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Abstract. Using ocean carbon data from global datasets, we
have developed several multiple linear regression (MLR) al-
gorithms to estimate alkalinity and dissolved inorganic car-
bon (DIC) in the intermediate and deep waters of the South-
ern Hemisphere (south of 25◦ S) from only hydrographic
data (temperature, salinity and dissolved oxygen). A Monte
Carlo experiment was used to identify a potential density
(σθ ) of 27.5 as an optimal break point between the two
regimes with different MLR algorithms. The algorithms pro-
vide a good estimate of DIC (R2

= 0.98) and alkalinity
(R2

= 0.91), and excellent agreement for aragonite and cal-
cite saturation states (R2

= 0.99). Combining the algorithms
with the CSIRO Atlas of Regional Seas (CARS), we have
mapped the calcite saturation horizon (CSH) and aragonite
saturation horizon (ASH) for the Southern Ocean at a spatial
resolution of 0.5◦. These maps are more detailed and more
consistent with the oceanography than the previously grid-
ded GLODAP data. The high-resolution ASH map reveals
a dramatic circumpolar shoaling at the polar front. North of
40◦ S the CSH is deepest in the Atlantic (∼ 4000 m) and shal-
lower in the Pacific Ocean (∼ 2750 m), while the CSH sits
between 3200 and 3400 m in the Indian Ocean. The uptake
of anthropogenic carbon by the ocean will alter the relation-
ships between DIC and hydrographic data in the intermediate
and deep waters over time. Thus continued sampling will be
required, and the MLR algorithms will need to be adjusted in
the future to account for these changes.

1 Introduction

Our understanding of the carbonate concentrations and satu-
ration in the oceans has been considerably advanced by the
collection of large global datasets such as GEOSECS (1960–
1970s), World Ocean Circulation Experiment (WOCE,
1990s; Lamb et al., 2002; Key et al., 2004) and more recently
CLIVAR/CO2 Repeat Hydrography programme (2000s; Tan-
hua et al., 2008; Sabine et al., 2010). However, there are still
large gaps, with many areas of the globe that have had little
sampling for carbonate parameters. Some of these regions
have significant topographic features, such as plateaux and
ridges that produce complex currents. Thus extrapolation or
gridding of global datasets across these regions does not pro-
vide meaningful local estimates. There may also be temporal
variability in these parameters due to seasonal (Feely et al.,
1988; Juranek et al., 2009, 2011; McNeil, 2010; McNeil et
al., 2011; Alin et al., 2012) or interannual variations caused
by phenomena like El Niño Southern Oscillation (ENSO;
McNeil, 2010) or the Pacific Decadal Oscillation (PDO; Kim
et al., 2010), which would not have been captured by the one-
off or decadal repeat transects across the global oceans.

In contrast, there are vast repositories of hydrographic data
that have been compiled to produce ocean climatologies (e.g.
World Ocean Atlas (WOA), 2009; CSIRO Atlas of Regional
Seas (CARS), 2009). If it were possible to use the detailed
hydrographic data to estimate the carbonate parameters in ar-
eas where there has been limited sampling for alkalinity and
dissolved inorganic carbon (DIC), we could potentially pro-
vide detailed carbonate saturation estimates for all areas of
the global ocean. This would allow more realistic values in
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areas where there are complex topography and currents that
are not well represented by the interpolation of sparse carbon
data.

One potential solution is to develop relationships between
carbonate species and hydrographic data using a multiple
linear regression (MLR) fit to the existing carbonate data,
and then use these relationships and the more widely avail-
able oceanographic data to obtain high spatial and tempo-
ral resolution. This MLR approach was first used to predict
carbonate species by Wallace (1995), based on observations
that carbon exhibited strong correlations with other oceano-
graphic parameters (Brewer et al., 1995). Over the last few
years, several publications have used MLR techniques to es-
timate the carbonate parameters (or carbonate saturation),
and changes in anthropogenic carbon uptake from hydro-
graphic measurements (Archer, 1996; Brewer et al., 1997;
Millero et al., 1998; Sabine et al., 1999; Lee et al., 2000,
2006; Wallace et al., 2001; McNeil et al., 2001; Friis et al.,
2005; Sabine et al., 2008; Juranek et al., 2009, 2011; Kim et
al., 2010; McNeil, 2010; Wanninkhof et al., 2010; Peng and
Wanninkhof, 2010; Feely et al., 2012). Many of these studies
have augmented the hydrographic data with nutrients and/or
one of the carbon parameters, hence restricting the usability
of these MLR algorithms to regions where these extra data
also exist.

We focus on the intermediate and deep waters and the
depth of the calcite (CSH) and aragonite saturation horizons
(ASHs), as our interest is in understanding how carbonate
ion concentrations of bottom waters, which interact with the
seabed, affect the distribution of deep water carbonate organ-
isms and sediments. For example, the global depth distribu-
tion of deep sea habitat-forming, aragonitic, stony (sclerac-
tinian) corals has been found to be controlled by the arago-
nite saturation state, with 95 % of the organisms found above
the ASH (Guinotte et al., 2006). With the ASH currently
shoaling at 1–2 m yr−1 in the Southern Hemisphere oceans
(Feely et al., 2012), and predicted to shoal considerably in
the Southern Ocean by 2100 (Orr et al., 2005; McNeil and
Matear, 2008), this could significantly reduce the habitat for
these benthic aragonitic organisms.

