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Abstract. Quantifying oceanic anthropogenic carbon uptakesuch as a balanced and representative station coverage, verti-
by monitoring interior dissolved inorganic carbon (DIC) con- cal continuity of the regression formulae consistent with the
centrations is complicated by the influence of natural vari-hydrographic context and resiliency of the spatial distribu-
ability. The “eMLR method” aims to address this issue by tion of the residual field can be used to help guide model
using empirical regression fits of the data instead of theselection. The characteristic spatial scales of the modes of
data themselves, inferring the change in anthropogenic carinter-annual to decadal variability in relation to the size of
bon in time by difference between predictions generated bythe North Atlantic, in concert with the station coverage avail-
the regressions at each time. The advantages of the methable, place practical limits on the ability of eMLR to fully
are that it provides in principle a means to filter out nat- account for natural variability. Due to its statistical nature,
ural variability, which theoretically becomes the regressioneMLR only efficiently removes the natural variability whose
residuals, and a way to deal with sparsely and unevenly disspatial scales are smaller than the system analyzed.

tributed data. The degree to which these advantages are real-
ized in practice is unclear, however. The ability of the eMLR
method to recover the anthropogenic carbon signal is tested  |ntroduction

here using a global circulation and biogeochemistry model

in which the true signal is known. Results show that regres-Since publication of the global oceanic cumulative mid-
sion model selection is particularly important when the ob-1990s anthropogenic carbon inventory estimaSabine
servational network changes in time. When the observationaét al, 2004, a measure of the time-integrated anthropogenic
network is fixed, the likelihood that co-located systematic signal, attention has turned toward methodologies capable of
misfits between the empirical model and the underlying, yetmonitoring spatio-temporal changes in that signal. Owing to
unknown, true model cancel is greater, improving eMLR re-the size of the oceanic carbon storage and the role of the
sults. Changing the observational network modifies how theocean as a long-term sink of excess carbon dioxide, perturba-
spatio-temporal variance pattern is captured by the respeaions, progressive saturation or a decrease of the oceanic up-
tive datasets, resulting in empirical models that are dynamitake rate (relative to expectations) can have large impacts on
cally or regionally inconsistent, leading to systematic errors.the atmospheric concentratior&chuster and WatspB007

In consequence, the use of regression formulae that changeorbiere et a].2007 Le QLéré et al, 2007 Khatiwala et al,

in time to represent systematically best-fit models at all times2009. Accurate knowledge of the uptake rate and its inter-
does not guarantee the best estimates of anthropogenic cagnnual variability fcKinley et al, 2011 thus has important
bon change if the spatial distributions of the stations emphapolicy implications for carbon mitigation.

size hydrographic features differently in time. Other factors,

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Independent assessments using atmospheric and oceardce available. A strict section-by-section or station-by-station
carbon observations for the period 1995-2000 constrairstrategy would thus not be able to exploit the many samples
the mean oceanic uptake rate of anthropogenic carbon tfor which no repeat exists. A form of extrapolation, which
2.240.3PgCyr! (Gruber et al.2009. While estimates of ~ considers data in entire regions instead of constrained along
the global uptake rate tend to converiféefzel et al. 2005 sections, is thus desirable to make best use of available data.
Takahashi et aR002 Mikaloff-Fletcher et al. 2006 Khati- Wallace(1995, Sonnerup et al(2000 (in the context of
wala et al, 2009 Takahashi et al.2009, assessments di- 13C) andFriis et al.(2005 proposed to compare empirical re-
verge on a regional level, showing different uptake and stor-gression model representations of the measurements instead
age patternsJabine et a).2004 Waugh et al.2006, espe-  of directly comparing time-separated measurements to max-
cially in the Southern OcearCéldeira and Duffy200Q Lo imize data use, filter out the natural spatio-temporal variabil-
Monaco et al.2005ab; Le Quére et al, 2007). These differ- ity and to generate spatial prediction. Theis et al.(2005
ences have important mechanistic implications for the underimplementation of this method is known as the extended
standing and prediction of the marine carbon cycle and argudlultiple Linear Regression (eMLR) approach. A few studies
for improved observational estimates. have described various aspects and limitations of the eMLR

