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Abstract. The sea surface microlayer (SML) is an impor-
tant biogeochemical system whose physico-chemical analy-
sis often necessitates some degree of sample storage. How-
ever, many SML components degrade with time so the devel-
opment of optimal storage protocols is paramount. We here
briefly review some commonly used treatment and storage
protocols. Using freshwater and saline SML samples from
a river estuary, we investigated temporal changes in surfac-
tant activity (SA) and the absorbance and fluorescence of
chromophoric dissolved organic matter (CDOM) over four
weeks, following selected sample treatment and storage pro-
tocols. Some variability in the effectiveness of individual
protocols most likely reflects sample provenance. None of
the various protocols examined performed any better than
dark storage at 4◦C without pre-treatment. We therefore rec-
ommend storing samples refrigerated in the dark.

1 Introduction

The sea surface microlayer (SML) is only tens to hundreds
of micrometers deep, but represents a physically, chemically
and biologically distinct environment. It contains unique mi-
crobial communities, is a site for the synthesis and concentra-
tion of organic matter components, including transparent ex-
opolymer particles (TEP) implicated in marine snow forma-
tion, and surface active substances (SAS) that cause damping
of surface turbulence and subsequent suppression of air-sea
gas exchange (Ćosovíc, 2005; Upstill-Goddard et al., 2003;

Cunliffe et al., 2011; Wurl et al., 2011; Salter et al., 2011).
SAS in seawater are predominantly natural phytoplankton
exudates, such as polysaccharides, proteins and lipids, and
their degradation products (Gǎsparovíc, 2012), with addi-
tional contributions in coastal waters from terrestrial humic
and fulvic acids. Production of SAS is thus seasonal and
leads to strong seasonality of SML properties and air–sea gas
exchange (Wurl et al., 2011).

Several methods for sampling the SML are in common use
(Zuev et al., 2001; Cunliffe et al., 2013), most commonly
the mesh screen (Garrett, 1965) and glass plates (Harvey
and Burzell, 1972). Different sampling methods select dif-
ferent sampling depths (Cunliffe et al., 2013) and also have
slightly different sensitivities for certain components (Zuev
et al., 2001), which complicates study inter-comparison. Ad-
ditionally, the complex physico-chemical nature of the SML
and the strong seasonality and reactivity of some of its
main components also present challenges to sample handling
and storage. Routine analyses providing valuable SML char-
acterisation include chromophoric dissolved organic matter
(CDOM) absorbance (Helms et al., 2008; Frew et al., 2002)
and fluorescence (Hudson et al., 2007). Total surfactant activ-
ity (SA) (Ćosovíc and Vojvodíc, 1982) is also an important
parameter due to the role of surfactants in air–sea gas ex-
change (Frew et al., 2002) but few data are available. For all
of these methods, analysis in the field is usually not possible.
Delays between sampling and analysis are thus inevitable
and in the case of open ocean research cruises, these can
extend over several weeks. Even where instrumentation is
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readily available the measurements can be time-consuming,
making storage a significant issue for at least some sam-
ples. As some degree of SML sample storage is unavoidable,
the development of storage protocols that minimise temporal
degradation and contamination are essential.

There is currently little consensus regarding appropriate
maximum storage times or recommended sample treatments
for the routine SML analyses outlined above. Although ear-
lier studies addressed sample storage for individual sea water
components, reported results are sometimes conflicting and
as far as we are aware the simultaneous evaluation of several
storage protocols for several sea water analytes has not been
adequately undertaken, and this is certainly so for the SML.
To address this deficiency we examined the effects of sev-
eral established storage protocols on the analysis of SA and
CDOM absorbance and fluorescence in SML samples.

2 Review of storage methods

To set the context for our study it is appropriate here to briefly
review some commonly used methods for preserving organic
matter (OM) samples collected in natural waters.