In this paper, we develop MLR algorithms to estimate car-
bonate parameters for intermediate and deep waters of the
Southern Hemisphere, using hydrographic data (temperature,
salinity and dissolved oxygen) and carbonate data (alkalin-
ity and DIC) collected during the WOCE and CLIVAR cam-
paigns from the Southern Ocean. After testing the MLR algo-
rithms with the detailed CTD (conductivity, temperature, and
and oxygen) data from the WOCE transects, we then apply
the algorithms to the CARS (2009) climatology database to
produce detailed maps of the CSH and ASH for the Southern
Hemisphere oceans.

Fig. 1. Map of the Southern Hemisphere oceans with the major to-
pographic features labelled, which are discussed in the text: SS –
Solomon Sea, SFB – South Fiji Basin, LHR – Lord Howe Rise,
TB – Tasman Basin, KR – Kermadec Ridge, CR – Chatham Rise,
CP – Campbell Plateau, WR – Walvis Ridge, NER – Ninety East
Ridge, AAD – Australian–Antarctic Discordance. The main deep
oceanographic flows into and out of the Southern Ocean are also il-
lustrated with large arrows. North Atlantic Deep Water (NADW;
orange), Indian Deep Water (IDW; orange), Pacific Deep Water
(PDW; red) and Circumpolar Deep Water (CDW; white). The lo-
cations of the Southern Ocean fronts are also shown. Subantarc-
tic Front (SAF; yellow dashed line) and Polar Front (PF; yellow
dashed line) adapted from Sokolov and Rintoul (2009) and the full
depth Antarctic Circumpolar Current (ACC; yellow arrows). The
WOCE/CLIVAR stations used in this study are shown by the black
dots, with the P16 transect, used in Figs. 2 and 4, highlighted in the
middle of the South Pacific Basin.

2 Oceanography

The oceanography of the Southern Hemisphere oceans is
dominated by the Southern Ocean (Orsi et al., 2005; Fig. 1).
The Southern Ocean links all the large ocean basins of the
world via the Antarctic Circumpolar Current (ACC), and acts
as an important biogeochemical exchange venue, orchestrat-
ing the transfer of nutrients between deep and surface waters
and the exchange of carbon between the ocean and atmo-
sphere via the biological pump and direct sea–air exchange.
The ACC homogenises the water masses south of the Sub-
antarctic Front (SAF; Fig. 1), although there are subtle dif-
ferences in the water chemistry at depth due to the influence
of deep waters entering the Southern Ocean and the forma-
tion of intermediate waters that flow north into the adjacent
Pacific, Atlantic and Indian basins.
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Subantarctic Mode Waters (SAMWs) and the low-salinity
Antarctic Intermediate Waters (AAIWs) have high oxygen,
as they are formed by the subduction of Antarctic Surface
Waters (AASWs) at the SAF (Fig. 2; e.g. McCartney, 1977;
1982; Talley, 1996, 1999; Sloyan et al., 2010). The primary
region of formation is the southeast Pacific, but there is sub-
duction at several other locations in the Southern Ocean (Sal-
lée et al., 2010; Bostock et al., 2013). These cool AASWs
are subducted between potential density (σθ ) surfaces of
26.9 and 27.3 and have low alkalinity and intermediate DIC
(Gonzalez-Davila et al., 2011; Bostock et al., 2013; Fig. 2).
The aragonite saturation horizon (ASH) sits at the base of
the AAIW in most of the South Pacific Basin (Bostock et al.,
2013).

Below the intermediate waters is the Circumpolar Deep
Water (CDW). The CDW is commonly split into lower
(lCDW, σθ > 27.75) and upper (uCDW,σθ = 27.3 to 27.75)
components. The uCDW has a low-oxygen signature, with
high alkalinity and DIC in the Pacific sector due to the in-
fluence of old Pacific Deep Water (PDW; Bostock et al.,
2011; Fig. 2). These deep waters upwell at the polar front
(PF; Fig. 2), where old carbon-rich waters release CO2 to
the atmosphere. The lCDW also has high alkalinity and DIC
(Fig. 2), but has higher salinity and oxygen than the overly-
ing uCDW due to the influence of Antarctic Bottom Water
(AABW) (Fig. 2; Orsi et al., 1999). CDW also has a large
influence from North Atlantic Deep Water (NADW), espe-
cially in the South Atlantic, with its slightly higher salinity
of 34.72–34.73 (Warren, 1981) and lower alkalinity and DIC
(Gonzalez-Davila et al., 2011).