An accuracy target for the determination of the rate of methodology either in models or applied to da&miinerup
change of anthropogenic carbon inventory of 0.1PgCyr et al, 200Q Friis et al, 2005 Tanhua et a).2007 Levine
for each of the major ocean basins (3PgC globally overet al, 2008 Wanninkhof et al.201Q Goodkin et al.2011).
10yr, 10% of the expected anthropogenic input for thatWe add to these previous efforts by addressing two points not
period) was suggested in the Large Scale,bserving thoroughly covered in the existing eMLR literature: the in-
Plan (LSCOP) reportBender et al.2002 for the Repeat fluence of regression model selection, and the effect of vari-
COu/Hydrography program. It is challenging to quantify the able observational sampling networks on eMLR-derived esti-
oceanic anthropogenic carbon concentration and its time ratenates of the interannual to decadal change in anthropogenic
of change, however. The first problem lies in the fact thatcarbon.
anthropogenic carbon is usually defined as the difference be- The eMLR procedure, under the constraint imposed by the
tween the contemporary dissolved inorganic carbon (DIC),number and locations of the available measurements, is here
i.e. the measured DIC, and an estimate of the natural DICgvaluated objectively using an ocean circulation model that
that is, the DIC field thought to have existed in the absence ofncludes carbon and nutrient biogeochemistry in which the
human activity Gruber et al.2009. The natural and anthro- true anthropogenic signal is known exactly. The model is
pogenic carbon components are, however, indistinguishabléorced by observed surface fluxes and so provides a means
from a measurement point of view. Separating them impliesof estimating absolute errors in the presence of natural tem-
assumptions regarding the cycling of natural carbon. Anotheiporal and spatial variability patterns that are consistent with
issues is that the anthropogenic carbon fraction is small relmany observed climate processes on a variety of time and
ative to the background DIC concentration (of orgeb % space scales.
of the DIC in the upper ocean). Even if the current analytical The principles of the eMLR theory are described first, us-
precision is sufficient to detect DIC changes on interannual tang matrix notation to cast eMLR into the general framework
decadal time-scale®(ewer et al. 1997 Winn et al, 1998 of inverse problems. This is followed by a methodology sec-
Bates 20017), natural variability confounds efforts to quan- tion giving the details of the circulation and biogeochemistry
tify the dynamics of the marine anthropogenic carbon sinkmodel experiments used to generate the synthetic dataset on
on these scaleKgéeling 2005 Sabine et a).2008 McKin- which the eMLR methodology is tested. The methodology
ley et al, 2011). section also includes a description of the calculations and

These difficulties are exacerbated by the limited numberof the mapping scheme used. Results are presented in three
of data available and their spatio-temporal distribution. Basinparts. The structure and variability of the anthropogenic car-
or global-scale databases represent assemblages of data cbbn signal in the model are described first. Then, a summary
lected by individual cruises over many years. Owing to logis- of the regression results focusing on regression quality and
tical limitations and since each cruise has its own scientificformulae structure is given. The influence of various regres-
objectives, the large-scale spatio-temporal distribution of thesion models and of changes in the observational network on
data is not ideal. While new samples are often collected clos¢he eMLR solutions is addressed in the last several sections.
to previously sampled stations, this is not always the case. A8asin-integrated inventory changes are discussed first, fol-
such, direct point-by-point data comparison in time may notlowed by layer-specific inventory changes and finally column
be possible to infer changes on the basin scale if the intersectaventory changes. A discussion of potential errors focusing
ing datasets are too sparse. While a point-by-point analysiparticularly on the problem of inhomogenous data distribu-
allows for a good control of the time difference between re-tion in time and space precedes the conclusions.
peat samples locally_évine et al, 2008 Sabine et a].2008
Wanninkhof et al.2010, this approach would only be appli-
cable to a subset of the data for which repeat measurements
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2 eMLR theory in the limit of no available prior informationcfyior =0,

] ) ) C. ! — 0) and with the “tilde” indicating empirical esti-
By design, regression models separate the fraction of thénates. The subscripts and# associated with the square
variance tha_t can be gxplamed by the model gnd the part thgl,5ckets apply to every term in the bracketsy, is the de-
is due to noise. If suitable empirical regression models carsign matrix built from data at time, but adjusted to utilize
be found to describe the DIC field in a spatial domain, and ifthe variables included in the regression model derived from
itis assumed that the physical and biogeochemical processggne 1, (). The notation|t is introduced to allow for dif-
acting in that domain are stationary and not affected by thegrent sets of predictor variables (i.e. different regression for-
anthropogenic perturbation, the noise (natural variability Ofmulae) to be used in the derivation of the regression coef-

DIC) can in principle be filtered out by regression and the an-ficients at either; or 75, a generalization of original eMLR
thropogenic signal revealed as the difference between m0d€(|:riis et al, 2005.