Refrigeration in the dark at typically 4◦C is in com-
mon use for CDOM samples (Coble et al., 1998; Baker,
2002; Stedmon et al., 2003; Wickland et al., 2007; Fell-
man et al., 2009; Hood et al., 2009; Lapworth et al., 2009).
However, while one study found no change in CDOM ab-
sorption in samples refrigerated for less than 24 h (Mitchell
et al., 2000), another reported fluorophore-specific declines
in fluorescence intensity dependant upon sample provenance
(Hudson et al., 2009). Hunter and Liss(1981) found small
SA losses from samples dark-stored at 6◦C for up to a week,
but an increase of 20 % after 34 days. Freezing of filtered
samples at−20◦C is also widely used for CDOM storage
(Coble et al., 1998; Murphy et al., 2008; Conmy et al., 2009;
Walker et al., 2009; Gao et al., 2010; Spencer et al., 2010;
Yamashita et al., 2010b) but again sample provenance ap-
pears to be important; highly coloured samples comprising
mostly allochthonous OM tend to show greater changes dur-
ing freeze/thaw than more optically clear autochthonous-
dominated OM samples. Two studies of a range of fresh-
waters found that after freeze/thaw, fluorescence intensities
and adsorption coefficients showed both increases and de-
creases (Spencer et al., 2007a; Hudson et al., 2009), although
overall CDOM loss was observed and protein-, humic-, and
fulvic-like fluorophore intensities all declined (Hudson et al.,
2009). Both studies concluded that there were no simple rela-
tionships between initial sample characteristics and changes
during freeze/thaw and that correcting their data for this ef-
fect was therefore not possible. On the other hand,Yamashita
et al. (2010b) found CDOM absorbance to be unaffected
by freezing, although FDOM data were compromised, and
Gao et al.(2010) found that changes after freezing were
less than 15 %. Other studies also found minimal effects of

freeze/thaw on OM optical properties (Conmy et al., 2009;
Yamashita et al., 2010a), andSpencer et al.(2010) found that
after freeze/thaw, changes in absorbance, spectral slope, spe-
cific UV absorbance, and fluorescence were within analytical
error and always less than±2%.

Sample storage after chemical poisoning to arrest biolog-
ical activity is another approach that has been commonly
used in the literature, of which five types are common: (i)
acidification to pH∼ 2–3 using HCl or H3PO4; (ii) chloro-
form (CHCl3); (iii) sodium azide (NaN3); (iv) mercuric chlo-
ride (HgCl2) (Kaplan, 1992; Kirkwood, 1992; Benner and
Hedges, 1993; Ferrari et al., 1996; Wiebinga and de Baar,
1998; Kattner, 1999; Gardolinski et al., 2001; Aufdenkampe
et al., 2007; Hur et al., 2007; Bouillon et al., 2009; Stubbins
et al., 2010); and (v) Formalin (Wurl et al., 2009). A note
of caution is the possible modification of the analytes of in-
terest but only the effect of acidification has been examined
extensively, as it is often used to prevent microbial degrada-
tion in CDOM samples and because lowering the pH reduces
the tendency towards metal-DOM complexation. However,
CDOM absorption has been observed to increase with in-
creasing pH (Andersen et al., 2000) and acidification is also
reported to change fluorescence intensities and to introduce
spectral shifts. For example,Patel-Sorrentino et al.(2002)
observed an increase in fluorescence intensity with increas-
ing pH between 1 to 10–11 and a decrease at pH 12;Mobed
et al. (1996) found a red shift in florescence intensity max-
ima with increasing pH in soil-derived humics. The same
study also reported a blue shift with increasing pH in aquatic
derived DOM.Spencer et al.(2007a) found that pH signif-
icantly affects CDOM and EEM measurements and that it
is especially severe at extreme pH values. Based on this ev-
idence the acidification of samples for CDOM absorbance
and fluorescence measurements should be avoided.

While mercuric chloride is deliberately used to inhibit mi-
crobial growth in some studies, there are consequent effects
on CDOM (Kratzer et al., 2000; Helms et al., 2008; Spencer
et al., 2009) and it has been shown to quench DOM fluores-
cence (Fu et al., 2007; Yamashita and Jaffe, 2008). Sodium
azide has been reported to have no effect (Ferrari et al., 1996;
Astoreca et al., 2009) but also to cause up to 10 % increase
in absorption (Tiltstone et al., 2002). Patel-Sorrentino et al.
(2002) found that sodium azide had no measurable effect on
the EEMs of two humic-like fluorophores. The use of toxic
chemicals is also problematic from a practical standpoint.
Chloroform is difficult to handle because of its volatility and
its potential loss through plastic bottles (Kremling and Brug-
mann, 1999), while mercuric chloride and sodium azide are
very toxic to aquatic organisms and may have long term ad-
verse environmental effects (hazardous waste).

