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Abstract. Quantifying oceanic anthropogenic carbon uptake
by monitoring interior dissolved inorganic carbon (DIC) con-
centrations is complicated by the influence of natural vari-
ability. The “eMLR method” aims to address this issue by
using empirical regression fits of the data instead of the
data themselves, inferring the change in anthropogenic car-
bon in time by difference between predictions generated by
the regressions at each time. The advantages of the method
are that it provides in principle a means to filter out nat-
ural variability, which theoretically becomes the regression
residuals, and a way to deal with sparsely and unevenly dis-
tributed data. The degree to which these advantages are real-
ized in practice is unclear, however. The ability of the eMLR
method to recover the anthropogenic carbon signal is tested
here using a global circulation and biogeochemistry model
in which the true signal is known. Results show that regres-
sion model selection is particularly important when the ob-
servational network changes in time. When the observational
network is fixed, the likelihood that co-located systematic
misfits between the empirical model and the underlying, yet
unknown, true model cancel is greater, improving eMLR re-
sults. Changing the observational network modifies how the
spatio-temporal variance pattern is captured by the respec-
tive datasets, resulting in empirical models that are dynami-
cally or regionally inconsistent, leading to systematic errors.
In consequence, the use of regression formulae that change
in time to represent systematically best-fit models at all times
does not guarantee the best estimates of anthropogenic car-
bon change if the spatial distributions of the stations empha-
size hydrographic features differently in time. Other factors,

such as a balanced and representative station coverage, verti-
cal continuity of the regression formulae consistent with the
hydrographic context and resiliency of the spatial distribu-
tion of the residual field can be used to help guide model
selection. The characteristic spatial scales of the modes of
inter-annual to decadal variability in relation to the size of
the North Atlantic, in concert with the station coverage avail-
able, place practical limits on the ability of eMLR to fully
account for natural variability. Due to its statistical nature,
eMLR only efficiently removes the natural variability whose
spatial scales are smaller than the system analyzed.

1 Introduction

Since publication of the global oceanic cumulative mid-
1990s anthropogenic carbon inventory estimate (Sabine
et al., 2004), a measure of the time-integrated anthropogenic
signal, attention has turned toward methodologies capable of
monitoring spatio-temporal changes in that signal. Owing to
the size of the oceanic carbon storage and the role of the
ocean as a long-term sink of excess carbon dioxide, perturba-
tions, progressive saturation or a decrease of the oceanic up-
take rate (relative to expectations) can have large impacts on
the atmospheric concentrations (Schuster and Watson, 2007;
Corbiere et al., 2007; Le Qúeŕe et al., 2007; Khatiwala et al.,
2009). Accurate knowledge of the uptake rate and its inter-
annual variability (McKinley et al., 2011) thus has important
policy implications for carbon mitigation.
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Independent assessments using atmospheric and oceanic
carbon observations for the period 1995–2000 constrain
the mean oceanic uptake rate of anthropogenic carbon to
2.2± 0.3 Pg C yr−1 (Gruber et al., 2009). While estimates of
the global uptake rate tend to converge (Wetzel et al., 2005;
Takahashi et al, 2002; Mikaloff-Fletcher et al., 2006; Khati-
wala et al., 2009; Takahashi et al., 2009), assessments di-
verge on a regional level, showing different uptake and stor-
age patterns (Sabine et al., 2004; Waugh et al., 2006), espe-
cially in the Southern Ocean (Caldeira and Duffy, 2000; Lo
Monaco et al., 2005a,b; Le Qúeŕe et al., 2007). These differ-
ences have important mechanistic implications for the under-
standing and prediction of the marine carbon cycle and argue
for improved observational estimates.

An accuracy target for the determination of the rate of
change of anthropogenic carbon inventory of 0.1 Pg C yr−1

for each of the major ocean basins (3 Pg C globally over
10 yr, 10 % of the expected anthropogenic input for that
period) was suggested in the Large Scale CO2 Observing
Plan (LSCOP) report (Bender et al., 2002) for the Repeat
CO2/Hydrography program. It is challenging to quantify the
oceanic anthropogenic carbon concentration and its time rate
of change, however. The first problem lies in the fact that
anthropogenic carbon is usually defined as the difference be-
tween the contemporary dissolved inorganic carbon (DIC),
i.e. the measured DIC, and an estimate of the natural DIC;
that is, the DIC field thought to have existed in the absence of
human activity (Gruber et al., 2009). The natural and anthro-
pogenic carbon components are, however, indistinguishable
from a measurement point of view. Separating them implies
assumptions regarding the cycling of natural carbon. Another
issues is that the anthropogenic carbon fraction is small rel-
ative to the background DIC concentration (of order≤ 5 %
of the DIC in the upper ocean). Even if the current analytical
precision is sufficient to detect DIC changes on interannual to
decadal time-scales (Brewer et al., 1997; Winn et al., 1998;
Bates, 2001), natural variability confounds efforts to quan-
tify the dynamics of the marine anthropogenic carbon sink
on these scales (Keeling, 2005; Sabine et al., 2008; McKin-
ley et al., 2011).

These difficulties are exacerbated by the limited number
of data available and their spatio-temporal distribution. Basin
or global-scale databases represent assemblages of data col-
lected by individual cruises over many years. Owing to logis-
tical limitations and since each cruise has its own scientific
objectives, the large-scale spatio-temporal distribution of the
data is not ideal. While new samples are often collected close
to previously sampled stations, this is not always the case. As
such, direct point-by-point data comparison in time may not
be possible to infer changes on the basin scale if the intersect-
ing datasets are too sparse. While a point-by-point analysis
allows for a good control of the time difference between re-
peat samples locally (Levine et al., 2008; Sabine et al., 2008;
Wanninkhof et al., 2010), this approach would only be appli-
cable to a subset of the data for which repeat measurements

are available. A strict section-by-section or station-by-station
strategy would thus not be able to exploit the many samples
for which no repeat exists. A form of extrapolation, which
considers data in entire regions instead of constrained along
sections, is thus desirable to make best use of available data.

Wallace(1995), Sonnerup et al.(2000) (in the context of
13C) andFriis et al.(2005) proposed to compare empirical re-
gression model representations of the measurements instead
of directly comparing time-separated measurements to max-
imize data use, filter out the natural spatio-temporal variabil-
ity and to generate spatial prediction. TheFriis et al.(2005)
implementation of this method is known as the extended
Multiple Linear Regression (eMLR) approach. A few studies
have described various aspects and limitations of the eMLR
methodology either in models or applied to data (Sonnerup
et al., 2000; Friis et al., 2005; Tanhua et al., 2007; Levine
et al., 2008; Wanninkhof et al., 2010; Goodkin et al., 2011).
We add to these previous efforts by addressing two points not
thoroughly covered in the existing eMLR literature: the in-
fluence of regression model selection, and the effect of vari-
able observational sampling networks on eMLR-derived esti-
mates of the interannual to decadal change in anthropogenic
carbon.

The eMLR procedure, under the constraint imposed by the
number and locations of the available measurements, is here
evaluated objectively using an ocean circulation model that
includes carbon and nutrient biogeochemistry in which the
true anthropogenic signal is known exactly. The model is
forced by observed surface fluxes and so provides a means
of estimating absolute errors in the presence of natural tem-
poral and spatial variability patterns that are consistent with
many observed climate processes on a variety of time and
space scales.

The principles of the eMLR theory are described first, us-
ing matrix notation to cast eMLR into the general framework
of inverse problems. This is followed by a methodology sec-
tion giving the details of the circulation and biogeochemistry
model experiments used to generate the synthetic dataset on
which the eMLR methodology is tested. The methodology
section also includes a description of the calculations and
of the mapping scheme used. Results are presented in three
parts. The structure and variability of the anthropogenic car-
bon signal in the model are described first. Then, a summary
of the regression results focusing on regression quality and
formulae structure is given. The influence of various regres-
sion models and of changes in the observational network on
the eMLR solutions is addressed in the last several sections.
Basin-integrated inventory changes are discussed first, fol-
lowed by layer-specific inventory changes and finally column
inventory changes. A discussion of potential errors focusing
particularly on the problem of inhomogenous data distribu-
tion in time and space precedes the conclusions.
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2 eMLR theory

By design, regression models separate the fraction of the
variance that can be explained by the model and the part that
is due to noise. If suitable empirical regression models can
be found to describe the DIC field in a spatial domain, and if
it is assumed that the physical and biogeochemical processes
acting in that domain are stationary and not affected by the
anthropogenic perturbation, the noise (natural variability of
DIC) can in principle be filtered out by regression and the an-
thropogenic signal revealed as the difference between model
predictions of DIC at different times (Friis et al., 2005). Con-
ceptually,

1CeMLR
anth = G2(D2) − G1(D2) , (1)

whereGt are empirical model fits at timest derived from
the respective datasetsDt . It is worth noting that a set of
DIC predictions generated from a model fitted to one dataset
but applied to the other dataset is necessary (in this example,
G1(D2)) to ensure that DIC predictions exist for all samples
in the datasetD2.

Tarantola (2005) gives the following expressions (his
Eqs. 3.37 and 3.38) as possible forms of the least-squares
estimator of the regression coefficientsc̃ and the associated
posterior covariance matrix̃Cc that constitute the regression
modelY = Z · c̃ + ε:

c̃ =

(
ZT C−1

Y Z + Cc
−1

)−1(
ZT CY

−1Y + Cc
−1cprior

)
(2)

C̃c =

(
ZT C−1

Y Z + Cc
−1

)−1
. (3)

CY is the data covariance matrix andCc is the prior covari-
ance matrix of the estimator with mean prior densities given
in the vectorcprior. Exponents(T ) and (−1) indicate the
transpose and the inverse, respectively. Although this study
uses noiseless synthetic data, a thorough treatment of these
covariance matrices will be key for the application of eMLR
with real data. This is, however, beyond the scope of this
manuscript.Z is any design matrix containing the variables
used as predictors andY is a vector containing the DIC ob-
servations.

As indicated by Eq. (1), the eMLR estimate of anthro-
pogenic carbon change is obtained by using two different sets
of regression coefficients but only one set of data, resulting
in estimates that are projected either forward or backward in
time depending on the dataset used in the calculation. Using
Eq. (2), the eMLR quantity that would be predicted with the
dataset available at timet2 is given by

1̃C
eMLR
anth|t2 = Ỹt2 − Ỹt1|t2

= Zt2 · c̃t2 − Zt2|t1 · c̃t1

= Zt2 ·

[(
ZT C−1

Y Z
)−1(

ZT CY
−1Y

)]
t2

−Zt2|t1 ·

[(
ZT C−1

Y Z
)−1(

ZT CY
−1Y

)]
t1

(4)

in the limit of no available prior information (cprior = 0,
Cc

−1
→ 0) and with the “tilde” indicating empirical esti-

mates. The subscriptst2 and t1 associated with the square
brackets apply to every term in the brackets.Zt2|t1 is the de-
sign matrix built from data at timet2, but adjusted to utilize
the variables included in the regression model derived from
time t1 (c̃t1). The notationt2|t1 is introduced to allow for dif-
ferent sets of predictor variables (i.e. different regression for-
mulae) to be used in the derivation of the regression coef-
ficients at eithert1 or t2, a generalization of original eMLR
(Friis et al., 2005).

Ideally, if the physical and biogeochemical processes that
govern the spatial distribution of the tracers are stationary
in time, the structure of best-fit regression formulae (i.e. the
predictor variables used) should also be constant in time for
a given region of the ocean. If the same set of predictor vari-
ables is used through time, i.e.Zt2 = Zt2|t1, and if the model

is linear, Eq. (4) can be written as̃1C
eMLR
anth|t2 = Zt2 ·

(
c̃t2 − c̃t1

)
,

which is the traditional form of eMLR (Friis et al., 2005).
In reality, as sampling intensity in different regions

changes,Zt1 and Zt2 may not have the same number of
rows (measurements) and these measurements may not be
co-located geographically. As such, it is possible that the for-
mulae of the regression models that minimize residuals in
a region may change in time due to changes in the obser-
vational network, even without secular trends. Equation (4)
explicitly accounts for this possibility. The degree to which
changes in spatial sampling intensity affects the regression
models and the degree of influence the form of the regression
models ultimately have on the eMLR estimate is the subject
of this study.

Note that the results can also be projected backwards in

time, onto the data available att1: 1̃C
eMLR
anth|t1 = Zt1·

(
c̃t2 − c̃t1

)
.

If the numbers and locations of the measurements available
change in time, maps produced by backward projecting the
result att1 may differ from maps produced from forward pro-
jecting att2. eMLR can thus generate different results from
the same data. The importance of this difference depends on
sample coverage and mapping.

Equation (4) shows that predicted changes in the carbon
concentration can occur as expected from differences in the
vectorsYt1 andYt2, but also from differences in the matri-
ces Zt1 and Zt2 and from differences in the prior covari-
ance matrices associated with variableY , CY,t1 andCY,t2.
The measurement accuracy of DIC and alkalinity (Alk)
have improved since the introduction of the certified ref-
erence material such that, for most samples taken during
and after the World Ocean Circulation Experiment (WOCE),
CY,t1 ≈ CY,t2. The measurement accuracy for DIC between
cruises would vary by a factor of 2–5 prior to the introduc-
tion of reference material, such that changes in covariances
can significantly contaminate the eMLR signal when using
older datasets, as shown experimentally byMatear and Mc-
Neil (2003) andTanhua et al.(2007). Equations (2) and (3)

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 4801–4831, 2013



4804 Y. Plancherel et al.: eMLR performance

do not formally consider errors associated with the predictor
variables inZ but this can be achieved using a Monte-Carlo
approach or more direct methods (Tarantola, 2005). Errors
associated with the hydrochemical variables inZ are likely
important in reality since no reference material is used for
nutrient measurements and systematic biases are known to
exist between measurements taken during different cruises.