There is some variability in the intermediate and deep wa-
ters below the subtropical gyres in the different ocean basins.
In the southeastern Pacific, there is significant upwelling in
the Peru/Chile Current, which extends from 43◦ S to 10◦ S.
This results in the shoaling of the ASH to< 500 m (Feely et
al., 2004; Bostock et al., 2013). These upwelled thermocline
waters overlie the low salinity, well-oxygenated SAMW and
AAIW, which recently formed in the southeast Pacific (Mc-
Cartney, 1977).

The circulation in the southwest Pacific is complex due
to the topography (Fig. 1). There are multiple types of
AAIWs in the southwest Pacific (Tomczak and Godfrey,
1994; Hamilton, 2006; Bostock et al., 2013). Beneath the
AAIW in the central South Pacific sits the highly corrosive
PDW, with very high alkalinity and DIC, which causes the
CSH to shoal to 2700 m between 130◦ W and 180◦ W (Bo-
stock et al., 2011). These waters have excess alkalinity due
to the dissolution of carbonate (Feely et al., 2002). The PDW
is also the main water mass that enters the South Fiji Basin
and other basins in the southwest Pacific, as the complex to-
pography of this region blocks the flow from the south, and
the only entrance is via the Solomon Sea (Fig. 1; Sokolov
and Rintoul, 2000). In contrast, the Tasman Basin only re-
ceives CDW, with lower alkalinity and DIC, directly from
the Southern Ocean. Therefore the deep waters in the Tas-

man Basin have a deeper CSH at∼ 3100 m (Bostock et al.,
2011).

The AAIW flows into the South Atlantic along the west-
ern boundary under the Malvinas Current at 500–1200 m, but
then continues north under the western boundary Brazil Cur-
rent (Tomzcak and Godfrey, 1994). A tongue of uCDW lies
immediately below the AAIW, but is only found as far north
as 22◦ S (Stramma and England, 1999; Gonzalez-Davila et
al., 2011). NADW, which has lower DIC and alkalinity than
other deep waters, dominates the deep waters of the South
Atlantic (Stramma and England, 1999). The NADW mainly
flows down the southwest Atlantic, with smaller amounts in
the southeast Atlantic (Stramma and England, 1999; Fig. 1).
Below the NADW are a number of weak tendrils of north-
ward flowing AABW, all of which are topographically con-
strained by seafloor features, especially in the southeast At-
lantic where AABW is prevented from flowing north of 25◦ S
by the Walvis Ridge (Tomzcak and Godfrey, 1994; Stramma
and England, 1999; Fig. 1).

In the Indian Ocean the AAIW, with its conspicuous salin-
ity and alkalinity minimum, overlies the Indian Deep Water
(IDW). The IDW is characterised by a salinity maximum,
intermediate alkalinity and DIC. These IDWs have been in-
fluenced by mixing with NADW, especially in the deep west-
ern boundary current (Ganachaud et al., 2000; Fig. 1). In the
east, the CDW/AABW enters via the Australian–Antarctic
Discordance and then moves north along the western bound-
ary of the Ninety East Ridge (Tomczak and Godfrey, 1994;
Fig. 1).

3 Data

This study uses all the WOCE and CLIVAR voyages for
which both alkalinity and DIC were measured on bottle sam-
ples, and the associated hydrographic data were also col-
lected (temperature, salinity, dissolved oxygen) (Table 1;
Fig. 1). We used all the WOCE and CLIVAR data south
of 25◦ S, and deeper than 200 m. This is motivated by the
fact that intermediate and deep water masses formed in the
Southern Ocean lie beneath the subtropical gyres. In total
there are∼ 20 000 bottle sample data for alkalinity and DIC.
The sampling and analyses of the hydrographic and carbon-
ate parameters were performed following standard WOCE
protocols and using certified reference material (CRM; Dick-
son, 2001). The accuracy of the carbonate parameters is esti-
mated at±3 µmol kg−1 for DIC and±5 µmol kg−1 for alka-
linity (Lamb et al., 2002; Dickson et al., 2007). A secondary
quality control was previously performed during the compi-
lation of the GLODAP and later of the CARINA/PACIFICA
databases by comparing the deep water (> 2000 m) hydro-
graphic, nutrient and carbonate data where they cross other
transects, and most of the data are within measurement er-
ror (Key et al., 1996; 2002; Lamb et al., 2002; Sabine et
al., 2010; Tanhua et al., 2010). We excluded one voyage
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Fig. 2. P16 2005 measured data (see Fig. 1 for location). Temperature (◦C), salinity, dissolved oxygen (µmol kg−1) from the CTD data with
a vertical resolution of 2 m. Alkalinity (µmol kg−1) and dissolved inorganic carbon (DIC) (µmol kg−1) are measured on bottle samples.
Overlain are the potential density (σθ ) isopycnals withσθ = 27.5 highlighted in bold.

(P15S 1996) due to a larger offset in the alkalinity data
(−5 µmol kg−1; Key et al., 2002).