Previous studies focussed on single aspects and sometimes
reported storage results are conflicting. To the knowledge of
the authors, a comparative test for the effects of different
treatments on several measurements has not been conducted.
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Table 1.Treatments used for the SML samples. All samples were stored in the dark and, with the exception of treatment 7, at 4◦C.

No. Treatment Sampling location

1 No treatment Estuarine & riverine
2 Fixed with 1 % Formalin (final concentration) (Wurl et al., 2009) Estuarine
3 Poisoned with 6 µmolL−1 AgNO3 (Kim et al., 2008). The salt was

baked at 200◦C to remove remnants of surfactants before making up
the poison

Estuarine

4 Filtered with silver filter Estuarine & riverine
5 Filtered with 0.2 µm surfactant free cellulose acetate (SFCA) filter (Ku-

jawinski et al., 2002)
Estuarine & riverine

6 Filtered with 0.2 µm surfactant free cellulose acetate (SFCA) filter and
poisoned with HgCl2

Estuarine & riverine

7 Filtered with 0.2 µm surfactant free cellulose acetate (SFCA) filter and
frozen at−20◦C

Estuarine & riverine

We tested the effects of different established storage proto-
cols on SA, CDOM, and fluorescence.

3 Materials and methods

All sampling and laboratory equipment was acid-washed
with 10 % HCl and rinsed three times with ultra-pure wa-
ter (Milli-Q, Millipore System Inc., USA) prior to use. Glass
equipment additionally was baked at 450◦C overnight. SML
samples were collected from the Tyne estuary (NE UK) on
17 March 2011 (salinities 0 and 17.4), 12 May 2011 (salinity
17.0) and 1 June 2011 (salinity 15.8) using a Garret screen
(Garrett, 1965) (mesh 16, wire diameter 0.36 mm, opening
1.25 mm) into “aged” plastic bottles (i.e. all leachable com-
ponents removed) and transported to the laboratory. A 5 L
sample was collected at each station over a duration of ap-
proximately 2 hours. The Garrett screen was selected due to
its ease of use even at high winds and its wide application in
the literature. Although different sampling devices will result
in slightly different samples due to differences in SML sam-
ple depth (Cunliffe et al., 2013), there is also great variabil-
ity between sampling locations and times which will equally
affect storage results. These natural variations are consid-
ered much higher than variations which are potentially in-
troduced by the choice of the sampling method. Therefore
we consider our results to be applicable for other sampling
techniques as well.

In the laboratory, the samples were pumped using a peri-
staltic pump and silicone perstaltic tubing into 15 mL ster-
ile polypropylene plastic tubes or 20 mL glass bottles for
later analysis. For treatments which involved filtration, the
respective filter was inline. To make sample handling as con-
sistent as possible, unfiltered samples were pumped through
empty filter holders. Subsequently, for treatments involving
poisoning, the poison was applied using pipettes before stor-
ing at 4◦C or −20◦C, depending on the treatment. All sam-
ples were collected in triplicate. For each treatment, 3 repli-

cates×4 time points×3 variables (SA, CDOM, FDOM), i.e.
36, tubes/bottles were prepared (for treatments stored in both
glass and plastic, 36 each).

The selected treatments are listed in Table1 and are
all in common use (see below). Filtering removes bac-
teria and thereby reduces bio-degradation but it also re-
moves particulate matter and hence a significant por-
tion of SAS. Consequently it has been recommended to
measure SA on unfiltered samples (Ćosovíc, 2005). Poi-
soning samples by various means arrests bio-degradation
but can lead to cell lysis and the leaching of SAS
(Lee and Fisher, 1992; Gardner et al., 1983). Our selected
procedures examined the net result of all of these. Poison-
ing by AgNO3 and HgCl2 were examined. Acidification pro-
cesses were not considered due to the problems found in pre-
vious studies (Sect.2).