predictions of DIC at different timesiis et al, 2003. Con- Ideally, if the physical and biogeochemical processes that
ceptually, govern the spatial distribution of the tracers are stationary
ACEMLR — Go(Dp) — G1(D2) (1)  intime, the structure of best-fit regression formulae (i.e. the

predictor variables used) should also be constant in time for

: : : a given region of the ocean. If the same set of predictor vari-
he r iv . It is worth noting th f . . . :
the respective datasets,. It is worth noting that a set o gbles is used through time, i2y, = Z,,, and if the model

DIC predictions generated from a model fitted to one dataset . 2 MR o

but applied to the other dataset is necessary (in this exampld$ linear, Eq. ) can be written a& C oy, = Zi,(er, — &),

G1(Dy)) to ensure that DIC predictions exist for all samples Which is the traditional form of eMLRHriis et al, 2003.

in the dataseD>. In reality, as sampling intensity in different regions
Tarantola (2005 gives the following expressions (his changesZy, andZ;, may not have the same number of

Egs. 3.37 and 3.38) as possible forms of the least-square®Ws (measurements) and these measurements may not be

estimator of the regression coefficie@tand the associated CO-located geographically. As such, itis possible that the for-

posterior covariance matrig that constitute the regression Mulae of the regression models that minimize residuals in
modelY =Z .¢+e€: a region may change in time due to changes in the obser-

1 vational network, even without secular trends. Equatén (
T= (ZTC;lz + Cc‘l) (ZTCy‘lY + Cc‘lcprior) (2)  explicitly accounts for this possibility. The degree to which
changes in spatial sampling intensity affects the regression
Co = (ZTC;lZ + C071>‘1 ' 3) models and the degree of influence the form of the regression
models ultimately have on the eMLR estimate is the subject
Cy is the data covariance matrix a is the prior covari-  of this study.

ance matrix of the estimator with mean prior densities given Note that the results can also be projected backwards in

in the vectorcprior. Exponents(T) and (—1) indicate the  time, onto the data availablezt fcgmhi =Z4,-(6— &)

transpose and the inverse, respectively. Although this studyf the numbers and locations of the measurements available

uses noiseless synthetic data, a thorough treatment of thegange in time, maps produced by backward projecting the

covariance matrices will be key for the application of eMLR result atr; may differ from maps produced from forward pro-

with real data. This is, however, beyond the scope of thisjecting at,. eMLR can thus generate different results from

manuscriptZ is any design matrix containing the variables the same data. The importance of this difference depends on

used as predictors aridis a vector containing the DIC ob- sample coverage and mapping.

servations. Equation @) shows that predicted changes in the carbon
As indicated by Eq. ), the eMLR estimate of anthro- concentration can occur as expected from differences in the

pogenic carbon change is obtained by using two different setsectorsY,, and¥,, but also from differences in the matri-

of regression coefficients but only one set of data, resultingces z;, and Z;, and from differences in the prior covari-

in estimates that are projected either forward or backward irance matrices associated with variableCy 1, andCy ,.

time depending on the dataset used in the calculation. Usinghe measurement accuracy of DIC and alkalinity (Alk)

Eq. (), the eMLR quantity that would be predicted with the have improved since the introduction of the certified ref-

dataset available at timg is given by erence material such that, for most samples taken during

ACMRR _ 5y and after the World Ocean Circulation Experiment (WOCE),

anthirz f2 — Tult2 Cv.t, ~Cyt,. The measurement accuracy for DIC between

whereG; are empirical model fits at timesderived from

=Zt,+Ct, = Zuplty - €1y cruises would vary by a factor of 2-5 prior to the introduc-
— 7. (ZTC‘lz)il (ZTCY‘1Y> tion of reﬁerence materigl, such that changes in covariances
2 Y i can significantly contaminate the eMLR signal when using

_1 older datasets, as shown experimentallyMatear and Mc-
—Zty)ty - [(ZTC\?lZ) (ZTCy_lY)} (4)  Neil (2003 andTanhua et al(2007). Equations 2) and @)

1
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do not formally consider errors associated with the predictor The analyses focus on 1995 and 2005. These years were
variables inZ but this can be achieved using a Monte-Carlo chosen as they are representative of the modal sample density
approach or more direct methodEafantola 2005. Errors  available for the GLODAP and CLIVAR datasets. Similarly,
associated with the hydrochemical variableZimre likely  emphasis is given to July 1995 and July 2005 as July mimics
important in reality since no reference material is used forthe summer bias inherent in the original dataskey (et al,
nutrient measurements and systematic biases are known 2004).

exist between measurements taken during different cruises. Our choice of the North Atlantic for this study is motivated

