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Abstract. Previous work has failed to address fully the re-
sponse of (autotrophic and heterotrophic) respiration to graz-
ing in different ecosystems, particularly in alpine grasslands
outside the growing season. From 2010 to 2011 a field exper-
iment combined two methods (static closed chambers and a
closed dynamic soil CO2 flux system) in alpine grasslands
located in the Tianshan Mountains. We examined the effects
of grazing regime on ecosystem respiration (Re) both outside
(NGS) and during (GS) the growing season and determined
the pattern ofRe in relation to climate change. There was
no significant change in CO2 emissions under grazing. Het-
erotrophic respiration (Rh) accounted for 78.5 % ofRe with
short-term grazing exclusion and 93.2 % ofRe with long-
term grazing exclusion.Re, Rh and autotrophic respiration
(Ra) fluxes outside the growing season were equivalent to
12.9 %, 14.1 % and 11.4 % of the respective CO2 fluxes dur-
ing the growing season. In addition, our results indicate that
soil water content played a critical role inRa in the cold and
arid environment. BothRh andRe were sensitive to soil tem-
perature. Moreover, our results suggest that grazing exerted
no significant effect on CO2 emissions in these alpine grass-
lands.

1 Introduction

Global carbon dioxide (CO2) emissions have increased from
6.1± 0.3 Pg C year−1 in 1990 to 9.5± 0.5 Pg C year−1 in
2011 and will increase to 9.7± 0.5 Pg C year−1 in 2012
or 2.6 % above 2011 levels (Le Quéré et al., 2012; Peters
et al., 2013). Ecosystem respiration (Re), consisting of het-
erotrophic respiration (Rh) and autotrophic respiration (Ra)

of plant biomass, is the primary route by which CO2 from
plants and soils returns to the atmosphere (Hogberg and
Read, 2006). Due to the large cover area (White et al.,
2000) and high content of soil organic carbon (Eswaran et
al., 1993), seasonal and annual variation inRe in grass-
lands plays an important role in moderating the global car-
bon cycle. However, current evidence indicates that seasonal
and annualRe in grassland has been significantly altered by
grassland management, especially by grazing intensity and
grazing exclusion.

Several hypotheses have addressed the direct and indirect
effects of grazing onRe. High grazing intensity directly re-
duces above-ground biomass, litter input into the soil (John-
son and Matchett, 2001), and labile C from microorganisms
and roots (Stark and Grellmann, 2002). Grazing also indi-
rectly aggravates the degree of water and nitrogen limitation
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because grazing-induced changes in soil properties increase
the risk of surface runoff (Rauzi and Hanson, 1996; Daniel
et al., 2006) and nitrogen leaching loss (Eckard et al., 2003;
Di and Cameron, 2004). The negative direct and indirect ef-
fects ultimately restrict or alter seasonal and annualRe in
grasslands. For example, Craine et al. (1999) and Wan and
Luo (2003) reported that grazing reduced the CO2 flux by
19–50 % in some temperate grasslands.

Traditionally, grazing exclusion is considered to be a help-
ful measure to restore ecosystem functioning in grazing-
induced deteriorating grassland. Although indirect evidence
indicates increasing trends in community biomass and miti-
gation of soil nutrient availability under conditions of graz-
ing exclusion (Medina-Roldan et al., 2012; Qiu et al., 2013),
comparisons of seasonal and annual response patterns ofRe
to grazing and grazing exclusion are still unclear. A recent
study in sandy grasslands demonstrated that short-term ef-
fects of grazing exclusion on ecosystem CO2 flux were reg-
ulated by annual rainfall (Czobel et al., 2012). However, the
effects of long-term grazing exclusion and the differences be-
tween long-term and short-term grazing exclusion on annual
and seasonalRe in grasslands are still two major gaps in our
knowledge of carbon exchange between the terrestrial bio-
sphere and the atmosphere.