We undertook a further quality control of the carbonate
and hydrographic data from the WOCE and CLIVAR voy-
ages using two approaches. First, any data that were larger or
smaller than typical oceanographic values were removed (Ta-
ble 2). Second, the data were then plotted against each other
(e.g. temperature vs. salinity, DIC vs. oxygen). These were
plotted against data of similar potential density to determine
any obvious outliers greater than 3 standard deviations from
the mean (Pearson, 2002). Outliers were not removed if there
was a cluster of points from one voyage, or in one region, that
could represent a real feature. For example, a cluster (24 data
points) of very low oxygen samples exists immediately off-

shore the west coast of South America on WOCE line P06E.
This is an oxygen minimum zone; thus these data points rep-
resent a real oceanographic feature and have been retained
in the dataset. In total∼ 150 samples (< 1 %) were removed
from the overall dataset of∼ 20 000 data points. Most of the
outliers were due to erroneous alkalinity and DIC measure-
ments, but several were due to high-oxygen and high-salinity
data.

The data were collected over two decades: the 1990s and
2000s. We found that there were subtle variations in the
MLR algorithm coefficients when only the 1990s WOCE
data are used compared to the 2000s CLIVAR data. This
may be due to either the uptake of anthropogenic carbon or
more likely the distribution of the datasets across the South-
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ern Hemisphere oceans. We have not made any corrections
for the uptake of anthropogenic carbon in the intermediate
and deep waters for this study. The anthropogenic signal is
minor in the intermediate and deep waters, with only 5–
10 µmol kg−1 changes in DIC estimated between 200 and
1000 m (Sabine et al., 2008; Sallée et al., 2012). This is small
relative to the combined uncertainty from the DIC measure-
ments (±3 µmol kg−1) and the other sources of error in our
algorithms. Furthermore, the spatial structure in our residuals
from the algorithms does not appear to reflect anthropogenic
carbon input, and any approach we might take to correct for
the anthropogenic signal would introduce its own errors. The
anthropogenic input of CO2 is not the focus of this paper.

Once we had developed and tested the algorithms using
the WOCE/CLIVAR data, we applied them to the CSIRO At-
las of Regional Seas (CARS, 2009) climatology (Dunn and
Ridgway, 2002; Ridgway et al., 2002). This database pro-
vides temperature, salinity and dissolved oxygen at a resolu-
tion of 0.5◦, which have been subjected to consistent quality
control and have been interpolated taking into account both
bathymetry and land. CARS provides mean values and an-
nual and semi-annual cycles, but does not provide informa-
tion about temporal variability over longer timescales. The
annual and semi-annual modes allow monthly climatological
fields to be derived. In the Southern Ocean, research vessel
logistics and operations have led to a summer bias in oceano-
graphic measurements, so here we use only the CARS data
temporally interpolated for January (austral summer).

4 Approach

In this approach, we treat the observed DIC and alkalinity
(Alk) from the WOCE/CLIVAR cruises as a linear combina-
tion of temperature (T ), the salinity (S), with a background
salinity of 35 removed, oxygen (O2) and a constant offset
(C):

DIC = αT + β(S − 35) + γ O2 + C (1)

Alk = αT + β(S − 35) + γ O2 + C, (2)

whereT has units of◦C and DIC, Alk, and O2 have units of
µmol kg−1. Then, a singular value decomposition (SVD) is
used to determine the best values of the parametersα, β, γ ,
andC to fit the observations.

Initially, this optimisation was undertaken with all of the
data below the surface layer (depth> 200 m). Analysis of the
residuals (e.g. the difference between the modelled and ob-
served values) as a function of potential density (σθ ) revealed
that there were likely to be two distinct regimes with differ-
ent relationships between carbonate parameters andT , S, and
O2. We were able to improve the fit substantially by dividing
the data into two different density regimes and fitting them
separately.

Fig. 3.Chi square (χ2) of the best fit for all the data from the Monte
Carlo (5000 iterations) run on potential density surfaces (σθ ). (A)
alkalinity data,(B) DIC data.σθ = 27.5 was chosen as the optimal
breakpoint as it has a minimumχ2 for both alkalinity and DIC. The
area shaded in grey is the overlap (σθ = 27.5± 0.05) where both
algorithms are used and the value is averaged.

The optimal break point between the two regimes was de-
termined objectively using a Monte Carlo simulation. We
generated a random normal distribution of 5000 possible
break points centred aroundσθ = 27.6 with a standard de-
viation of 0.1 and calculated the best fits to Eqs. (1) and (2)
for each of these 5000σθ break points. Then, we evaluated
the goodness of fit using the reducedχ2. The results of this
Monte Carlo simulation show a clear, fairly flat minimum in
the reducedχ2 over aσθ range of about 27.45 to 27.55 for
alkalinity and 27.4 to 27.6 for DIC (Fig. 3). Atσθ higher than
27.65, the reducedχ2 begins to increase steeply.