Estimates of uncertainty arourffgmlﬁi can be obtained by a number of factors. First, it is clearly a region of conse-
by linear propagation of the individual posterior uncertain- quence for carbon uptake by the oce&alfine et a).2004).
ties. Given tha@gnl\ﬂthf% _ 17:2 _ Yzl“tz, and since the poste- Se(_:on_o_l, the complex hydrography and strong water mass
2 - variability in the North Atlantic pose particular challenges

gi(; rncrz\;?:il?ggz:%a:ﬁgepi\(stce?igrbceof/glr?;ﬁ:tg?nf;?rri?( g:‘ethd:-re for empirically-based detection methods, as indicated by the
. - . ~ ~ global model-based eMLR results akvine et al.(2008.
gression coefficients (E@) at each time byCy = ZCczZ” 9 (2009

. I : Third, the relatively large number of measurements in this
(Tarantola 2009, an estimate of precision for eMLR is region suggests that it is an appropriate context within which

GaMlR ~ diag(értz) +diag(m2) —2.cov(¥,. Yop,). (5)  to deconvolve uncertainties associated with the eMLR ap-
proach itself from uncertainties associated with the mapping

With  Cyrt=Zvtit-Cot - Zy . 7. By  defini-  Process. -
tion, the ’tclgflarianc’:ttlaltzter%tl can’tzgiso be yexpressed as The simulator is composed of the NOAA/GFDL z-level

cov(a, b) = p(a, b)/Nara)Varh), making the correla- coordinate Modular Ocean Model MOM4 general circu-
tion (o) between co-located predictions o’:fz and Y;Ii/tz lation model Griffies et al, 2004 2005 Gnanadesikan

explicit. This form of error propagation would be appropriate €t @l- 2009 and the Tracers in the Ocean with Allometric
even if nonlinear regression models were considered sinc&20Plankton (TOPAZ) lower-trophic level biogeochemistry
~ eMLR model Qunne et al.2005 2007, 2008 2010. Sea-ice dy-

Ac.a“”lfz 'S expressed as a difference between two termshamics are modeled by the GFDL Sea Ice Simulatting
which is a linear operation. ton, 2000

e s ranon, T ocean mogel s 0 vericl layers and s resoed
precision achieved by applying the regression framwith on a tripolar grid W't.h an approximate resolution df lm
. I, proved to ¥3° meridionally near the equator. Synthetic pro-
data fromr, (second term). Finally, it importantly depends files i 4 i .
; iles isolated at each station are not further sub-sampled in
Mhe vertical to mimic the observations, however. This results
in a slight overestimation of the vertical sampling relative to
he resolution of the data but the ocean is sufficiently well-
sampled in the vertical. Horizontal interpolation errors are,
Sor this problem, larger than vertical ones.
The TOPAZ biogeochemistry module is fully prognostic
and includes all major nutrients (NOPQy, Oo, Si, DIC,

correlated, the overall estimated uncertainty decreases. O
the other hand, if the predictions are uncorrelated the thir
term becomes small and the overall uncertainty around th
eMLR result increases.

3 Methodology Alk), labile and semi-labile dissolved organic matter pools,
an iron cycle, ballasting of sinking particles, nutrient and
3.1 Synthetic dataset and description of the model light co-limitation, a microbial loop, three classes of phy-

toplankton and zooplankton. Details about the model formu-
A synthetic dataset with known anthropogenic carbon con-ation and performance are availableDunne et al(2010,
centrations is used as a testbed. The synthetic datas&armiento et al2010 andHenson et al(2009 2010).
is constructed by sampling a global ocean circulation-
biogeochemistry model (output provided by J. Dunne, Geo-3.2 Simulation configurations and definition of
physical Fluid Dynamic Laboratory, NOAA, Princeton, NJ, anthropogenic carbon in the model
USA) at the station coordinates given by the GLODARY
et al, 2004 and CLIVAR (defined operationally as data col- The model was initialized with World Ocean Atlas (2001)
lected after GLODAP) datasets (Fit).to reproduce the ob- temperature, salinity and nutrients, GLODAP carbon and
served sampling grid. Our current working estimate of theseforced with the NCEP-derived CORE representation of at-
datasets in the North Atlantic region represent 386 and 703nospheric fields and fluxetdrge and Yeage2004 2009
stations for GLODAP and CLIVAR, respectively. To isolate Griffies et al, 2009 over the period 1958-2006. Surface
the effect of regression model selection from other source$alinity was restored to observation with a relaxation time
of error, the synthetic data are assumed free of measureme#f 60 days.
errors throughout this work.
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Fig. 1. (a) Change in anthropogenic carbon column inventory, in nofmbetween July 1995 and 2005 calculated on the original
MOM4/TOPAZ grid. (b) Inventory change calculated after mapping the true values sampled at GLODAP staijdiapping error, dif-

ference betweefb) and (a) for GLODAP. (d) Mapping error for CLIVAR.(e) Changes in contemporary affi natural carbon column
inventories between July 1995 and 2005 mapped from GLODAP stations. Station locations are show in green (GLODAP) or magenta (CLI-
VAR). Both GLODAP and CLIVAR stations are plotted {a). In (c), (d) and(f), thin dashed (negative) and solid (positive) contour lines are
drawn in increment of 6 mol M. Thick contours mark 0 mol fré.