In the present study we compared the effects of grazing
and short-term and long-term grazing exclusion on seasonal
and annualRe (Rh and Ra) variation in alpine grasslands
in central Asia. Our objectives were to clarify the effects
of short- and long-term grazing exclusion on CO2 fluxes in
alpine grasslands, to evaluate whether or not CO2 emissions
outside the growing season constitute an indispensable por-
tion of ecosystem respiration on a year-round basis, and to
demonstrate the effects of soil temperature and soil water
content (both to 10 cm depth) on ecosystem respiration un-
der grazing management in alpine grasslands.

2 Materials and methods

2.1 Study sites

The study was conducted at the Bayinbuluk Grassland
Ecosystem Research Station, Chinese Academy of Sciences
(42◦53.1′ N, 83◦42.5′ E). Bayinbuluk alpine grassland is lo-
cated in the southern Tianshan mountains, Xinjiang Uygur
Autonomous Region, Central Asia, and covers a total area of
approximately 23 000 km2. The grassland is at a mean alti-
tude of 2500 m a.s.l. Local meteorological data (1980–1999)
show a mean annual precipitation of 265.7 mm, with 78.1 %
occurring during the growing season from May to Septem-
ber, and a mean annual temperature of−4.8◦C, with the low-
est mean monthly temperature in January (−27.4◦C) and the
highest in July (11.2◦C). General characteristics of the sites
are shown in Table 1.

Five grazing management sites were established. The
alpine grassland is dominated byStipa purpureaand all
sites are cold and dry grassland. There were two graz-
ing regimes, namely short- and long-term grazing exclu-
sion. The short-term grazing exclusion sites comprised site
LGB grazed by 4.3 sheep ha−1 in a full year (100 ha), site
UG5 ungrazed since 2005 (10 ha), and site UG8 ungrazed
since 2003 (0.25 ha). The long-term grazing exclusion sites
were site UG27 ungrazed since 1984 (0.25 ha) and site LGA
lightly grazed by 2.0 sheep ha−1 in winter (October to April;
100 ha). Each treatment comprised four blocks (each 4× 8 m
with an 1 m-wide buffer zone) in the long-term grazing ex-
clusion sites.

2.2 Measurement methods

CO2 fluxes were measured using two methods. The first was
a static closed chamber method (opaque, static, manual stain-
less steel chambers, each 50× 50× 10 cm) at sites UG27 and
LGA . The external surface of each chamber was covered with
white plastic foam to minimize any impact of direct radiative
heating during sampling. The chamber was placed on a col-
lar (50× 50× 10 cm) with a groove to prevent leakage dur-
ing gas sampling. Each site had four replicate chambers. Gas
samples were taken from inside the chamber 0, 15 and 30 min
after chamber closure using a 60 ml plastic syringe and trans-
ferred immediately into a pre-evacuated 50 ml air bag (Hede
Inc., Dalian, Liaoning, China). CO2 fluxes ofRe were sam-
pled during the same time period (12:00–14:00, GMT+ 8 h)
from May 2010 to September 2011 (no sampling in January
and February 2011 because of mean temperatures of−33.3
and−23.0◦C, respectively) and four times per month during
the growing season (10 May to 8 October, about 152 days),
and twice per month outside the growing season (9 October
to 9 April, about 213 days) at sites UG27 and LGA . CO2 sam-
ples, which were stored in separate air bags, were analyzed
by gas chromatography (Agilent 4890D, Agilent Technolo-
gies, Wilmington, DE) within one week. Calculation of CO2
fluxes followed the description of Zhang et al. (2005).