Estimates of uncertainty around̃1C
eMLR
anth|t2 can be obtained

by linear propagation of the individual posterior uncertain-

ties. Given that̃1C
eMLR
anth|t2 = Ỹt2 − Ỹt1|t2, and since the poste-

rior covariance matrices̃CY can be calculated from the de-
sign matrices and the posterior covariance matrix of the re-
gression coefficients (Eq.3) at each time bỹCY = ZC̃cZT

(Tarantola, 2005), an estimate of precision for eMLR is

σ̃ eMLR
2
≈ diag

(
C̃Y,t2

)
+ diag

(
C̃Y,t1|t2

)
− 2 · cov

(
Ỹt2 , Ỹt1|t2

)
, (5)

with C̃Y,t1|t2 = ZY,t1|t2 · C̃c,t1 · ZY,t2|t1
T . By defini-

tion, the covariance term can also be expressed as
cov(a,b) = ρ(a,b)

√
Var(a)Var(b), making the correla-

tion (ρ) between co-located predictions of̃Yt2 and Ỹt1|t2

explicit. This form of error propagation would be appropriate
even if nonlinear regression models were considered since

1̃C
eMLR
anth|t2 is expressed as a difference between two terms,

which is a linear operation.
Equation (5) shows thatσ̃ eMLR depends on the fit quality

at timet2 (the first term) and on an estimate of the regression
precision achieved by applying the regression fromt1 with
data fromt2 (second term). Finally, it importantly depends
on the correlations between the prediction generated from
each fit (the third term). If the estimates

(
Ỹt2

)
andỸt1|t2 are

correlated, the overall estimated uncertainty decreases. On
the other hand, if the predictions are uncorrelated the third
term becomes small and the overall uncertainty around the
eMLR result increases.

3 Methodology

3.1 Synthetic dataset and description of the model

A synthetic dataset with known anthropogenic carbon con-
centrations is used as a testbed. The synthetic dataset
is constructed by sampling a global ocean circulation-
biogeochemistry model (output provided by J. Dunne, Geo-
physical Fluid Dynamic Laboratory, NOAA, Princeton, NJ,
USA) at the station coordinates given by the GLODAP (Key
et al., 2004) and CLIVAR (defined operationally as data col-
lected after GLODAP) datasets (Fig.1) to reproduce the ob-
served sampling grid. Our current working estimate of these
datasets in the North Atlantic region represent 386 and 703
stations for GLODAP and CLIVAR, respectively. To isolate
the effect of regression model selection from other sources
of error, the synthetic data are assumed free of measurement
errors throughout this work.

The analyses focus on 1995 and 2005. These years were
chosen as they are representative of the modal sample density
available for the GLODAP and CLIVAR datasets. Similarly,
emphasis is given to July 1995 and July 2005 as July mimics
the summer bias inherent in the original datasets (Key et al.,
2004).

Our choice of the North Atlantic for this study is motivated
by a number of factors. First, it is clearly a region of conse-
quence for carbon uptake by the ocean (Sabine et al., 2004).
Second, the complex hydrography and strong water mass
variability in the North Atlantic pose particular challenges
for empirically-based detection methods, as indicated by the
global model-based eMLR results ofLevine et al.(2008).
Third, the relatively large number of measurements in this
region suggests that it is an appropriate context within which
to deconvolve uncertainties associated with the eMLR ap-
proach itself from uncertainties associated with the mapping
process.

The simulator is composed of the NOAA/GFDL z-level
coordinate Modular Ocean Model MOM4 general circu-
lation model (Griffies et al., 2004, 2005; Gnanadesikan
et al., 2006) and the Tracers in the Ocean with Allometric
Zooplankton (TOPAZ) lower-trophic level biogeochemistry
model (Dunne et al., 2005, 2007, 2008, 2010). Sea-ice dy-
namics are modeled by the GFDL Sea Ice Simulator (Win-
ton, 2000).

The ocean model has 50 vertical layers and is resolved
on a tripolar grid with an approximate resolution of 1◦, im-
proved to 1/3◦ meridionally near the equator. Synthetic pro-
files isolated at each station are not further sub-sampled in
the vertical to mimic the observations, however. This results
in a slight overestimation of the vertical sampling relative to
the resolution of the data but the ocean is sufficiently well-
sampled in the vertical. Horizontal interpolation errors are,
for this problem, larger than vertical ones.

The TOPAZ biogeochemistry module is fully prognostic
and includes all major nutrients (NO3, PO4, O2, Si, DIC,
Alk), labile and semi-labile dissolved organic matter pools,
an iron cycle, ballasting of sinking particles, nutrient and
light co-limitation, a microbial loop, three classes of phy-
toplankton and zooplankton. Details about the model formu-
lation and performance are available inDunne et al.(2010),
Sarmiento et al.(2010) andHenson et al.(2009, 2010).

3.2 Simulation configurations and definition of
anthropogenic carbon in the model

The model was initialized with World Ocean Atlas (2001)
temperature, salinity and nutrients, GLODAP carbon and
forced with the NCEP-derived CORE representation of at-
mospheric fields and fluxes (Large and Yeager, 2004, 2009;
Griffies et al., 2009) over the period 1958–2006. Surface
salinity was restored to observation with a relaxation time
of 60 days.

Biogeosciences, 10, 4801–4831, 2013 www.biogeosciences.net/10/4801/2013/
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Fig. 1. (a) Change in anthropogenic carbon column inventory, in mol m−2, between July 1995 and 2005 calculated on the original
MOM4/TOPAZ grid. (b) Inventory change calculated after mapping the true values sampled at GLODAP stations.(c) Mapping error, dif-
ference between(b) and (a) for GLODAP. (d) Mapping error for CLIVAR.(e) Changes in contemporary and(f) natural carbon column
inventories between July 1995 and 2005 mapped from GLODAP stations. Station locations are show in green (GLODAP) or magenta (CLI-
VAR). Both GLODAP and CLIVAR stations are plotted in(a). In (c), (d) and(f), thin dashed (negative) and solid (positive) contour lines are
drawn in increment of 6 mol m−2. Thick contours mark 0 mol m−2.

The strategy used to isolate the anthropogenic carbon con-
centration from the model is described byRodgers et al.
(2009). Briefly, the model was spun up for two repeating
CORE cycles with fixed pre-industrial atmospheric CO2 con-
centration after initialization. At this point, parallel integra-
tions were performed: one with a prescribed atmospheric car-
bon dioxide transient boundary condition, yielding the con-
temporary carbon signal and one without, giving an estimate
of what the evolution of the natural carbon would have been
had the atmosphere remained stable at pre-industrial pCO2
levels. These parallel simulations were repeated for five ad-
ditional CORE cycles with the atmospheric CO2 concentra-
tion increasing monotonically throughout the five cycles as
prescribed by the known evolution of historical atmospheric
pCO2. The last cycle is used as a model surrogate for years
1958–2006 and provides the basis for this work. Since both
branches of integration were forced with exactly the same
forcing fields, the physical state variables are identical and
the only difference between the two runs are the concen-
trations of carbon dioxide in the oceanic and atmospheric
reservoirs. The anthropogenic carbon concentration is oper-
ationally defined to be the difference between the two runs.
The model global anthropogenic carbon inventory in 1995
is 104.9 Pg C, a value within errors of the observational esti-
mate (Sabine et al., 2004).

3.3 Regressions, statistics and eMLR calculations

First-order additive linear models were fitted to the syn-
thetic DIC datasets extracted from the monthly mean fields
of the MOM4/TOPAZ simulations in 1995 and 2005 sam-

pled at both GLODAP and CLIVAR station locations. All
255 possible models, from single-term to 8-term mod-
els, were considered, using the following set of oceano-
graphic variables (salinity, potential temperature, nitrate,
phosphate, silicate, apparent oxygen utilization, oxygen,
salinity): Z ⊆ {S,θ,NO3,PO4,Si,AOU,O2,Alk}. An offset
term (i.e. y-intercept) is implicitly included in each fit but this
term is not included in the following discussion for simplic-
ity. See Table S1 in the supplementary material for a list of
the model formulae.

The best regression models chosen from all possible first-
order models were identified for each size class (1 to 8 term
models) and across all size classes and for each horizontal
layer and each month from January to December for the nom-
inal years 1995 and 2005 to investigate the effect of tempo-
ral, physical and biological variability on the ability of sim-
ple linear regression models to fit oceanographic data. The
minimum Akaike Information Criterion (AIC) was used as a
guide for model selection across the complexity spectrum.
AIC addresses the bias-variance trade-off problem when
comparing models of different complexity and minimizes the
risk of over-fitting. AIC is defined as AIC= −2ln(L) + 2k,
whereL is the maximum likelihood of the fitted model andk

is the number of parameters in the model. AIC is then simply
a measure of the residual sum of squares misfit (L) with a
penalty added (2k) that is a function of the number of terms
in the model (Burnham and Anderson, 1998). For a given
set of data, models corresponding to the smallest AIC values
represent the best consensus between fit quality and model
complexity.

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 4801–4831, 2013



4806 Y. Plancherel et al.: eMLR performance

To tease apart the influence of changes in the observational
network from regression model selection on the eMLR re-
sults, the following cases are considered. First, realistic cal-
culations are made where regression models are derived from
GLODAP data in 1995 and CLIVAR data in 2005. Such “hy-
brid” results projected both backwards in time on the GLO-
DAP data and forward in time onto the CLIVAR stations are
considered:

1C
hybrid
GLODAP = G2005

CLIVAR (D1995
GLODAP) − G1995

GLODAP(D1995
GLODAP) (6)

1C
hybrid
CLIVAR = G2005

CLIVAR (D2005
CLIVAR ) − G1995

GLODAP(D2005
CLIVAR ) . (7)

The hybrid results are contrasted with idealized calcula-
tions where the observational networks are held fixed in time.
Two scenarios are considered, one for each set of stations:

1Cfixed
GLODAP = G2005

GLODAP(D1995
GLODAP) − G1995

GLODAP(D1995
GLODAP) (8)

1Cfixed
CLIVAR = G2005

CLIVAR (D2005
CLIVAR ) − G1995

CLIVAR (D2005
CLIVAR ) . (9)

3.4 Mapping

Mapping, that is the horizontal extrapolation of point sam-
ples to a basin-scale grid, is a necessary step in calculat-
ing inventories from the eMLR predictions as these are pro-
duced only at the GLODAP or CLIVAR stations. Mapping
was performed using a fixed exponential covariance function
with a longitudinal correlation scale of 15.5◦ and a latitudi-
nal scale of 7.4◦ above 3500 m, or 7.4◦ for both scales be-
low that depth. Analysis of the semi-variograms, experimen-
tation with the length-scales and other kriging control pa-
rameters showed these scales to be appropriate. This scheme
was chosen to mimic the objective mapping process used by
Key et al.(2004) who used typical length scales of 1550 and
740 km above 3500 m and 740 km in both direction below
that depth, and to ease the computational burden. In light of
the thousands of maps that were produced, a fully adaptable
kriging scheme for each map was not practical. Inventories
were calculated from fields mapped to a regular 1◦

× 1◦ grid.

4 Changes in DIC distribution

A description of the target signal (change in anthropogenic
carbon) and its components (change in natural and contem-
porary carbon) is provided first, before the eMLR results, to
provide context for the signal in relation to the variability
captured by the model and the sampling network.

4.1 The “true” target signal

Figure 1a shows the modeled change in column inventory
of anthropogenic carbon between July 1995 and July 2005.

Figure1a represents the target signal that eMLR aims to re-
cover. Figure1a is calculated on the original model grid af-
ter subtracting the control (natural carbon) from the transient
(contemporary carbon) component. Figure1a shows that re-
gions with large inventory changes associate closely with wa-
ter mass formation regions that are also high uptake regions,
notably the Labrador Sea Water and the North Atlantic Sub-
tropical Mode Water formation regions, but also reflect wa-
ter mass reorganization, gyre wobble and frontal shifts in the
control simulation.

Both the GLODAP and the CLIVAR observational net-
works are overlain as a series of dots on Fig.1a, showing
how some notable high-change regions are entirely missed
by the sampling. One such high-change feature, with column
inventory differences above 20 mol m−2 and centered around
35◦ W–35◦ N, is missed entirely by both the GLODAP or the
CLIVAR stations. Another localized high-change feature is
situated near 60◦ W–38◦ N and is similarly omitted in the re-
spective datasets. The Labrador Sea is currently only sam-
pled by the GLODAP stations in our data compilation (post-
GLODAP data in this region will soon become available).

Figure 1b shows the vertically integrated anthropogenic
carbon inventories resulting from sampling the model at the
GLODAP station locations and extrapolating horizontally to
the basin scale using the mapping method described pre-
viously. The mapping was performed separately for each
model level. Mapping, using either the GLODAP or CLI-
VAR station distribution, results in a slight overestimation
of the vertically integrated signal in the subtropics and in un-
derestimation in the subtropical/subpolar transition and in the
Labrador Sea (Fig.1c and d). Vertically integrated biases re-
sulting from mapping are most significant in the unsampled
regions East of the Grand Banks and in the central North
Atlantic (40◦ N, 40◦ W). In these restricted areas, mapping
errors can be as much as half the size of the anthropogenic
signal (about±10 mol m−2 in absolute terms). These unsam-
pled regions are also zones experiencing the highest magni-
tude of temporal carbon variability in the North Atlantic in
the simulations (Rodgers et al., 2009). When integrated over
the basin, mapping errors are smaller than other sources of
uncertainties, however. On each horizontal layers, the krig-
ing uncertainty (uncertainty around the central kriging esti-
mator) resulting from mapping error-free values sampled at
GLODAP or CLIVAR stations is typically of similar magni-
tude as the absolute error (difference between the true value
and the central kriging estimator). Propagation of the map-
ping uncertainty is not considered in the following discus-
sion, where only the central kriging estimator is used as a
diagnostic.