The strategy used to isolate the anthropogenic carbon corpled at both GLODAP and CLIVAR station locations. All
centration from the model is described Bodgers et al. 255 possible models, from single-term to 8-term mod-
(2009. Briefly, the model was spun up for two repeating els, were considered, using the following set of oceano-
CORE cycles with fixed pre-industrial atmospheric0n- graphic variables (salinity, potential temperature, nitrate,
centration after initialization. At this point, parallel integra- phosphate, silicate, apparent oxygen utilization, oxygen,
tions were performed: one with a prescribed atmospheric carsalinity): Z C {S, 6, NOs, POy, Si, AOU, O, Alk}. An offset
bon dioxide transient boundary condition, yielding the con-term (i.e. y-intercept) is implicitly included in each fit but this
temporary carbon signal and one without, giving an estimateerm is not included in the following discussion for simplic-
of what the evolution of the natural carbon would have beenity. See Table S1 in the supplementary material for a list of
had the atmosphere remained stable at pre-industriabpCOthe model formulae.
levels. These parallel simulations were repeated for five ad- The best regression models chosen from all possible first-
ditional CORE cycles with the atmospheric €€oncentra-  order models were identified for each size class (1 to 8 term
tion increasing monotonically throughout the five cycles asmodels) and across all size classes and for each horizontal
prescribed by the known evolution of historical atmosphericlayer and each month from January to December for the nom-
pCOs,. The last cycle is used as a model surrogate for yearsnal years 1995 and 2005 to investigate the effect of tempo-
1958-2006 and provides the basis for this work. Since bottral, physical and biological variability on the ability of sim-
branches of integration were forced with exactly the sameple linear regression models to fit oceanographic data. The
forcing fields, the physical state variables are identical andminimum Akaike Information Criterion (AIC) was used as a
the only difference between the two runs are the concenguide for model selection across the complexity spectrum.
trations of carbon dioxide in the oceanic and atmosphericAIC addresses the bias-variance trade-off problem when
reservoirs. The anthropogenic carbon concentration is opereomparing models of different complexity and minimizes the
ationally defined to be the difference between the two runsrisk of over-fitting. AIC is defined as Al& —2In(L) + 2k,

The model global anthropogenic carbon inventory in 1995whereL is the maximum likelihood of the fitted model akd
is 104.9 Pg C, a value within errors of the observational esti-is the number of parameters in the model. AIC is then simply

mate Gabine et a).2004). a measure of the residual sum of squares migfjitwith a
penalty added (@ that is a function of the number of terms
3.3 Regressions, statistics and eMLR calculations in the model Burnham and Andersori998. For a given

set of data, models corresponding to the smallest AIC values
First-order additive linear models were fitted to the syn- represent the best consensus between fit quality and model

thetic DIC datasets extracted from the monthly mean fieldsCOMPIexity.
of the MOM4/TOPAZ simulations in 1995 and 2005 sam-

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 48X1-2013
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To tease apart the influence of changes in the observationdligure 1a represents the target signal that eMLR aims to re-
network from regression model selection on the eMLR re-cover. Figurela is calculated on the original model grid af-
sults, the following cases are considered. First, realistic caltier subtracting the control (natural carbon) from the transient
culations are made where regression models are derived frorftontemporary carbon) component. Figdeeshows that re-
GLODAP data in 1995 and CLIVAR data in 2005. Such “hy- gions with large inventory changes associate closely with wa-
brid” results projected both backwards in time on the GLO- ter mass formation regions that are also high uptake regions,
DAP data and forward in time onto the CLIVAR stations are notably the Labrador Sea Water and the North Atlantic Sub-
considered: tropical Mode Water formation regions, but also reflect wa-

hybrid 2008 1665 1665 1005 ter mass'reorggnization, gyre wobble and frontal shifts in the
ACGopap = GCLivar (PGLobar) — GeLobar(PaLopap) (6) control simulation.
Both the GLODAP and the CLIVAR observational net-
) works are overlain as a series of dots on Hig, showing
ACHP =GRS L (DRVS ) — G ap(DE%) . (7)  how some notable high-change regions are entirely missed
by the sampling. One such high-change feature, with column

The hybrid results are contrasted with idealized Ca|CU|a-inventory differences above 20 molthand centered around
tions where the observational networks are held fixed in time 35° W-35 N, is missed entirely by both the GLODAP or the
Two scenarios are considered, one for each set of stations: CLIVAR stations. Another localized high-change feature is

_ situated near 60W-38 N and is similarly omitted in the re-
ACESoar = G&15oap(DE ooar) — GéLooar(Detooap) (8)  spective datasets. The Labrador Sea is currently only sam-
pled by the GLODAP stations in our data compilation (post-
GLODAP data in this region will soon become available).

