005.05.003
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.5194/bg-6-1341-2009
http://dx.doi.org/10.1016/j.agrformet.2007.04.001
http://dx.doi.org/10.1016/j.agrformet.2008.06.015
http://dx.doi.org/10.1016/j.agrformet.2010.09.002
http://dx.doi.org/10.1029/2007GL029742
http://dx.doi.org/10.1016/j.rse.2010.01.022
http://dx.doi.org/10.1111/j.1365-2486.2008.01817.x
http://dx.doi.org/10.1016/S0034-4257(02)00135-9