The second method was a closed dynamic soil CO2 flux
system (Li-Cor 8100, Model 8100-101 or 8100-104, Li-Cor,
Lincoln, NE) at sites LGB, UG5 and UG8. Re was measured
by inserting three polyvinyl chloride (PVC) collars (10.2 cm
inside diameter, 6 cm height) 3 cm into the soil at each site in
July 2009. The collars were arranged 1 m apart to form a tri-
angle. All living plants were maintained intact. Heterotrophic
respiration (Rh, microbial respiration) was also determined
by inserting three PVC collars into the soil at each site. Liv-
ing roots were removed from the soil and the soil was re-
placed to maintain the original horizons of the profile. A
diaphragm was inserted into the soil outside the root zone
to prevent re-growth. Soil respiration (Rh) was measured at
least one day after exclusion of the living roots (Hanson et al.,
2000). Autotrophic respiration (Ra, the below-ground parts
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Table 1.Characteristics of the ten alpine grassland sites in the Tianshan mountains of Central Asia.

Site Latitude Longitude Altitude Aboveground Below-ground Plant cover Soil BD (0–10 cm) pH Soil EC Grazing intensity Method
(N) (E) (m) biomass (Jul 2010) biomass (Jul 2010) (Jul 2010) (Jul 2010) (top 10 cm) (0–10 cm) (sheep units

±S.E. (gm−2) ±S.E. (g 50 cm−2) ±S.E. (%) ±S.E. (gm−3) (mScm−1) ha−1)

UG8 42◦52.802′ 83◦42.437′ 2468 122± 10.5 11.0± 3.22 97± 4.2 1.0± 0.01 7.9 0.34 0 Li-8100
UG5 42◦52.802′ 83◦42.442′ 2468 110± 7.4 12.4± 2.60 77± 8.7 1.1± 0.03 7.7 0.31 0
LGB 42◦52.798′ 83◦42.437′ 2468 56± 4.4 7.4± 1.81 48± 5.7 1.1± 0.01 7.8 0.21 4.3 Static
UG27 42◦52.802′ 83◦42.173′ 2472 207± 15.2 11.2± 2.13 78± 6.6 0.9± 0.02 8.0 0.33 0 closed

0.27
LGA 42◦52.832′ 83◦42.125′ 2473 72± 9.7 9.8± 1.58 55± 2.9 1.1± 0.01 8.0 2.0 chamber

NB: AGB, Above-ground biomass; BGB, Below-ground biomass; PC, Plant cover; SBD, soil bulk density; SEC, soil electrical conductivity

of the plant and root respiration) was calculated as follows:

Rp = Re− Rm. (1)

In order to minimize disturbance to the plots when installing
the PVC columns, we measured the CO2 efflux rate at least 1
week after the installation/application. A soil CO2 flux cham-
ber attached to a Li-8100 was placed on each collar for 3 min
to measureRh (or Re) and then moved to the next collar.Re
andRh were measured during the same time period (11:00–
20:00, GMT+ 8 h) from August 2010 to July 2011 (no sam-
pling in January or February 2011), four times per month
during the growing season, and twice per month outside the
growing season at sites LGB, UG5 and UG8.

Above-ground biomass of different species was obtained
in July 2010 (1× 1 m plots andn = 3 at each site). Below-
ground biomass was obtained based on estimation using root
cores (8 cm dia;n = 5 at each site) to a depth of 30 cm. Plant
(above-ground and below-ground) biomass was determined
by oven drying at 60◦C for 24 h. Plant cover was determined
by visual measurement. Soil bulk density was measured us-
ing 100 cm3 soil wreath knives to 10 cm depth (n = 5 at each
site). Soil samples were collected from each site (n= 5) to
determine pH (1:5) and soil electrical conductivity to a depth
of 10 cm (Table 1). An Auto Weather Station (Campbell Sci-
entific, Logan, UT) adjacent to plots around the whole exper-
iment (sites UG27, LGA , LGB, UG5 and UG8) monitored air
temperature, soil temperature at 10 cm depth and soil water
content at 10 cm depth.