For this analysis, we chose to use a break point ofσθ =

27.5 throughout, because it represents a minimum reduced
χ2 for both DIC and alkalinity. This also fits with the
oceanography as it sits at the boundary between intermedi-
ate and deep waters. In order to avoid discontinuities at the
density boundary between the two regimes when calculating
values of DIC and alkalinity from these regressions, we take
the mean of the two fits for data over the density range of
σθ = 27.45–27.55.

The residual standard error (RSE) for the MLR fit is
±7.3 µmol kg−1 for DIC and±9.8 µmol kg−1 for alkalinity,
based on all the data used in the optimisation. In general,
70 % of the DIC and alkalinity estimates are within 1 stan-
dard deviation of the data, and theR2 of the measured versus
estimated alkalinity and DIC was greater than 0.9 (Table 3).

The MLR picks out temperature and oxygen as the main
controllers of DIC (Table 3). This is not surprising as DIC
is affected by organic matter formation (or break down) in
the water column which produces (or requires) oxygen. Lee
et al. (2000) previously determined that surface DIC can be
determined from temperature and nitrate (the latter closely
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Table 1.GLODAP/CLIVAR voyages used for this study.

WOCE Dates Research ship Voyage leaders and
transect principal scientists
number responsible for

carbon analyses

Pacific

P15S 2001 24 May–8 June 2001 RVFranklin Wijffels, Tilbrook
P14S 1996 05 Jan–10 Mar 1996 RVDiscoverer Bullister, Feely
P16S 2005 9 Jan–22 Feb 2005 RVRevelle Sloyan, Sabine
P18 2008 15 Dec 2007–23 Feb 2008 RVRonald H. Brown Bullister, Feely
P18 1994 26 Jan–27 Apr 1994 RVDiscoverer Feely
P06 2003 3 Aug–16 Oct 2003 RVMirai Fukasawa, Murata

Southern

S04I 1996 3 May–4 July, 1996 RVNathaniel Palmer Nowlin, Millero
S04 1995 13 Dec 1994–02 Feb 1995 RVAurora Australis Rintoul, Tilbrook
SR03 2001 29 Oct–22 Nov 2001 RVAurora Australis Rintoul, Tilbrook
SR03 1995 13 Dec 1994–02 Feb 1995 RVAurora Australis Rintoul, Tilbrook

Indian

I06S 2008 5 Feb–8 Mar 2008 RVRevelle Speer, Feely
I06S 1996 20 Feb–22 Mar 1996 RVMarion Dufresne Poisson
I08 2007 4 Feb–17 Mar 2007 RVRevelle Swift, Feely
I09 1995 1 Dec 1994–19 Jan 1995 RVKnorr McCartney, Wallace
I08 1995 1 Dec 1994–19 Jan 1995 RVKnorr McCartney, Wallace
I07 1995 19 Jun–20 Jul 1995 RVKnorr Talley, Wallace
I05 1995 19 Jun–20 Jul 1995 RVKnorr Talley, Wallace
I05 2002 10 Mar–16 Apr 1995 RVKnorr Talley, Winn

Atlantic

A17 1995 4 Jan–22 Mar 1994 RVMaurice Ewing Memery, Wallace
A16S 2005 11 Jan–26 Feb 2005 RVRonald H. Brown Wanninkhof
A10 2003 6 Nov–5 Dec 2003 RVMirai Yoshikawa, Murata
A10 1993 27 Dec–31 Jan 1993 RVMeteor Siedler, Wallace

Table 2. Initial quality control on the GLODAP and CLIVAR data.

Parameter Data removed if

Salinity < 33.5 or> 36
Oxygen > 350 µmol kg−1

Alkalinity < DIC or < 2000 or> 2600 µmol kg−1

DIC < 1800 or> 2500 µmol kg−1

related to oxygen in the oceans). The temperature factor may
also be acting as a proxy for depth, with an increasedα coef-
ficient for deeper waters as oxygen decreases (Table 3). Al-
kalinity, on the other hand, is primarily influenced by salin-
ity and temperature (Table 3; Millero et al., 1998; Lee et
al., 2006). Alkalinity is also affected by carbonate dissolu-
tion and precipitation. Thus the measuredv estimated corre-
lation for alkalinity (R2

= 0.91) is slightly lower than DIC
(R2

= 0.98), as none of the parameters (T , S or dissolved O)

are directly affected by carbonate dissolution. Temperature
and oxygen may be playing a proxy role in predicting depth,
as the coefficientsα andγ increase for estimating alkalinity
in the deep waters.

The largest residuals between the measured and estimated
DIC and alkalinity are in the lower mixed layer/thermocline
waters (σθ = 25.5 to 26.5; 200–500 m; Figs. 4 and 5) and
the deep waters (σθ = 27.7 to 28; > 2500 m). While both
DIC and alkalinity are over- and underestimated in the ther-
mocline, the estimates for the deep waters are lower than
the measured values. The high residuals are most commonly
found in the PDW (1800–3500 m in P16S; Figs. 4 and 5).
This is a region of excess alkalinity due to carbonate disso-
lution by these old corrosive PDWs (Feely et al., 2002). A
separate algorithm could be developed for the PDW, but this
was not undertaken as the water mass could not be defined
by potential density. It would therefore have to be defined by
oxygen content and another parameter, increasing the com-
plexity and usefulness of this deliberately simple approach.