4.2 Changes in simulated contemporary and natural
carbon distributions

Figure1e and f show the vertically integrated DIC column in-
ventory changes in the transient and control simulations (the
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two components used to calculate the anthropogenic signal),
mapped from the set of samples taken at GLODAP locations.
The change in the column inventory of contemporary carbon
for the transient simulation between July 1995 and July 2005
(Fig. 1e,1Ccontemporary) reveals substantial carbon accumu-
lation in the subpolar gyre region, the European Basin and at
the southern edge of the subtropical gyre (≈ 15◦ N) but ap-
parently little change in the vertically integrated column car-
bon inventory in the region South of the Gulf Stream. Many
of these features are compensated for by the changes over
the same decadal interval in the control simulation (Fig.1f,
1Cnatural), highlighting the importance of natural variability.
For example, the Western Subtropical Atlantic shows a dras-
tic decrease in natural carbon between 1995 and 2005, which,
when added to the transient run, results in substantial car-
bon uptake in the subtropical mode water formation region
(Fig. 1a, b), consistent with what is expected from previous
studies (Bates et al., 1996; Lee et al., 2003). The Greenland
Current region, the Eastern Atlantic and the southern edge
of the subtropical gyre all show increases in vertical carbon
inventories in the control run (Fig.1f).

Inspection of horizontal maps of DIC change in the con-
trol simulation between 1995 and 2005 suggest that the sys-
tematic negative change in vertical inventory (Fig.1f) in the
North American Basin is caused primarily by a decrease
in the DIC concentrations (> 5–10 µmol kg−1) in the deep
model ocean (> 2200 m). These deep DIC changes are ac-
companied by a decrease in the concentration of the other
nutrients, an increase in oxygen, and a slight warming. The
Labrador Sea and subpolar basin show large increases in car-
bon and in nutrient concentrations, a decrease in oxygen con-
centrations and strong increases in salinity and potential tem-
perature. These changes are topographically constrained to
the west of the Mid-Atlantic ridge below 3000 m, but the
changes between 2200 and 3000 m suffice to explain the
drop in column inventory visible in the northeastern Atlantic
(25◦ W, 50◦ N, Fig. 1f). These patterns indicate that variabil-
ity in the convective activity and export of the Labrador Sea
and downstream adjustments of the Deep Western Boundary
Current and interior properties are responsible for the large-
scale column inventory changes in the northern and western
Atlantic (Fig. 1f). The increase in column inventory simu-
lated by the control run at the southern edge of the subtrop-
ical gyre and eastern Atlantic is due to gyre dynamics. In-
creases in the DIC field are observed in this region between
150 and 700 m, along with changes in other tracers. These
changes are consistent with a northward contraction of the
subtropical gyre.

Differences in the simulated annual mean sea surface
height (SSH) between 1995 and 2005 agree with the inter-
pretation given above (not shown). The patterns of change in
SSH do not reflect the North Atlantic Basin drop in carbon
inventory seen in Fig.1f, suggesting the source of that fea-
ture is in the deep ocean. On the other hand, SSH varies con-
sistently with the signal observed at the eastern and south-

ern edge of the gyre (Fig.1f). The regions with increas-
ing carbon in the control simulation (Fig.1f) coincide with
the regions of highest interannual variability identified by
Cromwell (2006) from an analysis of satellite SSH data in
the North Atlantic. The source of the positive deviation of the
carbon inventory in the subequatorial (10–20◦ N) and east-
ern North Atlantic is in the upper few hundred meters. This
pattern likely reflects a real mode of interannual variability
captured by the model.

The subtropical region with strong negative change in the
column carbon inventory (Fig.1f) is identified as a low
SSH variability region byCromwell (2006). This is fur-
ther evidence that the strong and coherent signal of Fig.1f
is not due to interannual variability in the upper thermo-
cline. This signal is rather associated with the Labrador Sea
Water and is consistent with the observational analysis of
Curry et al.(1998) who reported how deep subpolar pertur-
bations caused by changing convection in the Labrador Sea
propagate to the subtropics. These patterns of DIC inventory
changes simulated by the model are qualitatively consistent
with important known patterns of SSH variability over the
North Atlantic that also affect field observations.

5 Model selection and variability of regression
performance

Oceanographic applications of eMLR have typically relied
on one of two approaches to address the issue of regression
model selection. On one hand, models are chosen a priori
based on knowledge of the physical and biogeochemical pro-
cesses or data availability. On the other hand, the model se-
lection problem is addressed statistically, relying on stepwise
linear regression. In this section, we explore the ability of
various regression formulae to explain the data as a function
of depth and time and explore the spatio-temporal continu-
ity of the statistically selected models. The analysis shows
that, for the most part, there is convergence of statistically se-
lected model formulae across multiple depth intervals. This
is consistent with the fact that water mass differences are re-
sponsible for most of the variance along the horizontal layers
in the domain analyzed. Best-fitting model formulae change
in time, however, being affected strongly by variations in the
sampling network.

5.1 Regression formulae

Figures2 and 3 show the vertical continuity of the statis-
tically selected best-fit model structures for each complex-
ity class and overall for the July 1995 GLODAP or the July
2005 CLIVAR datasets. In these figures, the horizontal axis
represents regression model number (see Table S1 for model
definitions). These models represents the full suite of pos-
sible permutations for eight predictor variables, beginning
with a model with only one term (model 1) to the model
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Fig. 2. Summary of the best fitting linear models for the July 1995 GLODAP synoptic synthetic dataset. Background colors identify models
size classes (1 to 8).(a) Relative frequency (FN /max(FN )) with which models are selected in each size class (minimum root-mean-square
error, black bars) and overall (minimum AIC, white bars). Frequency is computed based on the number of model layers (FN ) normalized to
the most frequently identified model (max(FN )). (b) Same as(a) but for frequency weighted by the thickness of each layer (FD /max(FD)).
(c) Models with with lowest AIC in each size class (black bars) and overall (white bars, red ticks on top and bottom x-axes) and each depth
layer. Tick marks on the right show boundaries between model layers. Tick marks on top and bottom show model number (in steps of 5).
The first model number of each size class is indicated, except for size classes 1 and 8 (number 1 and 255).

Fig. 3.Same as for Fig.2 but using the July 2005 CLIVAR synoptic synthetic dataset.

Biogeosciences, 10, 4801–4831, 2013 www.biogeosciences.net/10/4801/2013/



Y. Plancherel et al.: eMLR performance 4809

containing all eight terms (model 255). The color strip at
the top that matches the figure background summarizes infor-
mation about model complexity with each color correspond-
ing to increments in the total number of predictor variables.
Panel c in these figures indicates the models that are statisti-
cally best in each size class (black vertical segments) or over-
all (white vertical segments), as a function of depth. Panels a
and b summarize the frequency with which particular mod-
els are selected throughout the water column, plotted either
as a number frequency (panel a) or weighted as a function of
layer thickness (panel b).

Parallel analyses for the complementary July 2005 GLO-
DAP and July 1995 CLIVAR cases indicate that changing
the sampling networks influences the model selection pro-
cess more than interannual variability does for a constant
set of stations. Given a constant sampling network, only few
temporal changes in the statistically optimal formula struc-
ture are detected (over all models or within model complex-
ity classes) and these typically only involve one of the terms
in the formula. These term swaps are also consistent with the
vertical patterns of changes in standard deviation seen be-
tween datasets constructed from the 1995 and 2005 sampling
of the model fields (AppendixA).

A set of regression predictors optimized from data taken
in a particular depth range may not necessarily represent the
best set on a different depth layer (Figs.2 and3). This is be-
cause the processes governing the distribution of tracers vary
with depth. Similarly, a model derived from a particular set of
stations on a given layer may not be suited to a different sub-
set of stations on the same layer if the two sampling networks
are sparse relative to the main variance pattern characteristic
of the particular layer. In this latter case, it is not necessarily
because processes governing the variance on the layer have
changed, but because the sampling networks capture the vari-
ance pattern differently.

As Figs.2 and 3 show, the set of regression models se-
lected by the GLODAP or CLIVAR observational networks
differs in each complexity class. These observational net-
works emphasize various hydrographic structures differently
owing to the presence, absence, and density of sampling sta-
tions in certain areas. The sampling density in CLIVAR em-
phasizes the Eastern Atlantic and the subtropical gyre. GLO-
DAP, in spite of having fewer stations, samples the North
Atlantic more homogeneously with stations in the Irminger
Sea, the Iceland Basin and the Labrador Sea, giving rela-
tively more weight to the subpolar region than CLIVAR does.
These regions are characterized by anomalously low temper-
ature and low salinities relative to the basin average. As a re-
sult of the differences in sampling, regressions derived from
the North Atlantic GLODAP data may a priori be considered
more representative of the mean basin-scale while the CLI-
VAR fits may be more influenced by the subtropics and the
subtropics/subpolar transition.

A quantitative analysis of the terms in the selected for-
mulae in Figs.2 and 3 as a function of depth reflects the

differences in network representativeness (Fig.4). For in-
stance, analysis of the statistically selected formulae high-
lights the importance of salinity in the top 300 m as an ex-
planatory variable in the regressions derived from the GLO-
DAP dataset (Fig.4a, b). In contrast, temperature and oxy-
gen replace salinity in many of the formulae produced from
the CLIVAR stations in this depth range (Fig.4b–f). This
is because the dominant source of variance in the CLIVAR
set mostly represents the subpolar to subtropical contrast
and is less influenced by extreme regional features such as
the East/West Greenland Current and the Labrador Sea than
GLODAP. Salinity takes a relatively more important role in
CLIVAR between 400 to 1200 m (Fig.4c, d). This reflects
the influence of the Mediterranean Sea Overflow water in the
Eastern Atlantic, which is relatively more frequently sampled
in CLIVAR. Silicate is more frequently present in the formu-
lae in that depth range in the regressions derived from the
GLODAP set of samples (Fig.4a, b). Common features also
exist, however, between the formulae structures generated by
the two sampling grids (Fig.4e, f). For instance, the role of
phosphate at intermediate depths (200–1500 m) is clear for
both networks. Similarly, alkalinity is recurrently selected in
the deep ocean (below 2000 m). This is due to the observed
longitudinal difference in alkalinity across the mid-Atlantic
Ridge. Overall, nitrate and AOU are the variables selected
least often in the formulae. This may be because denitrifi-
cation and nitrogen fixation influence the nitrate distribution
strongly, but only weakly impacts the large-scale DIC gra-
dients, resulting in phosphate being the preferred variable
for the purpose of fitting basin-scale DIC patterns. Similarly,
there is an assumption of saturation in the calculation of AOU
that may explain why AOU is a slightly more incompatible
variable than other predictors in linear regression models of
DIC.

5.2 Regression quality

In addition to model structure, regression quality also varies
with depth. Overall, the quality of the best fits, as measured
by the AIC values, is lower towards the top than towards the
bottom (Fig.5a, c). Many models possess a thin layer cen-
tered around 1500 m where fit quality is better than in the
layers just below (2000 m, Fig.5a, c). Given that the verti-
cal profile of the range of AIC values across all 255 models
on each layer show a maximum between 800 and 1500 m
(Fig. 5b), model selection can make a significant difference
in this layer whose variance is dominated by the contrast be-
tween the extreme properties of Mediterranean Sea Overflow
Water, Subpolar Mode Waters and Labrador Sea Water, water
masses that are separated by a sharp front located along the
North Atlantic Current. On the other hand, the vertical pro-
file of the layer-specific AIC range across all models shows
a minimum between 2000 and 2700 m suggesting that this
layer is a priori less sensitive to the form of the particular re-
gression formula. This does not mean that the fits in this in-

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 4801–4831, 2013



4810 Y. Plancherel et al.: eMLR performance

Fig. 4. Summary of the frequency of occurrence of the variables in the formulae of the best fitting models in each size class given the 1995
GLODAP (a, b) or the 2005 CLIVAR(c, d) stations and the difference between the two cases(e, f). The color scale indicates the total
number of times a variable is present summed over each best-fit formula across all size classes for each horizontal layer (vi , the maximum is
8 for each layer).(a, c, e)Relative frequency of occurrence of each variable integrated over all depth layers and normalized to the maximum

possible occurrence, for each variablej , Qj =

∑D
i=0vi

8D
, whereD is the number of vertical layers.

terval are necessarily good, however. The minimum AIC pro-
file shows a relative maximum between 2000 and 2700. The
difference between the maximum and minimum AIC value is
lowest below 4000 m where the fits are also best, suggesting
a priori that many equivalent models can be used to fit the
DIC field in that range.

While Figs. 2 and 3 indicate that there is some volatil-
ity in terms of the best-models identified as a function of
depth, quite a few models have AIC values within 10 % of
the depth-specific AIC range from the minimum AIC in each
layer (highlighted in black, Fig.5a). Differences in AIC val-
ues can be relatively small between many of the regression
models. Often, these closely fitting formulae fall in related
groups, e.g. the nitrate term replaces the phosphate term,
oxygen and AOU swap. While a strict identification of the
minimum AIC values overall or within complexity classes
can result in model formulae with different structures, sum-
mary regression statistics like AIC suggest that the DIC field
can be fitted to similar degrees of precision using a variety of
different models. Although this work does not consider mea-
surement uncertainty, this additional source of noise would
further blur boundaries between regression formulae. These
considerations about model fit suggest the possibility of us-
ing closely related models when convenience dictates, for
example to maximize data coverage in cases when measure-
ments for particular tracers are missing. These results also
indicate, though, that the importance of regression model se-

lection varies with depth, with some layers being particularly
sensitive to the choice of regression formula.

eMLR relies on differences between fit predictions and not
on single fit quality, however. This implies that co-located
systematic misfit errors, that is the systematic error of us-
ing the wrong empirical model to represent the true, yet un-
known, underlying model governing the distribution of the
anthropogenic carbon fraction at a given time, can cancel
during subtraction of the model predictions if the misfit error
is similar at both times (Goodkin et al., 2011). This system-
atic misfit cancelation effect reduces the influence of misfit
error on the final carbon change estimates and can attenuate
the role of regression model selection on the overall eMLR
results.