2.3 Calculations and statistical analysis

Statistical analysis was carried out using SPSS 13.0 for Win-
dows (SPSS Inc., Chicago, IL) and SigmaPlot (SigmaPlot for
Windows, Version 10, SyStat Software Inc., San Jose, CA).
As CO2 flux were measured repeatedly across time, we used
repeated measures ANOVA (RMANOVA) to examine inter-
annual variability in CO2 flux when combined with grazing
management as treatment. Monthly mean CO2 fluxes in each
plot were calculated by averaging all measurements in the
same month. If significant interactive effects between grazing
management (short-term grazing exclusion) and year were
detected (i.e.,P < 0.05 for year effects), RMANOVA was
used again to examine treatment effects on CO2 flux within
each year. Between-subject effects were examined such as

grazing management, and within-subject effects were time of
month and its interaction with grazing management. Linear
and non-linear curve fitting was performed with SigmaPlot
software to identify significant correlations between environ-
mental variables and CO2 fluxes.

3 Results

3.1 Biotic and abiotic conditions under long- and
short-term grazing exclusion

Plant cover and above- and below-ground biomass increased
by 41.8 %, 187.5 % and 14.2 %, respectively, under long-
term grazing (27 years) exclusion and increased 0.6–1.0
times, 0.9–1.2 times and about 60.0 % under short-term graz-
ing exclusion (Table 1). There was no significant variation in
soil bulk density (0–10 cm) among treatments, with an aver-
age of 1.04 g cm−3. Average pH and soil electrical conductiv-
ity (0–10 cm) under long- and short-term grazing exclusion
was 7.8, 8.0, 0.325 and 0.300 mS cm−1, respectively.

Air temperature (AT), soil temperature at 10 cm depth
(ST) and soil water content at 10 cm depth (SWC) showed
clear seasonal variation throughout the observation period
(Fig. 1). The annual AT, ST and SWC reached maximum val-
ues of 17.9◦C (early August 2010), 15.8◦C (late July 2010)
and 26.4 % (June 2011), and minimum values of−38.3◦C
(January 2011),−10.8◦C (late January 2011) and 5.6 %
(March 2011), respectively. Average AT, ST and SWC in GS
were 9.6◦C, 10.2◦C and 18.4 %, respectively, and−18.5◦C,
−4.8◦C and 9.7 % in NGS.

3.2 CO2 fluxes with long-term grazing exclusion

Results from RMANOVA show that significant inter-annual
variability in Re fluxes was detected (P < 0.001), but treat-
ment (long-term grazing exclusion) and treatment× year had
no significant effects onRe fluxes (P = 0.132 and 0.064, re-
spectively). When RMANOVA was conducted separately for
each year, both treatment and treatment× month had no
significant effects onRe fluxes (P = 0.673 and 0.987, re-
spectively), but significant seasonal patterns were observed
in both years (P < 0.001). When monthly meanRe fluxes
were reclassified into growing season (GS) and outside
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Fig. 1 Air temperature (a), soil temperature at 10 cm depth (b) and soil water content 4 

at 10 cm depth (c) from May 2010 to September 2011 in an alpine grassland in the 5 

Tianshan mountains.White and black horizontal bars represent within (2010 and 2011) 6 

and outside the growing season, respectively. 7 

 8 

Fig. 1.Air temperature(a), soil temperature at 10 cm depth(b) and
soil water content at 10 cm depth(c) from May 2010 to September
2011 in an alpine grassland in the Tianshan mountains. White and
black horizontal bars represent within (2010 and 2011) and outside
the growing season, respectively.

growing season (NGS), long-term grazing enclosure man-
agement (ungrazed for 27 years) had no significant effects
on the CO2 emissions of ecosystem respiration (Re) dur-
ing GS 2010 (P = 0.896), 2011 (P = 0.960) or NGS (P =

0.462) (Fig. 2b). Across the entire period of observations
(May 2010–September 2011)Re fluxes showed clear sea-
sonal fluctuation. The maximum monthlyRe fluxes were
122.8 mg m−2 h−1 at UG27 and 103.7 mg m−2 h−1 at LGA
in June 2011. The minimum values were 2.0 mg m−2 h−1

at UG27 and 2.6 mg m−2 h−1 at LGA in December 2010
(Fig. 2a). In addition, totalRe emissions were 179.1 and
12.8 g m−2 at UG27 and 165.3 and 10.6 g m−2 at LGA in GS
and NGS, respectively (Fig. 2b).Re during NGS accounted
for 7.1 % and 6.4 % ofRe during GS in 2010 and 2011, re-
spectively. One conclusion that can be drawn is that if theRe
emission for NGS is not taken into account the annual CO2
emissions can be underestimated by at least 6.0 %.