ACEET R = GAV AR (DENAR) — CElioar (DENAR) - (9) Figure 1b shows the vertically integrated anthropogenic
. carbon inventories resulting from sampling the model at the
3.4 Mapping GLODAP station locations and extrapolating horizontally to

. . . . . the basin scale using the mapping method described pre-
Mapping, that. is the hon'zon.tal extrapolation of pplnt Sam'viously. The mapping was performed separately for each
_ples_ to a bgsm-scale grid, is a necessary step in CaICUIatr'nodel level. Mapping, using either the GLODAP or CLI-
Ic?g mC\j/entlo res fhrorgtLrgDe AMPLR pcr:?_?\'/CAt'ans as thes& aré Proyar station distribution, results in a slight overestimation
uce ofn y atdt € fixed or . fta“"’,‘s- e}ppln_g of the vertically integrated signal in the subtropics and in un-
was periormed using a fixe exponentia covariance un.ct'onderestimation in the subtropical/subpolar transition and in the
with a longitudinal correlation scale of 13.8nd a latitudi- | b0 Sea (Figlc and d). Vertically integrated biases re-
nal scale of 7.4 above_ 3500m, or _7.4fqr both scales l_)e- sulting from mapping are most significant in the unsampled
low that depth. Analysis of the semi-variograms, eXpe”men'regions East of the Grand Banks and in the central North

tation with the length-scales and other kriging control Pa- pAtlantic (40° N, 40°W). In these restricted areas, mapping

rameters showeq th_ese scalgs t.o be appropriate. This SCherBFrors can be as much as half the size of the anthropogenic
was chosen to mimic the objective mapping process used b?éignal (about:10 mol n2 in absolute terms). These unsam-

szy Et aI.EJZOOLl)sv;gg used éygi:a:(lenlgtlscﬁlg_s of .155?) alnd pled regions are also zones experiencing the highest magni-
Okm ahove m an Okm in both direction below ude of temporal carbon variability in the North Atlantic in

that depth, and to ease the computational burden. In light Othe simulationsRRodgers et al2009. When integrated over
the thousands of maps that were produced, a fully adaptabl&e basin, mapping errors are smaller than other sources of

kriging SIChIem?j ::or e"’f‘_CT dmap was ant prac“;("Jllf‘ve_ztor'es‘uncertainties, however. On each horizontal layers, the krig-
were calculated from fields mapped to a regu gnd. ing uncertainty (uncertainty around the central kriging esti-

mator) resulting from mapping error-free values sampled at
GLODAP or CLIVAR stations is typically of similar magni-
tude as the absolute error (difference between the true value

A description of the target signal (change in anthropogenic2nd the central kriging estimator). Propagation of the map-
carbon) and its components (change in natural and contenf?ing uncertainty is not considered in the following discus-

porary carbon) is provided first, before the eMLR results, toSion, where only the central kriging estimator is used as a
provide context for the signal in relation to the variability diagnostic.

captured by the model and the sampling network.

4 Changes in DIC distribution

4.2 Changes in simulated contemporary and natural
4.1 The “true” target signal carbon distributions

Figure 1a shows the modeled change in column inventoryFigurele and f show the vertically integrated DIC column in-
of anthropogenic carbon between July 1995 and July 2005ventory changes in the transient and control simulations (the