The systematic misfit cancelation effect is greatest when
regression formulae and the sampling grid are temporally
invariant, and when the magnitude of the spatial variance
pattern that drives the regression is not greatly influenced
by temporal variability. In the more realistic case of a non-
homogenous and temporally variable sampling network, the
systematic misfit cancelation effect is further regulated by the
fact that regression fits not only reflect temporal changes but
also changes in how the main spatial variance is captured by
the various sampling networks (see Appendix A). This means
that the geographical distribution of the regression residuals
may change, thus modulating the net influence of the system-
atic misfit cancelation effect and the importance of regression
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Fig. 5. (a)AIC values as a function of model number (strategy 2) and depth for the July GLODAP 1995 dataset. All models with AIC values
within 10 % of the depth-specific range in AIC of the minimum AIC value at each depth (highlighted in magenta) are highlighted in black.
Tick marks on the right show the vertical location of model layers. Corresponding vertical profiles of(b) the depth-specific range in AIC and
(c) the minimum AIC values.

model selection on the eMLR results. This can happen even
when the same set of predictor variables are used to fit both
sets of stations and even if the overall quality of the regres-
sion fits, as measured by summary diagnostics like AIC for
example, are very good. This is because the empirical def-
inition of what is considered noise and what is considered
signal, even for a fixed formula, may change depending on
the distribution of stations.

Since fewer outliers with smaller misfit are generally
found for regression fits from more complex models, one
could expect that the influence of the systematic misfit can-
celation effect is less when summary regression diagnostics
are indicative of good fit, such as when AIC or the residual
sum of squares is low, as opposed to when summary diagnos-
tics of regression fit quality are poor. Clearly, if fit residuals
are small, their addition or subtraction will have a smaller ef-
fect on the net results but that also means that more of the
variance in DIC will be considered to be part of the anthro-
pogenic signal and less will be considered to be associated
with natural variability. This raises the question of model
overfitting. When the observational network varies, it may be
beneficial to accept worse local fit that make fewer assump-
tions about the underlying structure of the anthropogenic sig-
nal relative to the noise and are less susceptible to interpo-
lation errors than to select regressions that fit observations
better but that may be overly specialized towards local fea-
tures and whose signal/noise partitioning will be strongly af-
fected by small changes in the observational network. When
the sampling grid is changing in time, it is possible that a
regression model becomes highly specialized for one sam-
pling network while being unrepresentative of another set of
stations or of the main variance pattern on the layer, even
when the two station subsets are taken at the same time and
from the same general geographic domain. This may lead

to interpolation errors that directly impact the eMLR esti-
mates. Model selection, in the context of eMLR, should then
be mindful of the spatio-temporal scales characteristic of the
domain analyzed in relation to the overall objectives of the
study (regional evaluations, basin-scale integrals, etc). Se-
lecting regression simply because they lead to smaller resid-
uals can be helpful, but this his not a sufficient criterion for
model selection.

6 Recovery of the change in anthropogenic carbon
signal by eMLR

While the question of variable station coverage and associ-
ated dataset variance does not arise when dealing with ex-
actly repeated datasets, as in previous model-based eMLR
evaluation studies (Levine et al., 2008; Goodkin et al., 2011),
it is an important issue for more realistic basin-scale eMLR
application. Previous applications of eMLR have required
the structure of the regression formula to be constant as a
function of time and derived the anthropogenic signal by dif-
ference between the regression coefficients. However, direct
subtraction of the regression coefficients is only possible be-
cause the models are linear. The equivalent signal can also be
obtained by subtracting the predicted DIC values obtained af-
ter parallel application of the regression equations to the data
from both time points (Eq.4). This second approach opens
the conceptual possibility of using separate regression mod-
els, possibly nonlinear models, derived independently at each
time point.

The main argument for using a constant model structure in
time is that the physical and biogeochemical processes main-
taining the DIC field are relatively constant and should thus
be constrained by the same empirical models. In practice,
there is no guarantee that empirical formulae represent these
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physical and biogeochemical processes accurately. In addi-
tion, if the observational network varies, the variance in the
data will change and regression formulae will match these
different patterns of variance, such that the concept of “best”
formula becomes an ad hoc function of depth, stations distri-
bution and sampling density.

This section investigates the overall performance of eMLR
and contrasts results obtained by the two limiting concep-
tual approaches described above, namely: strategy (1) use of
a composite of statistically optimized formulae with sets of
explanatory variables that are allowed to vary in time and as
a function of depth, and strategy (2) use of regression formu-
lae with a constant set of explanatory variables at all depths
and times but with regression coefficients optimized indepen-
dently at each depth and time. Furthermore, to highlight the
role of changing the observational network, the change in
carbon resulting from these two strategies using GLODAP
data in 1995 and CLIVAR data in 2005 (1Chybrid) are con-
trasted with complementary analyses that hold the observa-
tional networks fixed in time (1995 GLODAP compared to
2005 GLODAP, and 1995 CLIVAR compared to 2005 CLI-
VAR, 1Cfixed).

The three-dimensional North Atlantic eMLR results and
the associated absolute errors are presented below at various
levels of integrations. Basin-integrated inventory changes are
presented first. Because basin-scale inventories integrate over
the whole volume, they are less sensitive to random errors.
Vertical profiles of the layer-specific inventory changes are
presented next. These integrate horizontally, along the di-
rection along which the regressions are performed. Column-
inventory changes are presented last. These represent verti-
cally integrated results, perpendicular to the direction along
which the eMLR analysis is performed.

6.1 Basin-scale inventories

6.1.1 “Best AIC” strategy

The simulated (true) change in North Atlantic carbon inven-
tory between 1995 to 2005 is 4.12 Pg C (MOM4/TOPAZ)
and does not vary much throughout the year indicating that
seasonality is fairly constant between these two years (Fig.6,
the minimum is 4.11 Pg C in March and the maximum is
4.13 Pg C in August; differences are calculated month-by-
month, i.e. January 2005–January 1995, etc.). In contrast,
the relative errors of the basin-integrated “best AIC” eMLR
estimates (strategy 1) systematically underestimate the true
values and vary seasonally from about−4 % in November
to −8 % in February when the observational network is al-
lowed to change for results projected onto the CLIVAR sta-
tions (1C

AIC, hybrid
CLIVAR ), or from about−3 % to−6 % for GLO-

DAP (1C
AIC, hybrid
GLODAP , Fig. 6).

Mapping explains some of the offset between the GLO-
DAP and CLIVAR results: the underestimation is less severe
in the GLODAP case than in the CLIVAR case because the

Fig. 6. Relative error (left y-axis) and absolute value (right y-axis)
of the anthropogenic carbon inventory change calculated month-by-
month between 1995 and 2005. (MOM4/TOPAZ, black) Inventory
changes calculated from the “true” values on the original model

grid, (1C
mapping
X

, gray) mapping the “true” values sampled at the

GLODAP or CLIVAR stations, (1C
hybrid
X

, dark green and magenta)
after mapping the hybrid composite best-AIC solutions obtained
from regressions specific for each time and sampling network pro-
jected either onto the GLODAP or CLIVAR stations, or (1Cfixed

X
,

light green and orange) by holding the observational networks fixed
in time while allowing for the fixed-network best-AIC models to
vary in time.

mapping process introduces a compensating≈ 1.5 % over-
estimation in GLODAP but≈ 1 % underestimation in CLI-
VAR, as measured by maps produced from true values sam-
pled at the station locations. Even when the observational
networks are held fixed in time, mapping can only account
for about half the difference between the GLODAP and CLI-
VAR cases (difference between1C

AIC, fixed
GLODAP and1C

AIC, fixed
CLIVAR ,

Fig. 6), however. The other half represents a systematic bias
that results from the influence on regression of the different
coverage of the sampling networks. The fact that errors asso-
ciated with1C

AIC, fixed
CLIVAR are about−10 % while1C

AIC, fixed
GLODAP

errors are about−5 % gives further support to the idea that
the GLODAP station coverage is more representative of
the overall North Atlantic domain than CLIVAR, even if
GLODAP has fewer stations. Because the hybrid inventory
changes (with temporally varying sampling networks) repre-
sent the convoluted influence on the signal/noise partitioning
due to both temporal variability, which is a common factor
for both networks, and changes in observational networks,
the hybrid results tend to be intermediate between the two
limiting fixed-network cases.

The seasonal signals for1C
AIC, fixed
X and 1C

AIC, hybrid
X

are amplified relative to the ideal mapping-only results
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(1C
mapping
X , Fig. 6, X is a dummy variable to indicate GLO-

DAP and CLIVAR). Since the seasonal amplitude of the
mapping error is small, the amplified seasonal cycle of the
eMLR estimates must reflect seasonal variations in the sys-
tematic misfit cancelation effect. Seasonal differences in
basin-integrated inventory amount to about 4 % when the
sampling network changes. The GLODAP-CLIVAR differ-
ences are less, about 2–3 %, in the fixed network case. The
seasonal amplitude for CLIVAR is greater than for GLODAP
in the fixed-network case, but the shape of the seasonal cy-
cle is otherwise mostly parallel between the GLODAP and
CLIVAR results. Nevertheless, the shape of the seasonal cy-
cle is different between the hybrid and fixed-network results
(Fig. 6).

Standard summary diagnostics of overall regression qual-
ity (AIC, mean residual sum of squares, coefficient of de-
termination) are all indicative of excellent fits for both sam-
pling networks, at all times and depths for the “best AIC”
fits. All “best AIC” fits are significant atp � 0.001 with
R2 > 0.98 and with mean standard error of the residuals typ-
ically smaller than the modern measurement uncertainty of
DIC (≈ 4 µmol kg−1, consistently smaller than 2 µmol kg−1

below 500 m). Upon closer inspection, small seasonal varia-
tions in fit diagnostics exist (mostly in the top≈ 200 m) indi-
cating that for both GLODAP and CLIVAR and both in 1995
and 2005 it is more difficult to fit first-order linear models
to summer and fall data (May–October) than to winter data
(January–March). The relative error of eMLR-derived basin-
scale inventory changes is larger in summer and smaller in
winter for the1C

AIC, fixed
X cases, following broadly the sea-

sonal cycle in fit quality. It is not clear, however, how to re-
late the seasonal changes in fit quality to the net effect on the
1C

AIC, hybrid
X results as the seasonal cycle of fit quality diag-

nostics and the hybrid inventory errors are phase shifted. The
errors associated with the basin-integrated1C

AIC, hybrid
X in-

ventory change estimate are smallest in the fall, early winter
and largest in the spring.

Deep convection in winter, shifting of the Gulf Stream and
North Atlantic Current, shoaling of the mixed layer in spring
and blooms all contribute to the presence of sharp horizontal
property gradients across the basin that are difficult to prop-
erly represent with linear models empirically defined over
broad geographic scales from sparse datasets. Owing to the
systematic misfit cancelation effect, however, it is not only
these processes and features that matter, but also how each
of these processes and features vary inter-annually and how
each affect the datasets used at each time point as a whole.
For example, convective activity may be a critical process lo-
cally, but if the sampling network (and the regression fit) is
not greatly influenced by the convective region, this will only
have a small influence on fit quality. On the other hand, if a
second sampling network is influenced by the convective re-
gion (arguably GLODAP) and it is compared with a fit from
another network that is not (arguably CLIVAR), changes in

convective activity will have a larger effect on the overall
eMLR estimate as the systematic misfit cancelation effect
will not be able to correct the bias introduced by the dy-
namical mismatch between the two empirical fits. The am-
plified seasonal evolution of the error in Fig.6 relative to
the1C

mapping
X cases is thus a representation of how temporal

variability in given domains is captured differently by two
different observational networks.

6.1.2 Constant formula strategy

The relative and absolute errors in the determination of the
change in North Atlantic carbon inventory resulting from the
use of eMLR with fixed regression structures (strategy 2)
for both the GLODAP and CLIVAR datasets, for the hybrid
and fixed network cases, projected either backward or for-
ward in time onto the corresponding stations, are shown on
Fig. 7 for all 255 first-order models. Eighty-five percent of
all models tested yield basin-integrated1C

hybrid
X estimates

that are within 20 % of the true value, with 73 and 76 % re-
sulting in an underestimation when results are mapped from
the GLODAP or CLIVAR stations. For the1Cfixed

GLODAP and
1Cfixed

CLIVAR cases, these values change to 99 and 97 % be-
low the 20 % error and 64 and 80 % resulting in under-
estimation. The mean relative errors across all models are
−7.5 % (for1C

hybrid
GLODAP), −5.3 % (for1C

hybrid
CLIVAR ), −2.0 %

(for 1Cfixed
GLODAP) and−4.3 % (for1Cfixed

CLIVAR ). All means are
significantly different from 0 (two-tailedt test,p < 0.001).
Estimates obtained from projecting the hybrid results either
backward or forward in time on the GLODAP or CLIVAR
stations are well-correlated (Pearson’ρ = 0.93, p < 0.001),
confirming that the influence of mapping errors is small
when considering basin-scale inventories. The correlation
is slightly less strong for the fixed-network cases (Pearson’
ρ = 0.85,p < 0.001).