 

2 
 

 9 

Fig. 2 Rates of CO2 emission with ecosystem respiration (Re) (a) and the magnitude of 10 

CO2 fluxes within and outside the growing season (b) at sites UG27 (ungrazed since 11 

1984) and LGA (grazed in winter) using the static closed chamber method. White and 12 

black horizontal bars represent within the growing season (GS, 2010 and 2011) and 13 

outside the growing season (NGS), respectively. 14 

Fig. 2. Rates of CO2 emission with ecosystem respiration (Re) (a)
and the magnitude of CO2 fluxes within and outside the growing
season(b) at sites UG27 (ungrazed since 1984) and LGA (grazed
in winter) using the static closed chamber method. White and black
horizontal bars represent within the growing season (GS, 2010 and
2011) and outside the growing season (NGS), respectively.

3.3 CO2 fluxes with short-term grazing exclusion

Observations were conducted over a full year (August 2010–
July 2011) to determine CO2 emissions with short-term graz-
ing exclusion. RMANOVA analysis shows that treatment
(short-term grazing exclusion) and treatment× month in-
teraction had no significant effects onRe (P = 0.538 and
0.147, respectively),Rh (P = 0.339 and 0.813, respectively)
andRa fluxes (P = 0.204 and 0.128, respectively), but sig-
nificant seasonal patterns were observed over the whole
year (P < 0.001). When monthly meanRe, Rh and Ra
fluxes were reclassified into growing season (GS) and out-
side growing season (NGS) there were also no significant
changes inRe (P = 0.931, 0.915),Rh (P = 0.990, 0.859)
andRa (P = 0.192, 0.842) emissions under short-term graz-
ing enclosure management in GS and NGS at UG8, UG5
and LGB (Fig. 3bdf). Re, Rh and Ra flux results show
substantial seasonal change based on year-round observa-
tion. The maximum monthlyRe values were 314.9, 327.7
and 316.2 mg m−2 h−1 at UG8, UG5 and LGB, respectively.
The maximum monthlyRh fluxes were 305.3, 263.4, and
270.6 mg m−2 h−1 at UG8, UG5 and LGB. The maximum
monthly Ra fluxes were 76.2, 88.7 and 52.2 mg m−2 h−1 at
UG8, UG5 and LGB. The minimum monthlyRe, Rh and
Ra fluxes were 9.6, 10.7 and 0 mg m−2 h−1 at UG8; 10.3,
14.5 and 0 mg m−2 h−1at UG5; 2.7, 5.0 and 0 mg m−2 h−1 at
LGB (Fig. 3a, c, e). Furthermore, the ranges in totalRe, Rh
andRa emissions were 584.2–644.1, 483.4–504.2 and 98.9–
169.6 g m−2 under short-term grazing exclusion in GS, and
67.5–85.8, 58.0–80.8 and 12.6–20.9 g m−2 in NGS, respec-
tively (Fig. 3b, d, f).