For all protocols, the first sample (t0) was analysed as soon
as possible after treatment (i.e. the same or following day).
All samples were kept in the dark and all, except treatment 7
which was kept frozen at−20◦C, were kept at 4◦C follow-
ing common practice (Coble et al., 1998; Baker, 2002; Sted-
mon et al., 2003; Wickland et al., 2007; Fellman et al., 2009;
Hood et al., 2009; Lapworth et al., 2009). Subsequent anal-
yses were carried out after one, two, and four weeks. Treat-
ments 1 and 6 were stored both in glass and polypropylene
bottles to examine the comparative influences of these ma-
terials. All others, i.e. treatments 2–5 and 7, were stored in
polypropylene only.

SA was measured by phase-sensitive AC voltammetry
(Ćosovíc and Vojvodíc, 1982) (Metrohm 797 VA Compu-
trace, Metrohm, Switzerland) with a hanging mercury drop, a
silver/silver chloride reference electrode and a platinum wire
auxiliary electrode. Calibration used the non-ionic soluble
surfactant Triton T-X-100. Samples were brought to salinity
35 prior to measurement by adding surfactant-free 3 molL−1

NaCl solution. For each measurement, a new mercury drop
was created and the first few drops discarded. Surfactants ac-
cumulated on the drop atV = −0.6V for 15 s with stirring

www.biogeosciences.net/10/4927/2013/ Biogeosciences, 10, 4927–4936, 2013
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Table 2.Characteristics of identified PARAFAC components. Maximal excitation and emission wavelengths are given, secondary excitation
maxima are shown in parentheses. Description contains previously assigned characteristics and names of similar components as shown in
the References column.

Comp. Exλ (nm) Emλ (nm) Description References

1 265 533 Humic-like terrestrial DOM Murphy et al.(2008)
2 < 250 (305) 425 Humic-like, low molecular weight Murphy et al.(2008), Fellman et al.(2010)
3 < 250 (365) 479 Humic-like, high molecular weight Fellman et al.(2010)
4 265 429 Reduced, humic-like group Cory and McKnight(2005)
5 280 342 Tryptophan-like, amino acids free or boundMurphy et al.(2008), Fellman et al.(2010)

K. Schneider-Zapp et al.: Comparison of storage strategies of sea surface microlayer samples 7
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Fig. 1. Surfactant activity (SA) and CDOM E2 :E3 vs. storage
time for estuarine SML samples stores in glass and plastic, SA (top)
exemplary for the situation without change, and CDOM E2 :E3

(bottom) as the only example where there is an influence.

Fig. 1.Surfactant activity (SA) and CDOME2 : E3 vs. storage time
for estuarine SML samples stores in glass and plastic, SA (top) ex-
emplary for the situation without change, and CDOME2 : E3 (bot-
tom) as the only example where there is an influence.

(1000 rpm). Alternating voltage scans of 10 mV at 75 Hz pro-
duced a current which was measured. Each response was
corrected for the added NaCl solution and expressed as an
equivalent T-X-100 concentration.

CDOM absorbance and fluorescence (Spencer et al.,
2007b) were determined by UV/VIS spectrophotometry

(Varian Cary 100 Bio) and UV/VIS spectrofluorometry (Var-
ian Cary Eclipse Fluorescence Spectrophotometer), respec-
tively (Varian Inc, USA). Both used 10 mm path length
quartz cuvettes, rinsed three times with ultra-pure water
and once with sample before each measurement. Ultra-pure
water blanks were measured at the start and end of each
run. Absorbance was measured over the wavelength range
800 nm–200 nm in 1 nm steps. Acquired spectra were cor-
rected for drift by subtracting the mean 700 nm to 800 nm
absorption (samples are transparent in that range) and the
blank spectrum was subtracted. Spectral slopesS (Helms
et al., 2008) and the 250 nm to 365 nm absorption ratio
(also calledE2 : E3) were used to indicate dissolved or-
ganic matter (DOM) composition (or “quality”).E2 : E3
tracks changes in DOM molecular size andS is an index
of average DOM characteristics (chemistry, source, diage-
nesis). Both are largely independent of CDOM concentra-
tion (Helms et al., 2008). For estimatingS we used non-
linear regression on the wavelength region 350 nm to 400 nm.
CDOM fluorescence excitation-emission matrices (EEMs)
were collected over excitation wavelengths 250 nm–450 nm
in 5 nm steps and emission wavelengths 280 nm–600 nm in
4 nm steps. EEMs were averaged over 0.1 s. Blank scans
were subtracted from sample EEM matrices, which were
then corrected for inner filter and instrument effects (Cory
et al., 2010). HgCl2 quenches DOM fluorescence (Fu et al.,
2007; Yamashita and Jaffe, 2008), hence we did not mea-
sure the fluorescence of HgCl2 poisoned samples. In to-
tal, 186 resulting EEMs were modelled with parallel factor
analyses (PARAFAC;Stedmon and Bro, 2008). Five differ-
ent fluorophores were identified using split-half validation
and residual analyses (Table2).