The across-model average underestimations of the 10 yr
inventory change is−0.3, −0.22, −0.08 and−0.18 Pg C
in absolute terms for the GLODAP and CLIVAR hybrid-
network cases and the GLODAP and CLIVAR fixed-network
cases. Most results easily meet the LSCOP criterion (Bender
et al., 2002) presented in the introduction for the North At-
lantic as 51 %, 60 %, 87 % and 89 % percent of the regres-
sion formulae yield results within 0.5 Pg C of the true esti-
mate. Considering that about one third of the global carbon
inventory is in the North Atlantic (Steinfeldt et al., 2009) and
assuming a global 3 Pg C increase over 10 yr, 1 Pg C is pro-
posed as a North Atlantic target over 10 yr: 91 %, 93 %, 99 %
and 98 % percent of the models tested produce North Atlantic
carbon inventory change estimates within 1 Pg C of the true
value. It is clear that most regression models produce esti-
mates of the integrated basin-scale decadal inventory change
that meet desired accuracy limits. Results are consistently
better when the observational network is fixed in time than
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Fig. 7. Relative (left y-axis) and absolute (right y-axis) error in the change in anthropogenic carbon inventory for strategy 2 (constant model
structure for all layers) between July 1995 and July 2005 for all possible 255 first order linear models. Hybrid results obtained by using
combinations of regression models specific for 1995 GLODAP and 2005 CLIVAR sampling networks and projected either onto the 1995

GLODAP or the 2005 CLIVAR data (1C
hybrid
X

) are shown in dark green and magenta. Parallel results obtained by using combinations of
models specific for each sampling networks when holding the observational networks fixed in time and projected onto the 1995 GLODAP
or the 2005 CLIVAR data (1Cfixed

X
) are shown in light green and orange. Model size is indicated by the color strip on top. Mapping errors

calculated from the “true” values are show as the horizontal dashed green (1.3 %, GLODAP) and magenta (−0.71 %, CLIVAR) lines. The
dotted horizontal blue line (−6.9 %) shows the relative error when calculating the inventory change between 2005 and 1995 using the
contemporary carbon fields, without removing natural variability.

when it varies, though. The fixed-GLODAP cases produce
the best results overall.

All models with 7 or more terms and all the composite
best-AIC solutions (strategy 1) for every month (Fig.6) pro-
duce estimates that are better than the 0.5 Pg C error limit
and thus exceed the success criterion proposed in the LSCOP
report (Bender et al., 2002). Simpler models, such as mod-
els Z140 and Z150, which stood out particularly in Figs.2
and 3, also fall within the 0.5 Pg C accuracy limit. In fact,
looking at the formula structure of the best 20 models with
respect to how close their predicted inventory changes are
to the true value indicates that, across all fixed-network and
hybrid-network cases, 5 to 7 4-term models are present in this
list consistently, along with 1 to 7 3-term models and 3 to 6
5-term models. Interestingly, there is only one 7-term model
in the top-20 list and no 8-term or 1-term model, indicating
that some intermediate complexity regression models can ap-
parently outperform more complex models in estimating the
basin-integrated carbon change.

Comparing the change in carbon inventory implied by the
contemporary carbon field (Fig.1e) without any effort to cor-
rect for natural variability (Fig.1f) to the true anthropogenic
carbon change (Fig.1a) would result in only a−6.9 % er-
ror. This would also be within the acceptable limits. In fact,
this result is better than 68 % of either GLODAP and CLI-

VAR hybrid-network eMLR results and better than 33 %
and 51 % of the GLODAP and CLIVAR fixed-network solu-
tions. Although regression-model selection does not appear
to be a fundamental concern when the goal is to calculate
the decadal basin-scale inventory change, comparing Fig.1a
and f clearly indicates that a small 6.9 % error actually cor-
responds to relatively large differences in the distribution of
the recovered carbon change signal: it represent the error pat-
tern shown in Fig.1f. Since positive and negative errors can-
cel each other, basin-integrated measures are not particularly
sensitive tests of quality. The next sections contrast results
obtained by different regression models and show they can
also result in substantially different interior distribution even
if their integrated inventory change estimates are close to the
true value.

6.2 Layer-specific inventories

Vertical profiles of the absolute errors of the 1995 to
2005 layer-specific inventory changes calculated by eMLR
layer-by-layer for all first-order models (strategy 2) for the
1C

hybrid
GLODAP case are shown in Fig.8a. Although the magni-

tude of the errors vary slightly when the results are mapped
from eMLR results projected on CLIVAR stations, the shape
of the layer-specific inventory change profiles are mostly
similar between CLIVAR and GLODAP results.
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Fig. 8. (a)Absolute errors between the North Atlantic eMLR predicted inventory change, mapped from estimates at GLODAP stations, and
the true inventory changes integrated on each horizontal model layer (6h) and for each first order regression model (strategy 2).(b) Ver-
tical profiles of the layer inventory changes and(c) vertically integrated layer inventory change (from the bottom to the surface,6v). The
true, natural and contemporary (Cont.) layer inventory changes between July 1995 and July 2005 are shown, together with the “best AIC”
composite solution and results from modelsZ100 andZ140 (dotted) and their merged products spliced at 1500 m (gray).

The general shape of the fixed-network layer-specific in-
ventory error profiles also tends to be similar to the hybrid-
network results, as indicated by the dominantly linear rela-
tionships in Fig.9a and b. Deviations from the 1: 1 line in
Fig. 9a and b show that the large errors tend to be gener-
ally smaller in the fixed-network cases than in the hybrid
cases, however. There is no relationship between the differ-
ences in layer specific inventories between the hybrid and
fixed network cases and the absolute errors of the fixed-
network results (Fig.9c, d). An inverse linear relationship
exists, though, between the fixed-hybrid differences and the
absolute error calculated between the hybrid results and the
true values (Fig.9e ,f). This relationship is mostly due to
points in the depth range 300–2300 m as indicated by the
color-code of the points in Fig.9e and f. The discontinuity in
the 600–1000 m layer visible in the hybrid results (Fig.8a)
does not exist in the1Cfixed

GLODAP results.1Cfixed
GLODAP esti-

mates tend to consistently overestimate, not underestimate,
the true values in that zone, as is the case above and below
that layer. This is less clear in the1Cfixed

CLIVAR case. Although
the 1Cfixed

GLODAP and 1Cfixed
CLIVAR results are well correlated,

most discrepencies between these two cases are in the depth
range 500–1700 m, indicating that network differences have
the most influence on the results on these horizons.

Aspects of the vertical profiles in Fig.8 are consistent
with features of the AIC profiles in Fig.5. One notable sim-
ilarity is the band of relative AIC highs centered around
2000 m (Fig.5a, c) which coincides with a layer of systemat-
ically strong underestimation (Fig.8a). The region between
1500 to 3500 m is where most of the error (underestimation,
Fig. 7) in the basin-scale inventory change estimates is gen-
erated (Fig.8c). This is true for all fixed-network and hybrid-
network cases.

The 1500–3500 m layer also displays large changes in the
natural carbon component (green line, Fig.8b and c). Closer
inspection of the model tracer fields indicates this is primar-
ily a reflection of variations in convective activity and as-
sociated water mass reorganization. The changes in model
tracers consistently point to water mass aging in the deeper
layers due to shallower convective mixing in 2005 relative to
1995, when deeper waters were better ventilated.

Similar to the basin-integrated inventory changes (Fig.7),
the 1C

AIC, hybrid
GLODAP case (yellow line, Fig.8b and c) does

not produce the most accurate profile. Figure8b and c
show that an eMLR solution spliced from simpler 4-term
models, namely those identified in Fig.2 and display-
ing a high degree of vertical continuity (Z100 in the up-
per 1500 m andZ140 below that depth), can reproduce
the true layer-specific inventory change profile almost ex-
actly. As indicated in Fig.2, the family of 4-term models
shows strong vertical continuity between layers, with es-
sentially four formulae able to cover all depths from 100
to 4000 m. Specifically, these 4-term models (numbers 140,
99, 100 and 150, ordered by the relative frequencies with
which they are selected) contain the following predictor vari-
ables: Z140

= {θ,PO4, Si, Alk}, Z99
= {S,θ,PO4, AOU},

Z100
= {S,θ,PO4, O2}, Z150

= {NO3, PO4, Si, Alk}.
Model Z140 is the model structure used byFriis et al.

(2005) for their North Atlantic analysis andZ100 is the
model used byLevine et al. (2008). Interestingly, while
Levine et al.(2008) applied this formula globally to model
fields between 200 and 2000 m on every grid point, Fig.2
suggest this formula is more appropriate in the upper 200 m
given the GLODAP station coverage. ModelsZ99 andZ100

are nearly identical, the only difference between the two be-
ing the use of O2 or AOU. ModelZ150, which fits the data
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Fig. 9.Relationship between the absolute error in the layer-specific inventories obtained by the fixed-network or hybrid network cases for the
(a) GLODAP and(b) CLIVAR stations. Relationships between the fixed-hybrid differences in layer-specific inventory change estimates and
the absolute error between the fixed and true estimates for(c) GLODAP and(d) CLIVAR. Relationships between the fixed-hybrid differences
in layer-specific inventory change estimates and the absolute error between the hybrid and true estimates for(e) GLODAP and(f) CLIVAR.
The color scale identifies points from depth interval representative of the layering in Fig.8a.

well in the range 2000 to 4000 m is interesting in that it does
not include eitherθ or S in its formula. This reflects the fact
that the dynamic range of these tracers is small in that depth
range relative to that of other tracers (AppendixA). This is
qualitatively consistent with the classic studies ofBroecker
(1974) and Broecker et al.(1985) who relied on nutrient-
based composite quasi-conservative tracers (“NO”, “PO”) to
characterize the flow path of deep waters in the Atlantic.

While some of the models identified from the GLODAP
analysis (Fig.2) are also present in the CLIVAR analysis
(Fig. 3), their vertical stacking can differ. This is the case
for modelsZ99, Z100 and Z140. Given the CLIVAR sta-
tions, Z140, the model ofFriis et al. (2005) takes a promi-
nent role in the top 200 m while modelsZ99 and Z100,
the model ofLevine et al. (2008), occupy the space be-
tween 300 and 500 m. ModelsZ97

= {S,θ,NO3, Alk} and
Z98

= {S,θ,PO4, Si} belong essentially to the same model
group asZ99 andZ100 as all these models feature salinity,
temperature and phosphate (or nitrate) as dominant variables.
Z97, Z98 extend the influence of this model group down to
about 3000 m, although the continuity is not as clear as with
modelsZ140 or Z150 in the GLODAP case.

The differences betweenFriis et al. (2005) and Levine
et al.(2008) can be explained by the results of our analysis.
Friis et al.(2005) performed their analyses on data located in
the Subpolar North Atlantic (North of 40◦ N, South of Ice-
land) and many of the data used inFriis et al.(2005) are the

same data that partly constitute GLODAP (Key et al., 2004)
in that region. It is then reassuring that bothFriis et al.(2005)
and our results converge towards the same model (Z140)
for the appropriate size-class. Similarly, the synthetic model
dataset used byLevine et al.(2008) was most heavily in-
fluenced by the subtropical regions. This is becauseLevine
et al.(2008) included every grid box in their analysis and did
not subsample their model to mimic the station coverage of
the observational datasets. In that sense, the spatial bias of
their dataset is more like CLIVAR, and it is again reassuring
that modelZ100, or related models, be most representative in
these two cases.

Given that this analysis uses a physical and biogeochem-
istry model as a source of data, thatLevine et al.(2008) used
a different circulation and biogeochemistry model and that
Friis et al.(2005) used observations, it is encouraging to note
how well the regression formulae proposed by each study
converge when presented in the context of their sampling
grids. Whether a simple combination of the regression for-
mulaeZ100

= {S,θ,PO4, O2} andZ140
= {θ,PO4, Si, Alk},

as indicated in Fig.8b and supported by Fig.2, is appropri-
ate for application of eMLR to the real dataset remains to be
seen. Based on the analysis of the layer inventories, the fact
that the TOPAZ model is a state-of-the-art biogeochemistry
model and the robust correspondence with other studies, it
would appear, however, that these are a priori good candi-
date formulae in the North Atlantic.

Biogeosciences, 10, 4801–4831, 2013 www.biogeosciences.net/10/4801/2013/



Y. Plancherel et al.: eMLR performance 4817

Fig. 10.Calculated eMLR anthropogenic carbon column inventory change between July 2005 and 1995 mapped from either the GLODAP

(green) or CLIVAR (magenta) stations when the sampling networks change in time (1C
hybrid
X

). Black contours are drawn in increment of

5 mol m−2. White contours reproduce the shape of the best possible pattern obtained from mapping the true values sampled at the station loca-
tions (1b). Results are shown for models(a, b)Z100

= {S,θ,PO4, O2}, (c, d)Z140
= {θ,PO4, Si, Alk}, (e, f)Z150

= {NO3,PO4,Si,Alk},
(g) Z205

= {θ,NO3, Si, AOU, Alk}, (h) for the “best AIC” models selected by minimum AIC for each layer and each time point (strategy 1)
and(i) the merged product usingZ140 below 1500 m andZ100 above.

Obviously, absolute errors cannot be used as guides for
model selection when working with real data. Based on the
analysis of the layer inventories, the criterion of vertical con-
tinuity of statistically selected models can seemingly be used
to guide model selection and define their extent of use ver-
tically in conjunction with a general oceanographic assess-
ment of the regression residuals. As shown in Fig.8b, these
criteria can be applied to isolate model formulae that per-
form as well or better than more complex formulae when
evaluated at the basin-scale inventory level or when look-
ing at layer-specific inventory change profiles. Layer inven-
tories integrate over large horizontal scales, however, and in
the direction (horizontal) along which the regression fitting is
performed. Because regression analysis is designed to mini-
mize the distance of the data relative to the mean, if the data
are symetrically distributed around the layer mean value, it
is likely that positive and negative residuals cover more or
less equal areas and largely cancel upon integration. Layer-
inventories can then underestimate potential problems. The
next section contrasts horizontal inventory changes with in-
ventory changes calculated vertically, perpendicular to the
direction along which the regressions are performed.

6.3 Column inventories

Figure 7 shows that acceptable basin-integrated inventory
change estimates can be obtained from different regression
formulae. Yet, these formulae produce vertical profiles of the
layer-specific anthropogenic carbon inventory change that
can vary and yield biases in the ocean interior (Fig.8). This
section presents a complementary view, investigating the ge-
ographical distribution of the eMLR-calculated column in-
ventory change, the associated absolute error patterns and
their correlations with the vertically integrated true signal
and the natural variability pattern.