Over the whole year totalRe accounted for 78.5 % ofRh
and 21.5 % ofRa (percentages calculated from the averages
of UG8, UG5 and LGB). Furthermore, CO2 emissions of
Rh andRa in NGS were 14.1 % and 11.4 % in GS, respec-
tively. At UG8, UG5 and LGB, Re during NGS accounted
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Fig. 3 CO2 fluxes of ecosystem respiration (Re), heterotrophic respiration (Rh) and 16 

autotrophic respiration (Ra) at sites UG8 (ungrazed since 2003), UG5 (ungrazed since 17 

2005) and LGB (grazed all year) within (GS) and outside (NGS) the growing season 18 

respectively using a Li-8100. White and black horizontal bars represent within (GS, 19 

2010 and 2011) and outside (NGS) the growing season, respectively. 20 

Fig. 3.CO2 fluxes of ecosystem respiration (Re), heterotrophic res-
piration (Rh) and autotrophic respiration (Ra) at sites UG8 (un-
grazed since 2003), UG5 (ungrazed since 2005) and LGB (grazed
all year) within (GS) and outside (NGS) the growing season respec-
tively using a Li-8100. White and black horizontal bars represent
within (GS, 2010 and 2011) and outside (NGS) the growing season,
respectively.

for 13.9 %, 13.3 % and 11.6 % of that in GS, respectively.Rh
in GS was reduced by 1.2 % under short-term zero-grazing
management. In contrast, theRe emissions rate increased by
24.3 % under short-term grazing exclusion in NGS. More-
over,Ra was more sensitive to short-term zero-grazing, with
enhancements by 61.1 % and 38.9 % in GS and NGS, respec-
tively. The effects ofRh andRa emissions from NGS under
grazing management therefore merit further investigation.

3.4 Sensitivity of CO2 emissions to abiotic factors under
varying grazing management

The relationships between CO2 fluxes and fluctuating en-
vironmental conditions were analyzed from May 2010 to
September 2011 (the duration of short-term grazing exclu-

sion sites was from August 2010 to July 2011). CO2 fluxes
of Re, Rh andRa were related exponentially to air tempera-
ture, soil temperature and soil moisture (P <0.001) (Fig. 4).

4 Discussion

4.1 Effects of grazing exclusion on CO2 flux

Our results show that grazing exclusion (long-term or short-
term) led to no significant change in meanRe despite de-
tection of increasing trends in plant cover and above- and
below-ground biomass, which were consistent with analo-
gous studies in a short grass prairie of Colorado (LeCain et
al., 2002), an alpine meadow on the Tibetan plateau (Lin et
al., 2011) and the semiarid northern Great Plains of North
America (Liebig et al., 2013), but were inconsistent with
studies in temperate grasslands and alpine meadows in China
(Cao et al., 2004; Jia et al., 2005). Three factors may explain
this. Firstly, grazing exclusion increased above-ground and
below-ground biomass (Table 1), which augmented plant au-
totrophic respiration (Ra) (Fig. 3f) (Cao et al., 2004). Sec-
ondly, soil respiration (Rh) and its main components (i.e.,
fungal and bacterial respiration) were positively associated
with temperature (Pietikainen et al., 2005). Furthermore,
grazing elevated soil temperature by the low plant cover (Luo
et al., 2010), which increasedRh (Bahn et al., 2006). Thirdly,
in the cold and dry conditions litter decomposition was lim-
ited by low temperatures (Couteaux et al., 1995; Zhang et al.,
2008), which in turn led to low carbon input to the soil under
grazing exclusion (Polley et al., 2008), coupled with the high
soil pH that finally resulted in no significant variation inRh
(Xu and Qi, 2001). Therefore, the low levels of carbon inputs
and microbial activity at low temperatures contributed jointly
to the absence of significant variation in CO2 emissions.

In the present studyRh accounted for 78.5 % ofRe un-
der short-term grazing exclusion and 93.2 % ofRe un-
der long-term grazing exclusion, and both were higher
than in an alpine meadow on the Tibetan plateau (52.6 %)
(Lin et al., 2011). The range in CO2 efflux of 20.0–
76.9 mg m−2 h−1 in our study was lower than the range
of 81.1–100.1 mg m−2 h−1 in the semiarid northern Great
Plains of North America (Liebig et al., 2013) and the range
of 174.7–232.9 mg m−2 h−1 in an alpine meadow on the Ti-
betan plateau (Cao et al., 2004). We conclude thatRh reached
its maximum at a value of 305.3 mg m−2 h−1, which was
much lower than the maximum of 695.8 mg m−2 h−1 in an
alpine meadow (Cao et al., 2004), and the minimumRh
(5.0 mg m−2 h−1) accounted for about 12 % of that in the
alpine meadow on the Tibetan plateau (41.7 mg m−2 h−1)