Statistical tests evaluated any significant differences. For
examining glass vs. plastic, we fitted a linear model with
generalised least squares and varying variances. An analysis
of variance (ANOVA) was then used to determine whether
the variable “tube material” exerts no influence (i.e. the fac-
tor was compatible with zero). Rejections were at the 5 %
level. For comparing compatibility with no change, each
variable (SA, CDOMS, CDOME2 : E3) and each treatment
were tested separately using an ANOVA. For investigating
the effect of the treatments, each treatment was compared to
“no treatment” using a linear model fitted with generalised

Biogeosciences, 10, 4927–4936, 2013 www.biogeosciences.net/10/4927/2013/
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Tyne estuary for different treatments as detailed in Tab. 1. Differences at t0 are caused by treatment effects. Treatments are labelled in each
figure and marked with a star if compatible with no change over time.

Fig. 2. Relative change of surfactant activity (SA) in respect to “No treatment” att0 vs. storage time for SML samples collected from the
Tyne estuary for different treatments as detailed in Table1. Differences att0 are caused by treatment effects. Treatments are labelled in each
figure and marked with a star if compatible with no change over time.

least squares. An ANOVA then tested if the parameter “treat-
ment” had no influence. Statistics were calculated using the
“R” software package. For every analysis, the statistics were
checked using Q-Q plots and the distribution of residuals.
Results which did not pass were discarded. Except for the
statistical tests which operated on the original values, results
were normalised to those for no treatment att0 to facilitate
direct comparisons of changes during storage. Errors are ex-
pressed as the standard deviation of the triplicate analyses.

4 Results and discussion

We found that in all instances except CDOME2 : E3 for
samples treated with HgCl2, storage in either glass or
polypropylene did not significantly affect our analytical re-
sults (SAp = 0.45, CDOMS p = 0.55, CDOME2 : E3 for
silver filterp = 0.74). Figure1 shows the comparison graph-
ically, for SA as example for the cases with no influence, and
for CDOM E2 : E3 as the only case where there is an influ-
ence.

The selected treatments produced varying SA responses
(Fig. 2). Formalin (treatment 2) produced an initial increase
of 10 % att0 , which may reflect additional DOM leached
from dying cells. If so, it is evidently essentially complete

immediately following the addition. The filtered frozen sam-
ple (treatment 7) initially showed lower SA, likely due to par-
ticulate matter removal, whereas the unfrozen filtered sample
(treatment 5) did not. This could be explained by clogging,
causing a change in the effective filter pore size. Poisoning
apparently partly compensated surfactant removal by filter-
ing by introducing leached material (treatments 4 and 6). The
untreated sample showed a maximal change of−10 %. Only
the untreated sample (p = 0.52), frozen (p = 0.17) and poi-
soning with HgCl2 (p = 0.06) are compatible with no change
over time.

CDOM responses are shown in Figs.3 and4. Formalin in-
troduced significant absorption even in blank water samples,
which precludes its use in CDOM storage protocols. HgCl2
significantly changed the absorption at small wavelengths:
the 250 nm to 365 nm absorption ratio changed 10-fold (off
scale in Fig.4). Silver filtration and freezing also led to large
changes. AgNO3 gave the best performance with changes up
to 15 % inE2 : E3 and 20 % inS, with the untreated sample
showing changes up to 20 %.

www.biogeosciences.net/10/4927/2013/ Biogeosciences, 10, 4927–4936, 2013
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Table 3.Statistical evaluation of no effect of storage time (p value).
Tests were run separately for each treatment (as detailed in Table1)
and variable. Forp < 0.05 time is considered to have a significant
influence. Unmeasured data are shown as n/a; statistics that did not
pass the quality control as “–”.