Illustrative column inventory change estimates for
the 1C

hybrid
X case resulting from the use of fixed

model structures at all depths but with regression co-
efficients optimized layer-by-layer and for the GLO-
DAP and CLIVAR datasets independently (strategy 2)
are shown in Fig.10a–g. The corresponding absolute
error maps calculated between the1C

hybrid
X estimates

and the true change in column inventory (Fig.1a) are
shown in Fig. 11a–g. Results for the 4-term models
Z100

= {S,θ,PO4, O2} (a, b),Z140
= {θ,PO4, Si, Alk} (c, d)

and Z150
= {NO3, PO4, Si, Alk} (e, f), selected based on
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Fig. 11.Absolute errors in anthropogenic carbon column inventory changes between July 2005 and 1995 mapped from either the GLODAP

(green) or CLIVAR (magenta) stations calculated from sampling networks that change in time (1C
hybrid
X

). Dashed (negative) and solid

(positive) contours are drawn in increment of 6 mol m−2. The thick lines marks the 0 contour. Results shown for models(a, b) Z100, (c, d)
Z140, (e, f) Z150, (g) Z205, (h) for the “best AIC” models selected by minimum AIC for each layer and each time point (strategy 1) and
(i) the merged product usingZ140 below 1500 m andZ100 above.

Figs.2 and3, are shown on both figures. Parallel results ob-
tained by holding the observational networks fixed in time
(1Cfixed

X ) are shown in Figs.12and13.
Differences in the vertically integrated patterns between

1C
hybrid
GLODAP (Figs.10 and11a, c, e) and1C

hybrid
CLIVAR (Figs.10

and11b, d, f) are small relative to differences in error patterns
observed between results generated from different regression
formulae. This is also true in the fixed-network cases, but
differences amongst the column inventories obtained by ap-
plying various regression models in the fixed-network cases
(Fig. 12) are much smaller than differences amongst esti-
mates for the hybrid cases. These examples show that regres-
sion model selection has a much greater influence on the final
results when the location of the stations change in time than
when the observational network is constant. This is a conse-
quence of the systematic misfit cancelation effect.

The root-mean-square error (RMSE) of column invento-
ries obtained by mapping the true results sampled at ei-
ther GLODAP or CLIVAR stations (Fig.1c, d) can be
thought of as the best realizable RMSE given the sta-
tions available. The RMSE due to mapping only is about
half (≈ 1.5 mol m−2, Fig. 14) the RMSE of the best eMLR
hybrid-network results (≈ 3 mol m−2). The smallest fixed-

network RMSE (≈ 2 mol m−2) are closer to the RMSE due
to mapping only (Fig.15). In comparison, the RMSE of the
vertically integrated natural variability pattern in Fig.1f is
4.2 mol m−2. This means that even if not all the natural vari-
ability is accounted for by eMLR (there remains an offset
relative to the mapping-only results), hybrid-network results
account for about 45 % of it, while fixed-network solutions
can remove about 81 %.

The magnitude of RMSE for hybrid and fixed-network
results and the range of RMSE values across all models
(4–5 mol m−2) confirms that, in the North Atlantic and when
the observational networks changes in time, mapping is not
the dominant factor controlling the basin-scale structure of
the error maps shown in Fig.11, even if mapping errors
can be locally significant in unsampled dynamic regions.
The influence of mapping is relatively more important when
the observational network is fixed in time, however. In that
case, because the results are more accurate, a large fraction
(about 75 %) of the total RMSE is due to the “bull’s eyes”
in Fig. 12, some of which are due to mapping and under-
sampling (Figs.1c, d). Calculating the errors relative to the
mapped true values (Fig.1b) effectively removes the “bull’s
eyes” off the Grand Banks and in the North American Basin.
This does not address the overestimate in the Irminger Sea
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Fig. 12.Absolute errors in anthropogenic carbon column inventory changes between July 2005 and 1995 mapped from either the GLODAP
(green) or CLIVAR (magenta) stations calculated from sampling networks that do not change in time (1Cfixed

X
). Thin dashed (negative) and

solid (positive) contours are drawn in increment of 6 mol m−2. The thick lines marks the 0 contour. Results shown for models(a, b) Z100,
(c, d) Z140, e, f: Z150, (g) Z205, and for cases when the “best AIC” models are selected for each layer and each time point (strategy 1) for
(h) GLODAP and(i) CLIVAR.

and does not alter the main structure of the error maps, how-
ever.

Results from the 8-term modelZ255 tend to be simi-
lar to the “best AIC” composite estimates from strategy 1
(Figs.10h, 11h and12h, i). This is because models with the
lowest overall AIC values also tend to be the more complex
ones in the absence of analytical uncertainties (Figs.2 and
3). This can be seen in Fig.14a, b and d where the points
corresponding toZ255 systematically overlap the AIC clus-
ter. The tight clustering of the AIC results in Fig.14 is due
to the small influence that interannual changes in seasonality
has on the results relative to the errors induced by regression.

The regression model producing the smallest overall
RMSE for 1C

hybrid
GLODAP and 1C

hybrid
CLIVAR (Fig. 14) is 5-term

modelZ200
= {θ,NO3, PO4, Si, Alk}. The relative success

of modelZ200 in the hybrid-network case would be hard to
predict based uniquely on the fit statistics. Figures2 and3
showZ200 is only selected as a best-fit model in its size-class
on a few deep horizontal layers and in the GLODAP case
only. Fit Z200, in spite of not yielding the smallest residuals,
is consistently very good as large portions of the water col-
umn have AIC values within 10 % of the minimum AIC for
this model (Fig.5). Column inventory changes from model

Z200 (not shown) are similar in magnitude and structure to
results from modelZ140 and to the “best-AIC” case. Differ-
ences between these results are small and regional.

Although model Z200 is closely related to model
Z205

= {θ,NO3, Si, AOU, Alk} (Fig. 10g) that was used in
the observational study ofTanhua et al.(2007), who ana-
lyzed zonally oriented data in the subtropical North Atlantic,
the magnitude of the column inventories predicted by these
two models differ strongly when applied over the basin-scale.
The replacement of PO4 in Z200 with AOU in Z205 results
in much larger underestimations in the whole zone between
the Caribbean and Ireland (Fig.11g). FormulaZ205 is never
selected as a best-fit model given the station coverage con-
sidered here (Figs.2 and3). Z200 also results is better col-
umn inventory estimates thanZ205 when the observational
network is fixed (Fig.12g), but differences are small.

Model Z100, which in contrast toZ140 does not use Si or
Alk but ratherS and O2 in addition to PO4 andθ as predictor
variables, produces smaller overestimates than modelZ140

in the subequatorial region, the eastern Atlantic and in the
Irminger Sea in the hybrid-network cases butZ100 results
in inflated and extended underestimations over the North
American Basin and the Labrador Sea (Figs.10a, b and11a,
b), producing greater overall RMSE (Fig.14). Differences
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Fig. 13.Mapped anthropogenic carbon column inventory changes calculated from sampling networks that do not change in time (1Cfixed
X

):

(a, g) Z100, (b, h) Z140 and(c, i) Z150. In these panels, black contours are drawn every 5 mol m−2; white contours reproduce the shape

in Fig. 1b. Differences between the fixed and hybrid cases (1Cfixed
X

− 1C
hybrid
X

) are shown for GLODAP(d, e, f) and CLIVAR (j, k, l) ;

contours drawn every 6 mol m−2 with a thick line at 0 mol m−2.

betweenZ100 andZ140 are smaller in the fixed-network case
(Figs.12a–d and13a–b, g–h).

A composite result built fromZ100 in the top 1500 m and
Z140 below that depth (Fig.10i), as suggested earlier based
on the analysis of the layer inventory change profile (Fig.8),
produces a column inventory change map that is yet differ-
ent from all other examples shown in Fig.10. Although this
solution improves the signal along the western boundary rel-
ative to theZ100 pattern (Fig.10a) and results in an accurate
quantification of the layer-specific inventory change profile
(Fig. 8) and of the basin-scale inventory change, the large
signal in the Labrador Sea and subpolar region is missing.
The RMSE of this composite case is intermediate between
that ofZ100 andZ140 (asterisks, Fig.14).

Nutrient-based modelZ150 uses neither of the physical pa-
rametersθ , S nor O2, and produces yet another inventory
pattern in the hybrid-network case (Fig.10e, f), with RMSE
intermediate betweenZ140 and Z100 (Fig. 14). The error
patterns forZ150 are typified by large-scale overestimations
over the subequatorial and eastern Atlantic and large-scale
underestimations over the Northwest Atlantic (Fig.11e, f).
This is in drastic contrast with the column inventory pro-
duced byZ150 in the fixed-network case (Fig.12e, f and
13c, i). Z150 is the model that produces the smallest RMSE
in that case (Fig.15).

Although RMSE values between modelsZ100, Z140 and
Z150 vary by less than 1 mol m−2 and each represents the
best-fit regression models over substantial parts of the wa-
ter column (Figs.2 and 3), the dynamical interpretation
that would be associated with the eMLR column inventories
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Fig. 14.Kendall correlation coefficients (τ ) calculated between the column inventory changes predicted by all eMLR solutions obtained with

a variable sampling network (strategy 1 and 2,1C
hybrid
X

) and (a) the true or(c) the mapped natural carbon change plotted as a function
of each model’s RMSE relative to the true values.(b, d) Corresponding correlations calculated using the absolute error patterns. Only
correlations withp ≤ 0.05 are plotted. The RMSE due to mapping only are shown by vertical green (GLODAP) and magenta (CLIVAR)
lines. Correlations calculated using the true mapped values instead of the eMLR results are shown as horizontal green (GLODAP) and
magenta (CLIVAR) lines; thin dotted lines in(b) mean correlations are not significant atα = 0.05. The solid horizontal gray line in(c) shows
the correlations between the true values (no mapping) and the natural carbon change pattern.

Fig. 15.Same as Fig.14when sampling networks are held fixed in time (1Cfixed
X

).
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produced by these models (Fig.10) when the observational
network changes in time vary dramatically. Of these three
examples, carbon changes produced by modelZ140 are clos-
est to the true signal (Fig.1a), indicating greatest uptake in
the Labrador Sea, elevated values that extend zonally east-
ward around 50◦ N, and southward propagation along the
western boundary (Fig.10c, d). In contrast, results from
Z150 show weak basin-scale gradients with little subpolar-
subtropical difference (Fig.10e, f). These hybrid-network
results also exaggerate the carbon change west of Gibraltar
while grossly underestimating the role of the Labrador Sea.
Results from modelZ100 would even indicate a clockwise
northeastern boundary intensification of the column inven-
tory change (Fig.10a, b) that is inconsistent with the verti-
cally integrated changes of the true signal (Fig.1a).

Results produced by the fixed-network cases are more con-
sistent with each other and with the true carbon inventory
change pattern than the hybrid-network results. The great-
est differences between the hybrid and fixed-network results
occur in the subpolar gyre region, where column inventory
changes predicted by1Cfixed

X are typically larger than those

predicted by the1C
hybrid
X cases (Fig.13d–f, j–l). This is

the manifestation of the mid-depth (500–1700 m) differences
seen in the layer-specific inventory changes in Fig.9e–f. In
that region, the fixed-hybrid differences are smaller when
mapped from CLIVAR stations (Fig.13j–l) than mapped
from the GLODAP stations (Fig.13d–f). The fixed-network
results also tend to produce smaller changes in column inven-
tories than the hybrid cases in the Eastern Atlantic, between
the coasts of Portugal and Senegal. This fixed-hybrid differ-
ence is larger in the CLIVAR case than in the GLODAP case
(Fig. 13d–f, j–l).

Clearly, eMLR-derived column inventory change patterns
depend on the choice of regression model used in the calcula-
tion, even if most results produce basin-integrated inventory
change estimates within tolerated accuracy limits. The vari-
ability between results and the influence of regression model
selection is strongly modulated by the temporal evolution of
the observational network. Solutions obtained when the ob-
servational network is fixed in time are better and less vari-
ables than when the spatial sampling density varies. None of
the regressions tested yield totally unbiased results but eMLR
results appears to converge towards a particular large-scale
error pattern. This pattern is characterized by an overestima-
tion of the column inventory in the Irminger Sea and in the
Eastern subtropical Atlantic, and an underestimation in the
Western subtropical Atlantic and along the path of the North
Atlantic Current. Both layer-inventories and column invento-
ries point towards the intermediate and deep subpolar region
as the root cause for the biases. While some formulae pro-
duce column inventory patterns that are mostly similar to the
true signal and that can be readily interpreted, others result in
patterns whose interpretation would lead to significant mis-

understanding of the penetration pathway of anthropogenic
carbon.

6.4 Correlations

The degree of pattern similarity between the mapped eMLR
column inventory changes, the corresponding error patterns,
the true signal and the natural variability component are fur-
ther examined here using non-parametric Kendall correlation
analysis. Correlation coefficients (τ ) with p-values smaller
than 0.05 are plotted in Figs.14 and15 as a function of the
RMSE of column inventory change estimates.

6.4.1 Correlations between eMLR estimates and the
true anthropogenic signal

As expected, eMLR column inventory changes with lower
RMSE are better correlated with the true simulated carbon
change map (Figs.14a and15a). Correlation coefficients
tend to plateau aroundτ ≈ 0.7 when RMSE is smaller than
3.7 mol m−2 in the hybrid-network case, however. Maximum
correlations are slightly higher, aroundτ ≈ 0.8, in fixed-
network cases. This plateau effect reflects convergence of the
eMLR solutions towards a particular pattern, i.e. the broad-
scale pattern captured in Figs.10c, d, g, h and13a–c, g–i.
Changes in RMSE below≈ 3.7 mol m−2 increasingly rep-
resent regional scale differences, while results beyond that
breakpoint in slope (Figs.14a and15a) largely represent ma-
jor differences in basin-scale patterns.