Biogeosciences, 10, 6199–6213, 2013 www.biogeosciences.net/10/6199/2013/
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Table 3.Coefficients and constants, residual standard error andR2 for the MLR algorithms; see equations in text.

Depth Parameter Coefficients forT , S − 35, RSE R2

dissolved O respectively

α B γ Constant

Intermediate Alk −7.418 96.957 −0.079 2412.5 9.8 0.91
(200 m to< 27.5± 0.05σθ ) DIC −14.866 53.682 −0.569 2410.5 7.3 0.98

Deep Alk −17.027 100.25 −0.663 2543.4 9.8 0.91
(> 27.5± 0.05σθ ) DIC −23.154 13.524 −1.017 2493.6 7.3 0.98

South of the PF, the MLR overestimates alkalinity and
DIC considerably in the upper 1000 m and, to a lesser ex-
tent, down to 3000 m (Fig. 5). These very cold, dense wa-
ters are estimated by the deep alkalinity MLR algorithm as
σθ > 27.5. This region adjacent to Antarctica is controlled
primarily by the cold temperatures, and it appears that a sep-
arate MLR algorithm may be required for the region between
the PF and Antarctica.

There are anomalous residuals in both DIC and alkalinity
between 145◦ W and 180◦ W along P06 2003 (Fig. 4). This
seems to be related to lower oxygen values along this sec-
tion of the P06 transect. This is especially evident in the DIC
(which is more affected by oxygen) with residuals through-
out the water column, while the alkalinity residuals are only
higher in the deeper waters (where oxygen plays a larger role
in the MLR; Table 3). This highlights the requirement of us-
ing well-calibrated hydrographic data.

Previous researchers have used the MLR technique to de-
termine aragonite saturation states directly (Juranek et al.,
2009; Kim et al., 2010; Alin et al., 2012). Here we calcu-
late the other carbonate parameters ([CO2−

3 ], �aragonite,�
calcite) using CO2sys software (Lewis and Wallace, 1998),
the observed temperature, salinity, pressure, and estimated
alkalinity and DIC from the algorithms. Silicate and phos-
phate were assumed to be 0 in the CO2sys as our aim was to
use only the hydrographic data for this study. By assuming
these nutrients are 0, we find that the carbonate saturation
states are overestimated by 1–3 %, with the highest differ-
ences for calcite, and at high latitudes of the Southern Ocean
where silicate and phosphate are present in high concentra-
tions. This gives a slightly deeper ASH (or CSH) than would
be calculated if silicate and phosphate were included. The
exact difference in the depth of the ASH (or CSH) will vary,
dependent on the nutrient concentrations.

A comparison of the [CO2−

3 ] calculated from the mea-
sured alkalinity and DIC with the estimated alkalinity and
DIC gives anR2

= 0.96 and RSE =±4 µmol kg−1, while �

aragonite and�calcite give anR2
= 0.99 and RSE =±0.05

and±0.08, respectively (Fig. 6). This is just greater than the
overall uncertainties of the aragonite and calcite saturation
state calculations of±0.03 and±0.05, respectively (Mucci,
1983; Millero, 1995; Feely et al., 2012). The highR2 for �

aragonite and� calcite suggests that the errors in the alka-
linity and DIC are offset in the calculation of the saturation
states. Thus the errors and high residuals in the DIC and al-
kalinity in the PDW do not significantly influence the final
estimated depth of CSH.

5 Application and discussion

The development of the algorithm to determine alkalinity
and DIC from hydrographic observations allows us to esti-
mate the distribution of alkalinity and DIC at all locations
where hydrographic data have been collected. We can utilise
oceanographic climatologies to provide more extensive cov-
erage of the ocean.

Alkalinity and DIC values south of 25◦ S were estimated
from CARS temperature, salinity and dissolved oxygen.
From these,� calcite and� aragonite were determined us-
ing the CO2sys programme. This provided saturation states
at each 0.5◦ in latitude and longitude, and a vertical reso-
lution of 250 m between 2000 and 5000 m, 100 m between
1000 and 2000 m, and 10–50 m in the upper 1000 m of the
water column. At each grid point in both latitude and lon-
gitude, the vertical profiles in� were linearly interpolated
to determine the density where� = 1 (Fig. 7) and then the
depth of the CSH and ASH (Fig. 8).

The CSH is at highest densities in the South Atlantic,
where the NADW has high salinities, and in the cold, dense
waters south of the PF (Fig. 7). The ASH also shows the
highest densities in these regions, with a dramatic increase at
the PF. The ASH generally sits at the base of the AAIW at
σθ = 27.3, but sits at a higher density (and is much more vari-
able) in the South Atlantic, probably due to mixing between
the higher alkalinity, denser NADW and the lower alkalin-
ity, less dense AAIW. The lowest density ASH is found off
the west coast of South America due to the upwelling of the
thermocline waters and the southward flow of EqPIW, an in-
termediate water which is made up of AAIW and upwelled
PDW, the latter of which has high alkalinity and DIC (Bo-
stock et al., 2010).