(Cao et al., 2004).Re outside the growing season contributed
21.5 % in short-term grazing exclusion and 6.8 % in long-
term grazing exclusion to the annual respiration emissions,
which were similar to a sub-alpine grassland at Rigi See-
bodenalpin (23.3 %) (Merbold et al., 2012). In addition, the
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Fig. 4 Relationships between CO2 fluxes (Ra, Rh and Re) and soil water content at 10 22 

cm depth (a, d and g), air temperature (b, e and h) and soil temperature at 10 cm depth 23 
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Fig. 4. Relationships between CO2 fluxes (Ra, Rh andRe) and soil water content at 10 cm depth (a, d andg), air temperature (b, e andh)
and soil temperature at 10 cm depth (c, f andi).

CO2 flux (2.1–16.8 mg m−2 h−1) outside the growing sea-
son from the alpine grassland in our study was comparable
with previous studies in arctic tundra (2.5–7.5 mg m−2 h−1)

(Fahnestock et al., 1999; Bubier et al., 2002), in temperate
semiarid steppe (3.3–9.6 mg m−2 h−1) (Chen et al., 2013),
and in sagebrush steppe (7.5–15.0 mg m−2 h−1) (Gilmanov
et al., 2004). However, soil CO2 emissions during the grow-
ing season (483.4–504.2 mg m−2 h−1) were lower than in
subalpine grassland (610.0–810.0 mg m−2 h−1) (Rich et al.,
2013).

4.2 Biotic and abiotic effects of grazing on carbon
budget

According to the CO2 flux calculation,Re emissions de-
creased by 8.7 % owing to long-term grazing exclusion, but
the above-ground biomass increased by 187.5 %. Thus, there
was more litter accumulation or decomposition to enhance
the quantity of soil organic C with long-term grazing ex-
clusion in the alpine grassland. Short-term grazing exclu-

sion produced increases inRe emissions of about 12.0 % and
7.1 %, but increases in above-ground biomass of 96.4 % and
117.9 %, below-ground biomass of 67.6 % and 48.6 %, and
plant cover of 60.4 % and 102.1 %, in UG5 and UG8, respec-
tively. Therefore, soil C stocks may be augmented by short-
term grazing exclusion althoughRe emissions may or may
not increase. Consequently, there was a net C fixation or se-
questration with grazing exclusion in alpine grasslands.

Rh was limited primarily by soil temperature that ex-
plained 86 % of the variability in the alpine grassland
(Fig. 4f). In contrast,Ra was dominated by soil water content
(Fig. 4a). In addition,Rh accounted for 78.5–93.2 % ofRe,
so that CO2 flux was more sensitive to elevated temperatures
rather than precipitation in the alpine grassland (Wohlfahrt et
al., 2008). Thus grazing exclusion (short- or long-term) will
amplify the CO2 emission of alpine grassland under global
warming in the future.
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5 Conclusions

Our results confirm no significant changes inRe, Rh andRa
under short- or long-term grazing exclusion in GS and NGS
in our alpine grassland.Rh account for 78.5–93.2 % ofRe.
Furthermore, CO2 emissions from NGS cannot be ignored
because during NGS,Re, Rh and Ra account for 12.9 %,
14.1 % and 11.4 % of the values from GS, respectively. Un-
der grazing management CO2 emissions were more sensitive
to global climate change in NGS than in GS. Our observa-
tions strongly indicate that grazing exclusion played a criti-
cal role in the accumulation of soil organic C in this frigid
and arid environment in the Tianshan Mountains.
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