Ideally, no correlation should exist between the absolute
error and the true signal since the error should be zero ev-
erywhere. Nonetheless, a weak negative correlation is in-
troduced between the error and the true signal (Fig.14b)
by the mapping process and the fact that high-change re-
gions are undersampled and thus underestimated. There is
no clear relationship between the correlation coefficients and
RMSE for the hybrid-network case (Fig.14b), although the
variance amongstτ -values tends to be less for cases with
lower RMSE. Correlation results from the fixed-network
cases show less scatter than their hybrid counterparts and
do point toward a systematic reduction of the correlation be-
tween the error with the true signal with decreasing RMSE
(Fig. 15b). The dominantly negative correlations in Fig.14b
and15b are of greater magnitude than the mapping-onlyτ -
values because most eMLR solutions tend to produce over-
estimates in large regions of the North Atlantic, principally
at low latitudes and in the Eastern half of the basin, regions
characterized by a small true column inventory change signal
(Fig. 1a) while also underestimating the carbon change over
the North American Basin and in parts of the subpolar region
(Fig. 11), two regions characterized by large carbon changes
(Fig. 1a).
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6.4.2 Correlations between eMLR estimates and the
change in natural carbon

Although being controlled by different processes and hav-
ing different large-scale patterns (Fig.1a, f), a weakly neg-
ative correlation exists between the true column inventory
change pattern and the pattern of change in natural carbon
(Fig. 14c). This weak correlation is entirely due to an area
over the North American Basin where a large negative natu-
ral carbon change occurs (Fig.1f) in the same region where
a moderately large anthropogenic carbon increase is seen.
Correlations between the eMLR-estimated column inventory
changes and the natural component are similarly weak in
magnitude and many are not statistically significant (τ values
for GLODAP versions ofZ255 andZ140 are not significant
but are drawn for completeness in Fig.14c).

Correlations in Fig.14c do not vary systematically with
RMSE, but there is a trend towards convergence of the cor-
relation coefficient at lower RMSE (< 3.7 mol m−2). Corre-
lations calculated from maps created either from the GLO-
DAP or CLIVAR stations are clearly offset in the hybrid-
network case, with CLIVAR maps resulting mostly in weakly
positive correlations. The magnitude of this offset is simi-
lar to the spread in correlations between eMLR results de-
rived from the same observational networks. Much of the
spread in Fig.14c originates over the North American Basin
(large positive change in anthropogenic carbon, large nega-
tive change in natural carbon) and the Irminger Sea (small
change in anthropogenic carbon, large positive change in
natural carbon). There is no GLODAP-CLIVAR offset be-
tween the correlation coefficients for the fixed-network cases
(Fig. 15c) and these results are of similar magnitude as the
correlations induced by mapping only. Results for the “best-
AIC” strategy are decoupled fromZ255 in Figs.14c and15c,
in spite of these results producing closely related column in-
ventory patterns. This decoupling is further evidence that the
correlations in Figs.14c and15c are mostly driven by small
overlap regions.

Just as there should be no correlation between the abso-
lute error maps and the true change in anthropogenic carbon,
there should be no correlation between the error maps and
the vertically integrated change in natural carbon. No sig-
nificant correlation exists between the mapping errors (e.g.
the best possible eMLR solutions, Fig.1c, d) and the natural
carbon pattern (Fig.1f), as expected (dotted lines are used
in Fig. 14 to show lack of significance). Yet, as suggested
by a visual comparison of the error patterns in Figs.11 and
12, the degree of correlation between the error maps of the
eMLR solutions and the vertically integrated natural carbon
change is systematically positive and significant (Figs.14d
and15d). The correlation coefficients vary substantially be-
tween regression models and appear to be inversely propor-
tional to RMSE in the hybrid-network case (Fig.14d). This
relationships breaks down with decreasing RMSE, however

(Figs. 14d and15d); correlation coefficients can vary from
about 0.2 to 0.55 for RMSE< 3.7 mol m−2.

The significance of the correlations in Figs.14d and15d
indicates that the large-scale natural variability pattern is
never fully corrected for by horizontal basin-scale eMLR,
even when the most complex and statistically best-fitting
models are used systematically (see AIC results in Figs.14d
and15d). Correlation analysis performed layer-by-layer us-
ing the station predictions instead of the mapped results fur-
ther confirm this point as the vertical profiles ofτ -values are
positive and significant at most depths and for every regres-
sion model. This systematic shortcoming of eMLR reflects
the influence of secular trends on the tracer fields. Secular
trends modify the large-scale property gradients in ways that
are not reflected by the existing tracer distribution and con-
sequently cannot be statistically represented by the empirical
models derived from the spatial regressions. The variance of
the correlations coefficients in Figs.14d and15d is a reflec-
tion of the effect of regression model selection.

7 Discussion

7.1 Unresolved temporal variability

The analysis performed here relied on snapshots of the ocean
state taken either in 1995 or 2005, a situation which is overly
idealistic as hydrographic sampling programs are never in-
stantaneous. July was chosen to approximate the summer
bias that exists in the real datasets, and the years 1995 and
2005 were selected as they represent peaks in real sampling
intensity. This section discusses the possible effects of unre-
solved variability on the eMLR results.

7.1.1 Seasonality

These analyses have shown that the ability of regression
models to fit the DIC data varies through the seasonal cycle.
The summer to winter contrast in the standard error of the
regressions for either the GLODAP or CLIVAR sampling is
about 5 µmol kg−1. This effect is restricted to the upper water
column, however. The GLODAP 1995 to CLIVAR 2005 dif-
ferences in the standard errors of the residuals are typically
smaller than 2µmol/kg, but are mostly caused by differences
in the sampling grid and not temporal changes, as compar-
isons with corresponding GLODAP 2005 and CLIVAR 1995
cases show. Even if the upper ocean contains large anthro-
pogenic carbon concentrations, the volume is relatively small
and changes in seasonality only result in≈ 4 % fluctuations
(Fig. 6) on the relative error of the basin-scale estimate of
the inventory change. This seasonally varying error is small
relative to the effect of regression model selection.

The seasonal inventory change estimates in Fig.6 were
derived using month-by-month comparisons, where January
1995 is directly compared to January 2005, etc. In practice,
real datasets are composed of samples taken from different
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seasons. The seasonal bias inherent in the data is not ex-
pected to change greatly between sampling campaigns, how-
ever. Unless the seasonal biases in sample distribution con-
tained in real datasets were to change drastically (e.g. all win-
ter versus all summer values), the seasonal sampling bias is
unlikely to become a dominant source of error at the basin-
scale. Additionally, given the available sample distribution,
differences in representativeness of the sampling grids have
a larger effect on the dataset variance (Fig.A2) and model se-
lection than seasonal changes. Lastly, since regression misfits
are largest in the summer and early fall and hybrid-network
eMLR solutions produce lower errors in winter (Fig.6), ad-
dition of winter data should result in an overall improvement
of the fit quality, a consequence of reduced biogeochemi-
cal gradients during the winter and spring seasons due to
more intense mixing, and in eMLR estimates. While seasonal
effects can produce local extrema in residuals at particular
near-surface stations, seasonal variability tends to be filtered
out and is not expected to bias the change in carbon inventory
estimates obtained by eMLR on the space and time-scales
relevant to the Repeat Hydrography program.

7.1.2 Sub-monthly to inter-annual variability

The synthetic datasets were generated from monthly mean
fields such that sub-monthly variability is filtered out by de-
sign. The magnitude of seasonal variability outweighs sub-
monthly variability. Since seasonal variability is unlikely to
introduce large errors in the decadal eMLR inventory change
estimates, and since eMLR is a statistical method that relies
on a large number of data points, sub-monthly variability is
not expected to play a role as long as spatial covariances typ-
ical of these temporal scales are small relative to the domain
size.

There exists an implicit relationship between the spatial
scales of the system under study and the temporal scales that
are smoothed out by regression. As such, sub-monthly per-
turbations would have to affect either an extensive coherent
region or be extremely large to have noticeable effects on the
regression statistics and the eMLR results. Considering data
on the basin-scale for the regression analysis is then equiva-
lent to filtering out temporal variability that is uncharacteris-
tic of that scale and is averaged out. As WOCE and CLIVAR
are separated by approximately a decade, consideration of
large domains consistent with spatial patterns of interannual
variability limits aliasing of shorter term variability.

Obviously, the same considerations place limits on the
type of variability eMLR can be expected to remove. Inter-
annual modes of variability that have spatial scales similar to
the basin-scale can look like secular trends from the point of
view of eMLR depending on the relative phasing of the per-
turbation when observed. For these modes, even if the obser-
vational network were to remain fixed in time, the systematic
misfit cancelation effect may not be able to correct the in-
consistencies between empirical fit and true dynamics in the

eMLR calculation as the changes operate on scales that are
too large to be filtered out by regression analysis.

7.2 Temporal sampling inconsistencies

The degree to which the use of a nominal time interval be-
tween sampling campaigns, an assumption we have made
here, biases the estimated uptake rate is not clear. This de-
pends on the spatial distribution of the data and on how the
time interval is distributed spatially, i.e. how much each sta-
tion influences the regressions.

The target North Atlantic average uptake rate in the sim-
ulation is 0.443 Pg C yr−1. This number is of course ob-
tained from the knowledge that exactly 10 yr separate the
measurements. Allowing for uncertainty in the timing of
±2 yr (i.e. 8 or 12 yr), the uptake rate would vary from 0.52
to 0.34 Pg C yr−1. These values are close to the accuracy
limits (±0.1 Pg C yr−1) on the uptake rate implied by the
LSCOP criterion (0.343-0.543 Pg C yr−1) indicating that a
0.1 Pg C yr−1 is about the same as a 2 yr error in timing in
the North Atlantic.

Since most of the model formulae tend to produce North
Atlantic uptake estimates that underestimate the true value
(by 2–7.5 % on average, Fig.7), if the characteristic time in-
tervals of the dataset was smaller by 1 or 2 yr, a compensation
in the rate calculation would occur. In contrast, the problem
would become worse if the characteristic time interval were
to be larger than 10 yr. Based on the noise-free calculations
performed here, these considerations suggest that if a true in-
ventory change can be approximated precisely, basin-scale
eMLR-estimated uptake rates will remain within the desired
accuracy of the true value if the bias in the characteristic time
interval is smaller than about±2 yr.

The issue of temporally staggered samples is an impor-
tant shortcoming of basin-scale eMLR that has yet to be ad-
dressed. Although interior DIC values can perhaps be ad-
justed to a nominal year (e.g. using the transient steady state
concept, as used byTanhua et al., 2007), it is not possible
to do the same with all the tracers. This may result in pos-
sible inconsistencies as samples in different regions can be
influenced by different modes or phases of natural variability
patterns at different times, even within a sampling campaign.

7.3 Spatial sampling density

One important aspect affecting the quality of eMLR results is
the spatial representativeness of the GLODAP and CLIVAR
datasets. Ideally, datasets should measure approximately the
same hydrographic regions with comparable relative sam-
pling density, otherwise optimized empirical formulae may
contain different explanatory variables. Emphasis on partic-
ular water masses or gradients may result not only from the
presence or absence of data in the region, but also from the
station density along hydrographic cruises.
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As a consequence of inhomogenous and non-random sam-
pling of the ocean, an eMLR implementation based purely
on statistical arguments (i.e. “best AIC”, strategy 1) will not
necessarily yield the most accurate answer. This is because
local features may be present differently in each regression
fit, as these are derived from different sampling networks.
These differences in fit quality influence the information con-
tained in the residual field and so affect the empirical defini-
tion of “natural variability”. This can be interpreted as a type
of overfitting, although not in a statistical sense specific to
each regression individually but in a pragmatic sense, with
respect to the eMLR process as a whole.

When using the same formula in time (strategy 2), struc-
tures due to regression misfit are more likely to cancel
(Goodkin et al., 2011). A quantitative assessment of this ef-
fect is difficult with real data, however. The difficulty comes
of course from the fact that the sampling grid varies, mak-
ing point-by-point comparison of the regression misfit diffi-
cult without a form of interpolation. A detailed analysis at
crossover stations may prove to be informative in that case.

For real data, the problem is also that the relevant sys-
tematic regression misfit should in principle be between the
true anthropogenic signal and the empirical representation
of it, not between the observed values, which are contami-
nated by natural variability, and the regression predictions.
Nonetheless, a visual analysis of the geographical distribu-
tion of the residuals (calculated between the observed values
and the regression predictions) associated with each station
in our synthetic dataset indicates that residuals are not ran-
domly distributed in space, nor are they totally uncorrelated
between GLODAP and CLIVAR. Spatially coherent regions
with residuals of the same sign (sometimes of similar mag-
nitude) are generated (Plancherel, 2012).

Although model selection does not influence basin-scale
estimates of the inventory changes very much, model selec-
tion is very important locally, affecting assessments of both
the column and the layer inventories. The concepts of a bal-
anced station coverage and of vertical continuity were used,
in addition to statistical measures of fit, as guides for model
selection in this study. Formally quantitative methodologies
that account for these additional aspect as part of the eMLR
calculation are desirable but are still lacking. It seems also
conceivable to develop some criterion based on the pattern
similarity of the residual field to help select appropriate re-
gression models, to quantitatively exploit the systematic mis-
fit cancelation effect. Incorporation of prior information in
the derivation of the regression model could be used to limit
the scope and variability of the regression structure in time
and constrain the geographical coherence of the misfit.