Treatment SA CDOMS CDOM E2 : E3

1 0.52 0.12 0.05
2 0.004 n/a n/a
3 0.004 – 0.14
4 0.002 0.14 0.21
5 0.10 – –
6 0.06 0.70 0.58
7 0.17 0.36 0.10

Table 3 shows the results of the statistical test against
no change over time (disregarding initial change compared
to the untreated sample) for all variables and treatments.
Overall, none of the sample storage protocols examined per-
formed any better than “no treatment”. Table4 shows the
results for the statistical test against “no treatment”. Nearly
all treatments are significantly different (for SA only silver

Table 4. Statistical evaluation of no effect of treatment (p value).
Each treatment as detailed in Table1 was separately tested against
“No treatment”. Forp < 0.05 the treatment is considered to be sig-
nificantly different from “No treatment”.

Treatment SA CDOMS CDOM E2 : E3

2 0.002 0.97 0.12
3 0.000 n/a n/a
4 0.80 0.000 –
5 0.000 – 0.000
6 0.000 – –
7 – 0.000 0.000

filter (4), and for CDOM only Formalin (2) are not signifi-
cantly different). For no treatment all investigated variables
are compatible, thus all pre-treatments significantly modify
the samples.

Perhaps unsurprisingly, changes during storage depend
on the initial SAS concentration and composition. Figure5
shows SA vs. time for the four samples examined: high SA
freshwater and three lower SA estuarine waters. Only the es-
tuarine sample from 01/06 showed any clear downward trend
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Fig. 6. Relative change of the five different fluorescence compo-
nents as detailed in Table2 vs. storage time for the untreated sam-
ple.

in SA; none of the others showed any significant tempo-
ral change (p = 0.12,p = 0.63, andp = 0.53, respectively).
Initial changes due to the treatments (e.g. SAS leaching due
to poisoning) also showed significant scatter for the differ-
ent sampling locations and times, indicating that treatment
effects cannot be easily predicted (data not shown).

Different SAS components degrade differently. Figure6
shows relative changes in fluorescence components in the
untreated sample. Tryptophan-like substances (component
5) and reduced humic-like groups (component 4) appar-
ently degrade more rapidly than humic-like substances
(components 1–3).

Findings of previous studies for CDOM and FDOM
(Sect.2) support the notion that changes in sample charac-
teristics during storage can vary greatly, dependent not only
on the selected sample treatment and storage time, but also
on the initial sample composition. Our comparison of SA
and CDOM changes of the same samples shows that SA
and CDOM do not always behave similarly. Consequences
for the subsequent analysis of SML samples stored accord-
ing to various protocols may therefore be difficult to pre-
dict precisely with any great confidence. However within er-
ror changes over time for untreated samples during the first
14 days of storage are not significant for most samples.

5 Conclusions

A storage experiment using SML samples of varying salini-
ties and seven different storage protocols showed that mea-
sured surfactant activity and CDOM absorption and fluores-
cence all depended on sample provenance as well as initial
sample treatment and subsequent storage times. Moreover,
all analyses showed significant scatter between triplicates

and none of the several protocols examined performed any
better than that of “no treatment”. This highlights the diffi-
culty of devising adequate storage protocols for SML sam-
ples. If all variables are considered, none of the tested pro-
tocols were compatible with “no treatment”. This is proba-
bly due to the potential problem of organic material leaching
from dying cells on poisoning and the likely removal of sig-
nificant particulate organic matter on filtration. Therefore we
must conclude that where the storage of samples for SAS
and CDOM analysis is necessitated by circumstances, such
samples should remain untreated and be stored at 4◦C in the
dark for as short a time as possible. For storage of 7 days
we found this protocol to result in an error of less than 12 %
in SA compared to samples analysed immediately following
collection and for most samples, temporal changes are not
significant within the first 14 days of storage.
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