The depth of the CSH and ASH show similar patterns to
previous global compilations (Feely et al., 2004), but have
significantly more detail (Fig. 8a and b). The CSH and ASH
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Fig. 4. Measured alkalinity and DIC versus estimated from the MLR algorithm for all data points deeper than 200 m and south of 25◦ S.
Residuals are plotted against potential density and water depth. The area in the circle is data from P06 2003 from 145◦ W to 180◦ W (see
text for details).

maps derived from GLODAP gridded alkalinity and DIC
data are shown for comparison. The GLODAP alkalinity
and DIC data were supplemented with the temperature and
salinity from CARS subsampled to the coarser (both verti-
cal and horizontal) GLODAP grid, and the same procedure
was followed to determine the depth where� = 1. For CSH,
the coarser grid in the GLODAP data resulted in significant

masking from the lower resolution bathymetry. The gridded
GLODAP data appear to have been interpolated without tak-
ing into account bathymetry. This has created patterns in the
CSH and ASH that are inconsistent with known ocean circu-
lation. For example, there is evidence for a shoaling of the
CSH in the eastern Tasman Sea (Fig. 8a) – a flow-over ef-
fect from the data in the main South Pacific Basin east of
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Fig. 5.P16S transect. Predicted alkalinity and DIC from the hydrographic data from CLIVAR transect P16 2005 using the MLR algorithms.
(A) Alkalinity (with � calcite overlain),(B) residuals between(A) and the measured bottle data shown in Fig. 2,(C) DIC (with � aragonite
overlain),(D) residuals between(C) and the measured bottle data shown in Fig. 2.

New Zealand – yet the only flow of deep waters into this
basin is from the south due to the topographic highs such as
Lord Howe Rise (Bostock et al., 2011). CARS, on the other
hand, reduces distortion in the gridded fields by taking into
account both bathymetry and land masses (Dunn and Ridg-
way, 2002). Thus we are able to derive maps of ASH and
CSH that have higher resolution and are more consistent with
the known oceanographic circulation.

South of 45◦ S, the CSH in the Southern Ocean is fairly
uniform around 3100–3400 m (Fig. 8a). There is a subtle
deepening of the CSH between the SAF and the PF through-
out the Southern Ocean. This is not an artefact of the CARS
data, as it is also evident in the raw data from the individual
transects (e.g. Fig. 6). This deepening of the CSH is coin-
cident with a shoaling of the� calcite = 1.4 to 1.6, which
suggests it is related to the physical oceanography; perhaps
the upwelling of PDW at the PF also results in the minor de-
pression of the CSH.
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Fig. 6. Carbonate parameters [CO2−

3 ], � aragonite and� calcite
calculated with CO2SYS (Lewis and Wallace, 1998), using mea-
sured versus estimated DIC and alkalinity.

The old corrosive PDW causes the CSH to be consider-
ably shallower (< 3000 m) in most of the South Pacific Basin
(Fig. 8a). The influence of the PDW in the South Fiji Basin
and other basins to the north of New Zealand is readily ap-
parent, while the Tasman Sea has a deeper CSH as it is fed
from the Southern Ocean by CDW, with no influence of PDW
(Bostock et al., 2011). The deep western boundary current,
which is predominantly made up of CDW and flows east of
New Zealand around the Campbell Plateau, Chatham Rise
and then north along the Kermadec Ridge (Fig. 1), is also ev-

ident with a deepening of the CSH along its flow path com-
pared to the rest of the South Pacific Basin (Fig. 8a).

The NADW influence is clearly shown with a deeper CSH
(> 3500 m) in the South Atlantic and in the western Indian
Ocean, to the west of the Madagascar Ridge. The eastern In-
dian Ocean has the largest difference in the CSH between the
interpolated GLODAP data and the estimates from the CARS
climatology. The alkalinity data from GLODAP are patchy
for this region, and thus the calculated CSH is highly vari-
able, which is then interpolated across the ocean (Fig. 8a).
In the eastern Indian Ocean, the deep waters are made up of
CDW, and therefore we would expect the depth of the CSH
to be similar to that in the Southern Ocean.

The ASH depth estimated from the CARS dataset shows
a significant shoaling between the SAF and the PF with the
shallowest ASH at the PF due to the upwelling of corrosive
uCDW. During January (austral summer), the ASH shoals
to < 1000 m in the South Atlantic and Indian sectors of the
Southern Ocean and to< 750 m water depth in the Pacific
region of the Southern Ocean (Fig. 8b). This detail is not ev-
ident in the GLODAP interpolations (Fig. 8b; Feely et al.,
2004). Similar to the GLODAP gridded data, the ASH is
deeper, but highly variable in depth in the South Atlantic,
probably due to the mixing of the NADW and the AAIW,
while off the west coast of South America there is consider-
able shoaling of the ASH to< 500 m due to the upwelling.