In a few regions, multiple repeated cruises are available
(e.g. OVIDE section in the Northeast Atlantic;Lherminier
et al., 2007). Using all of these sections in the analysis will
bias the dataset towards these particular regions. In such
cases, it is of course best to use the one cruise track that is
most representative of the nominal year used in the analysis

(e.g. 1995, 2005). Due to the temporal data distribution, the
basin-scale eMLR estimate of the carbon uptake represents
a weighted average over a few years. High-frequency repeat
sections provide a rare and valuable opportunity to evaluate
the sensitivity of the final eMLR estimates to temporal data
inconsistencies by replacing the temporally most representa-
tive section with the others. These repeat cruises can also be
used to estimate the detection limit of eMLR directly from
data.

7.4 Additional recommendations

As global eMLR implementations are currently being de-
veloped by the oceanographic community, a few additional
points not addressed in this paper but relevant to the applica-
tion of eMLR to real data are worthy of mention here. First,
this study focused on the accuracy of eMLR. The related
question of precision was only treated briefly in the theory
section, and the influence of measurement errors and possi-
ble biases between data from different cruises remains to be
addressed. Secondly, while working in smaller geographical
regions will improve the regression fits, the size of regions
should not be so small as to be prone to strong aliasing by
variability of characteristic time scales shorter than the time
scale inherent to the Repeat Hydrography program (about
10 yr). This issue is related to the systematic misfit cance-
lation effect as the risk of model overfitting (in the pragmatic
sense of eMLR) is greater in highly dynamic regions. The
risk of overfitting for analyses performed on sections, partic-
ularly if these are cut up in small pieces, is high.

Finally, this analysis was performed on depth layers, to
mimic previous model-based assessments and for conve-
nience (the model output is gridded to depth levels). An anal-
ysis performed on isoneutral surfaces instead of horizontal
surfaces would likely perform better as property gradients on
isoneutrals are smaller given that water masses mostly mix
along these surfaces and because isoneutral outcrops nat-
urally follow dynamical features. Isoneutral surfaces slope
and cross the nutricline, however. Since the dominant mode
of spatial variability of nutrient-type tracers in the ocean
is due to their vertical distribution (Fukumori and Wunsch,
1991), there is a trade-off between the type of variability
eMLR has to cope with between a mixing-dominated hor-
izontal analysis and a biology-dominated isoneutral analy-
sis. Both approaches are subject to the problem of variable
end-member properties (i.e. secular trends), though. The in-
fluence of the nutricline on the analysis will depend on the
location and density of the stations relative to the topog-
raphy of the isoneutral surfaces. Solution of inverse prob-
lems, such as eMLR, are best when variables contained in
the design matrixZ are independent. Unfortunately, oceano-
graphic tracers tend to be highly correlated. If the vertical
gradients projected on the isoneutrals becomes an important
component of the isoneutral variance, it is possible that the
problem of tracer colinearity may also be more important
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along isoneutral than along depth horizons since roughly 30–
50 % of the interior nutrient concentrations represent rem-
ineralized nutrients and the remineralization signal is highly
correlated across nutrients (Anderson and Sarmiento, 1994).
Nonetheless, optimizing tracer orthogonality, perhaps by us-
ing quasi-conservative tracers (Si?, N?, C?, PO, NO) or
by adding dynamic tracers (potential vorticity, sea-surface
height) should improve the conditioning of the problem, re-
sulting in more appropriate regression fits.

8 Conclusions

Recasting the eMLR equations in the formalism of in-
verse problems allows for different application strategies for
eMLR, including regression models that can change in time.
This opens the conceptual possibility of systematically us-
ing empirical models that represent best-fit regressions that
reflect the changing structure of the observational networks
available. This perspective contrasts with the traditional ap-
proach that relies on model formulae that are fixed in time.
The performance of these two approaches was evaluated us-
ing output from a global circulation and biogeochemistry
model with a known anthropogenic signal and representa-
tive spatio-temporal patterns of variability from which ab-
solute errors could be evaluated. The model was sampled
at observed station locations to create synthetic datasets
that mimic the spatial structure of the observed historical
datasets.

Comparing eMLR results obtained by holding regression
formulae fixed in time with results obtained by regression
formulae that are allowed to change to reflect differences in
dataset variance imposed by a redistribution of the oceano-
graphic stations shows that more accurate results are possible
when the structure of the empirical model fits is held constant
in time. Given the working definitions of GLODAP and CLI-
VAR used here, this statement holds for basin-integrated esti-
mates, layer-specific inventory change profiles and for maps
of column inventory changes.

Comparison of idealized experiments in which the obser-
vational network is held fixed with realistic cases that incor-
porate the GLODAP to CLIVAR change in coverage indi-
cates that best results are achieved when the GLODAP sta-
tions are used at all times. GLODAP results are superior to
the CLIVAR results because GLODAP samples the whole
North Atlantic more evenly than CLIVAR does, even if GLO-
DAP has only half as many stations as CLIVAR. This results
in empirical regression models for GLODAP that are more
representative of the North Atlantic as a whole. In contrast,
CLIVAR models tend to be more influenced by the subtrop-
ics because of the heavier station density there.

Holding the observational network fixed in time reduces
the sensitivity of eMLR results to regression model selec-
tion relative to the case when the network changes in time.
This is because the systematic misfit cancelation effect is

less likely to operate when the station coverage changes in
time, making regression model selection an even more im-
portant step when station coverage changes. Changing the
model structure in time to better fit the observations induces
changes in the signal-to-noise partitioning, de facto altering
the working definitions of anthropogenic carbon and natural
carbon imposed by the choice of regression model. Keeping
the formula structure fixed increases the likelihood that the
systematic biases inherent to using empirical representations
of the true processes governing the distribution of anthro-
pogenic carbon form in the same geographical regions and
thus cancel during subtraction in the eMLR calculation.

As hydrographic station coverage is inherently sparse and
changes between observational networks are significant rel-
ative to interannual variability and relative to the large-scale
spatial variance patterns on horizontal layers, best-fit regres-
sion models can behave as if they were in fact overfitted; that
is regionally over-specialized, yielding temporally inconsis-
tent empirical definitions of the processes controlling tracer
distribution on larger or longer time-scales. For this reason,
simpler regression models, which may produce higher resid-
ual errors, may also yield better eMLR solutions as they
make inherently fewer assumptions about the structure of the
signal than more complicated models. More complex mod-
els may be driven towards regional fits at the expense of the
broader picture.

Statistical fitness of the regressions, although helpful and
necessary to some degree, is not a sufficient criterion for
regression model selection in eMLR. Consideration of the
spatial representativeness of the sampling network, vertical
continuity of the selected regression formulae as justified
by oceanographic knowledge and resiliency of the spatial
structure of the residual patterns to temporal variability and
changes in observational networks should be used as addi-
tional criteria to aid the model selection process and reduce
systematic biases of eMLR results.

Most eMLR cases considered (most regression models and
assumptions regarding the observational networks) can re-
produce the simulated basin-integrated ocean carbon decadal
inventory change within the threshold of acceptable uncer-
tainty (10 %), as proposed in the LSCOP report (Bender
et al., 2002). Analysis of layer-specific and column inven-
tory changes indicate, however, that both the station distribu-
tion and the selection of regression models exert strong in-
fluences on eMLR’s ability to recover the true signal locally.
Both layer-specific and column inventory change estimates
can err by as much as 100 % or more when the analysis is
performed on horizontal surfaces and uses inappropriate re-
gression models, even if the basin-scale inventory change is
in relatively good agreement with the true value. The depth
range between 500 and 2700 m is particularly sensitive to
model selection. In general, the subpolar convective region is
the source of most of the difference between the true signal
and the eMLR-inferred signals in the North Atlantic. This is
a consequence of insufficient sampling in this region during
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CLIVAR and also because of the strong variability in con-
vective activity in the region, a type of variability that is not
represented statistically in the data.

Implicit dynamical relationships between the size of the
domain analyzed (or the density of samples in particular re-
gions) and the time scales characteristic of that domain place
limits on the ability of eMLR to account for natural vari-
ability. As eMLR relies on a statistical approach to filter out
noise, for the residual field to be representative of natural
variability, the spatial scales of the dominant modes of natu-
ral variability in the domain should be smaller than the size
of the domain. Modes of natural variability similar in scale to
the size of the domain cannot be discounted as noise by the
spatial regressions used in eMLR. Large-scale natural vari-
ability patterns are treated instead as secular trends by the
fitting process and ultimately contaminate the anthropogenic
signal. Inadequate station density and inhomogenous sam-
pling exacerbate these limitations.

Even if the best eMLR results obtained here are unable to
fully account for the large-scale natural variability pattern,
eMLR is able to remove a large fraction of it, despite our
direct and somewhat naive horizontal (instead of isoneutral)
analysis. The fact that eMLR produces relatively good results
in the hydrographically complex and dynamic North Atlantic
suggests that it is likely to perform well in other hydrograph-
ically simpler and less variable basins. Although further de-
velopment and assessment of the method is necessary, par-
ticularly to address the issues of temporally variable covari-
ances, full propagation of the errors, problem conditioning
and temporal staggering of the samples, and even if inherent
limitations exist imposed by the scale of the system in rela-
tion to the relevant modes of natural variability, the eMLR
approach remains a viable candidate that can be used to ex-
ploit the many interior DIC measurements and evaluate the
large-scale evolution of the ocean carbon sink and its rate
of change independently from other techniques. Regional re-
sults should be interpreted with caution, however.

Appendix A

Spatio-temporal variance patterns in the synthetic data
set

Given that regression analysis aims to explain the dominant
variance patterns in a dataset, changes in the spatial and tem-
poral patterns of variance can affect eMLR results by influ-
encing regression model selection. Variance variability can
arise either from temporal variability or by altering the sam-
pling grid, which acts by weighting certain regions differ-
ently in the dataset. The structure and quality of linear re-
gressions vary depending on whether the analyses are per-
formed on sections, on regions, or on isopycnals such that
the regression models used in the eMLR context are ad hoc.
This section contrasts the spatial variance patterns captured

by the GLODAP and CLIVAR sampling networks and dis-
cusses the seasonal to interannual changes of these spatial
patterns in the synthetic dataset used in this study.

Figure A1 shows the seasonal evolution of vertical pro-
files of the standard deviation in the synthetic North Atlantic
GLODAP dataset for year 1995 for 8 variables. The standard
deviation is calculated horizontally and independently for
each month and each model layer. A parallel analysis using
the CLIVAR sampling grid shows similar broad-scale pat-
terns, although with slightly different magnitudes owing to
the different emphasis put on the Labrador Sea and the East-
ern Tropical Atlantic between the two sampling networks.
The variables exhibit different zones of low or high variance
(Fig. A1), indicating a priori the role each tracer will take in
the regression models as a function of depth and highlighting
the value of each variable as a tracer for each water masses.

The seasonal evolution of variance profiles reflects the
mechanisms of water mass formation, gas exchange and eco-
logical succession in the basin. The magnitude of the sea-
sonal cycle of the standard deviation is typically 10 to 15 %
in the upper 200 m for the nutrients (O2, AOU, NO3, PO4,
Si), and 5 % forθ , S, Alk and DIC. Seasonality is small
below 200 m (< 1–2 %). Nutrients show large variances in
late summer and fall in the top 150 m and relatively smaller
standard deviations in winter and spring (Fig.A1), consis-
tent with the development of the North Atlantic Bloom (Hen-
son et al., 2009). Temperature shows a maximum variance in
spring and summer when the subtropical-subpolar gradients
are strongest. The variance of salinity is small in summer and
is large in winter, reflecting sea-ice dynamics in the north-
ern subpolar region. Seasonality of the variance is associated
with a seasonal cycle in the misfit error of linear regression
models and in the eMLR results.

Relative to the basin-scale horizontal variance in the
dataset, 1995 to 2005 variance changes in the vertical profiles
are small. These changes are typically less than 3 % above
500 m and less than 1 % below that depth. These changes re-
flect processes such as water mass reorganization, gyre wob-
ble, thermocline oscillation, frontal shifts, etc. Although the
level of variance on horizontal slices in the data are relatively
constant, this is not to say that point-by-point differences in
tracer values or concentrations do not routinely exceed the
standard deviation calculated over the whole layer. In fact,
point-by-point differences between July 1995 and 2005 for
the North Atlantic can be as high as 50–100 % in specific
regions (East Greenland Current, Labrador Sea, across the
North Atlantic Current, near the equatorial boundary of the
subtropical gyre). The relative constancy of the dataset vari-
ance in time sampled from a constant observational network
suggests that the point-by-point changes are not a priori sys-
tematic enough as to greatly bias the large-scale representa-
tiveness of a given sampling grid: the GLODAP or CLIVAR
sets of stations would measure features in the same approxi-
mate proportions in 1995 and in 2005.
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Fig. A1. Monthly vertical profiles of the horizontal spatial standard deviation, from January to December, expressed in(a) ◦C, (b) psu or
(c–h) µmol kg−1, for the hydrographic variables used in this study for the year 1995 as sampled on the GLODAP grid. Tick marks to the
right of the main panels show the vertical position of the vertical layers in the circulation model.

Fig. A2. Monthly vertical profile of the month-by-month relative changes of the horizontal spatial standard deviation, from January to
December, expressed in percent relative to the 1995 values, between the synthetic 2005 CLIVAR dataset and the 1995 GLODAP dataset for
the variables used in this study. Tick marks to the right of the main panels show the vertical position of the layers in the circulation model.
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The GLODAP and CLIVAR sampling grids emphasize hy-
drographic features differently because of their variable spa-
tial sampling densities (Fig.1). Calculated differences be-
tween the basin-scale variances of the GLODAP and CLI-
VAR datasets show typical standard deviation differences of
order 10 % between the two observational networks. These
differences also exhibit vertical patterns clearly different
from changes induced by natural variability or either sea-
sonal or interannual time-scales (Fig.A2). Interannual vari-
ability and variations in the sampling grid both alter the
dataset variance patterns and affect misfit error but interan-
nual variability is secondary to the variance changes imposed
by changing sampling network between GLODAP 1995 and
CLIVAR 2005.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
4801/2013/bg-10-4801-2013-supplement.pdf.
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