Biogeosciences, 10, 4804831, 2013 www.biogeosciences.net/10/4801/2013/
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two components used to calculate the anthropogenic signalgrn edge of the gyre (Fidlf). The regions with increas-
mapped from the set of samples taken at GLODAP locationsing carbon in the control simulation (Fidf) coincide with
The change in the column inventory of contemporary carbornthe regions of highest interannual variability identified by
for the transient simulation between July 1995 and July 2005Cromwell (2006 from an analysis of satellite SSH data in
(Fig. 1e, ACcontemporary reveals substantial carbon accumu- the North Atlantic. The source of the positive deviation of the
lation in the subpolar gyre region, the European Basin and atarbon inventory in the subequatorial (102R) and east-
the southern edge of the subtropical gyxel®° N) but ap-  ern North Atlantic is in the upper few hundred meters. This
parently little change in the vertically integrated column car- pattern likely reflects a real mode of interannual variability
bon inventory in the region South of the Gulf Stream. Many captured by the model.
of these features are compensated for by the changes over The subtropical region with strong negative change in the
the same decadal interval in the control simulation (Bfg.  column carbon inventory (Figlf) is identified as a low
ACnatura), highlighting the importance of natural variability. SSH variability region byCromwell (200§. This is fur-
For example, the Western Subtropical Atlantic shows a drasther evidence that the strong and coherent signal of Hig.
tic decrease in natural carbon between 1995 and 2005, whichis not due to interannual variability in the upper thermo-
when added to the transient run, results in substantial careline. This signal is rather associated with the Labrador Sea
bon uptake in the subtropical mode water formation regionWater and is consistent with the observational analysis of
(Fig. 1a, b), consistent with what is expected from previous Curry et al.(1998 who reported how deep subpolar pertur-
studies Bates et a].1996 Lee et al, 2003. The Greenland bations caused by changing convection in the Labrador Sea
Current region, the Eastern Atlantic and the southern edggropagate to the subtropics. These patterns of DIC inventory
of the subtropical gyre all show increases in vertical carbonchanges simulated by the model are qualitatively consistent
inventories in the control run (Fidf). with important known patterns of SSH variability over the
Inspection of horizontal maps of DIC change in the con- North Atlantic that also affect field observations.
trol simulation between 1995 and 2005 suggest that the sys-
tematic negative change in vertical inventory (Fif).in the
North American Basin is caused primarily by a decreases Model selection and variability of regression
in the DIC concentrations>(5-10 umolkg?) in the deep performance
model ocean= 2200 m). These deep DIC changes are ac-
companied by a decrease in the concentration of the otheDceanographic applications of eMLR have typically relied
nutrients, an increase in oxygen, and a slight warming. Theon one of two approaches to address the issue of regression
Labrador Sea and subpolar basin show large increases in cafodel selection. On one hand, models are chosen a priori
bon and in nutrient concentrations, a decrease in oxygen corbased on knowledge of the physical and biogeochemical pro-
centrations and strong increases in salinity and potential temeesses or data availability. On the other hand, the model se-
perature. These changes are topographically constrained tection problem is addressed statistically, relying on stepwise
the west of the Mid-Atlantic ridge below 3000m, but the linear regression. In this section, we explore the ability of
changes between 2200 and 3000m suffice to explain thearious regression formulae to explain the data as a function
drop in column inventory visible in the northeastern Atlantic of depth and time and explore the spatio-temporal continu-
(25° W, 5¢° N, Fig. 1f). These patterns indicate that variabil- ity of the statistically selected models. The analysis shows
ity in the convective activity and export of the Labrador Seathat, for the most part, there is convergence of statistically se-
and downstream adjustments of the Deep Western Boundangcted model formulae across multiple depth intervals. This
Current and interior properties are responsible for the largeis consistent with the fact that water mass differences are re-
scale column inventory changes in the northern and westergponsible for most of the variance along the horizontal layers
Atlantic (Fig. 1f). The increase in column inventory simu- in the domain analyzed. Best-fitting model formulae change
lated by the control run at the southern edge of the subtropin time, however, being affected strongly by variations in the
ical gyre and eastern Atlantic is due to gyre dynamics. In-sampling network.
creases in the DIC field are observed in this region between
150 and 700 m, along with changes in other tracers. Thes6.1 Regression formulae
changes are consistent with a northward contraction of the
subtropical gyre. Figures2 and 3 show the vertical continuity of the statis-
Differences in the simulated annual mean sea surfaceically selected best-fit model structures for each complex-
height (SSH) between 1995 and 2005 agree with the interity class and overall for the July 1995 GLODAP or the July
pretation given above (not shown). The patterns of change i2005 CLIVAR datasets. In these figures, the horizontal axis
SSH do not reflect the North Atlantic Basin drop in carbon represents regression model number (see Table S1 for model
inventory seen in Figlf, suggesting the source of that fea- definitions). These models represents the full suite of pos-
ture is in the deep ocean. On the other hand, SSH varies corsible permutations for eight predictor variables, beginning
sistently with the signal observed at the eastern and southwith a model with only one term (model 1) to the model
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Fig. 2. Summary of the best fitting linear models for the July 1995 GLODAP synoptic synthetic dataset. Background colors identify models
size classes (1 to 8ja) Relative frequencyKy/max(Fy)) with which models are selected in each size class (minimum root-mean-square
error, black bars) and overall (minimum AIC, white bars). Frequency is computed based on the number of modéigyessnfalized to

the most frequently identified model (max()). (b) Same aga) but for frequency weighted by the thickness of each laygy/thax(Fp)).