With the potential routine deployment of dissolved oxygen
sensors on future Argo floats, algorithms like these will allow
routine determination of carbonate parameters from Argo
floats (Juranek et al., 2011). This will provide higher spatial
and temporal resolution of carbonate saturation estimates for
the intermediate waters of the Southern Hemisphere oceans
and allow the assessment of seasonal, interannual (Feely et
al., 1988; Juranek, et al., 2009; McNeil et al., 2011; Alin et
al., 2012), and decadal (Kim et al., 2010) variability. If future
Argo floats also incorporate direct in situ carbonate measure-
ments (Byrne and Yao, 2008), these algorithms could also be
a useful tool to control quality of the data, although the re-
lationship between DIC and the hydrographic parameters is
likely to change over time (see discussion below).

While these MLR algorithms work well for estimating the
alkalinity, DIC, [CO2−

3 ], � aragonite and� calcite for the in-
termediate and deep waters of the Southern Hemisphere open
oceans, slight improvements can be made when the South Pa-
cific, South Atlantic and Indian basin data are run separately,
but this is beyond the scope of this paper.

The surface oceans and coastal zones are more compli-
cated. Similar studies in the surface oceans (Millero et al.,
1998; Lee et al., 2000, 2006; Sasse et al., 2013) and from
the northeast Pacific (Oregon) (Juranek et al., 2009) and the
Sea of Japan (Kim et al., 2010) have shown that separate, lo-
calised/regional algorithms are required. Thus more testing
is needed to determine if the algorithms developed in this pa-
per are useful in Southern Hemisphere marginal seas. South
of the PF our MLR algorithms overestimate the alkalinity
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Fig. 7. Potential density of the(A) CSH (contours atσθ = 0.02 intervals) and(B) ASH (contours atσθ = 0.2 intervals) predicted from the
CARS 2009 data (January). Potential density of(C) CSH and(D) ASH from the bottle data from GLODAP and CLIVAR.

and DIC in the upper 1000 m (Fig. 6), suggesting that waters
around Antarctica may be sufficiently distinct as to benefit
from a separate MLR routine.

While the focus of this paper has not been on the uptake of
anthropogenic CO2 by the Southern Hemisphere oceans, the
continued uptake will alter the relationship between DIC and
alkalinity and hydrographic parameters over time, as demon-
strated by McNeil et al. (2001). This is an especially impor-
tant problem in the Southern Ocean, where the AASWs are
taking up a large proportion of anthropogenic CO2. These
waters then subduct to form AAIW, changing its carbon-
ate chemistry, and storing large amounts of CO2 in AAIW
(Sabine et al., 2004; Murata et al., 2007, 2008, 2010; Feely
et al., 2012). Therefore MLR algorithms such as these, and
other methods including neural networks (Velo et al., 2013;
Sasse et al., 2013), do not abrogate the need for ongoing sam-
pling to measure DIC and alkalinity directly. Direct measure-
ments will be needed to determine changes in the MLR (a
technique called extended MLR (eMLR)) resulting from the

anthropogenic CO2 uptake (McNeil et al., 2001b; Peng et al.,
2003; Friis et al., 2005; Sabine et al., 2008; Wanninkhof et
al., 2010; Peng and Wanninkhof, 2010; Feely et al., 2012).
However, these kinds of MLR methods give us the tools
to maximise the value of direct measurements, by allowing
meaningful extrapolation to larger areas. The algorithms also
identify specific regions of interest, where processes can only
be understood with dedicated sampling programmes.

6 Conclusions

Using the global carbonate datasets of WOCE (1990s) and
CLIVAR (2000s), we have developed MLR algorithms to es-
timate the DIC, alkalinity, and saturation states of calcite and
aragonite accurately for intermediate and deep waters of the
Southern Hemisphere open oceans. When used in conjunc-
tion with the CARS (2009) climatology, this provides new
detailed maps of the CSH and ASH which are oceanographi-
cally consistent. These will be used for future benthic habitat
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(A) (B)

Fig. 8. (A) Depth of the CSH: the top figure is estimated from the CARS 2009 data (January), and bottom from GLODAP gridded data.(B)
Depth of the ASH: the top is estimated from CARS 2009 data (January), bottom from the GLODAP gridded data. Contours are at 250 m
intervals.

mapping and carbonate sediment models. With the deploy-
ment of oxygen sensors on Argo floats, these algorithms can
be used to look at seasonal and interannual changes in the
carbonate saturation states in the intermediate and deep wa-
ters.

There are larger residuals for the alkalinity and DIC es-
timates south of the PF, and further testing is required for
marginal seas. These algorithms do not abolish the need for
future sampling and measurement of DIC and alkalinity, as
the coefficients of the MLR algorithms will change with fu-
ture anthropogenic CO2 uptake by the oceans. They, how-
ever, may help to identify specific regions and depths of in-
terest for targeted future sampling.
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