(c) Models with with lowest AIC in each size class (black bars) and overall (white bars, red ticks on top and bottom x-axes) and each depth
layer. Tick marks on the right show boundaries between model layers. Tick marks on top and bottom show model number (in steps of 5).
The first model number of each size class is indicated, except for size classes 1 and 8 (humber 1 and 255).
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Fig. 3. Same as for Fig2 but using the July 2005 CLIVAR synoptic synthetic dataset.
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containing all eight terms (model 255). The color strip at differences in network representativeness (Hg.For in-
the top that matches the figure background summarizes inforstance, analysis of the statistically selected formulae high-
mation about model complexity with each color correspond-lights the importance of salinity in the top 300m as an ex-
ing to increments in the total number of predictor variables.planatory variable in the regressions derived from the GLO-
Panel c in these figures indicates the models that are statistDbAP dataset (Figda, b). In contrast, temperature and oxy-
cally best in each size class (black vertical segments) or overgen replace salinity in many of the formulae produced from
all (white vertical segments), as a function of depth. Panels ahe CLIVAR stations in this depth range (Figh—f). This
and b summarize the frequency with which particular mod-is because the dominant source of variance in the CLIVAR
els are selected throughout the water column, plotted eitheset mostly represents the subpolar to subtropical contrast
as a number frequency (panel a) or weighted as a function oénd is less influenced by extreme regional features such as
layer thickness (panel b). the East/West Greenland Current and the Labrador Sea than
Parallel analyses for the complementary July 2005 GLO-GLODAP. Salinity takes a relatively more important role in
DAP and July 1995 CLIVAR cases indicate that changing CLIVAR between 400 to 1200 m (Figlc, d). This reflects
the sampling networks influences the model selection prothe influence of the Mediterranean Sea Overflow water in the
cess more than interannual variability does for a constanEastern Atlantic, which is relatively more frequently sampled
set of stations. Given a constant sampling network, only fewin CLIVAR. Silicate is more frequently present in the formu-
temporal changes in the statistically optimal formula struc-lae in that depth range in the regressions derived from the
ture are detected (over all models or within model complex-GLODAP set of samples (Fidia, b). Common features also
ity classes) and these typically only involve one of the termsexist, however, between the formulae structures generated by
in the formula. These term swaps are also consistent with théhe two sampling grids (Figle, f). For instance, the role of
vertical patterns of changes in standard deviation seen begphosphate at intermediate depths (200-1500 m) is clear for
tween datasets constructed from the 1995 and 2005 samplinigoth networks. Similarly, alkalinity is recurrently selected in
of the model fields (AppendiR). the deep ocean (below 2000 m). This is due to the observed
A set of regression predictors optimized from data takenlongitudinal difference in alkalinity across the mid-Atlantic
in a particular depth range may not necessarily represent thRidge. Overall, nitrate and AOU are the variables selected
best set on a different depth layer (Fi@gsand3). Thisis be-  least often in the formulae. This may be because denitrifi-
cause the processes governing the distribution of tracers vargation and nitrogen fixation influence the nitrate distribution
with depth. Similarly, a model derived from a particular set of strongly, but only weakly impacts the large-scale DIC gra-
stations on a given layer may not be suited to a different sub4dients, resulting in phosphate being the preferred variable
set of stations on the same layer if the two sampling networkdor the purpose of fitting basin-scale DIC patterns. Similarly,
are sparse relative to the main variance pattern characteristihere is an assumption of saturation in the calculation of AOU
of the particular layer. In this latter case, it is not necessarilythat may explain why AOU is a slightly more incompatible
because processes governing the variance on the layer havariable than other predictors in linear regression models of
changed, but because the sampling networks capture the vaiIC.
ance pattern differently.
As Figs.2 and 3 show, the set of regression models se-5.2 Regression quality
lected by the GLODAP or CLIVAR observational networks
differs in each complexity class. These observational netin addition to model structure, regression quality also varies
works emphasize various hydrographic structures differentlywith depth. Overall, the quality of the best fits, as measured
owing to the presence, absence, and density of sampling stdy the AIC values, is lower towards the top than towards the
tions in certain areas. The sampling density in CLIVAR em- bottom (Fig.5a, ¢). Many models possess a thin layer cen-
phasizes the Eastern Atlantic and the subtropical gyre. GLOtered around 1500 m where fit quality is better than in the
DAP, in spite of having fewer stations, samples the Northlayers just below (2000 m, Fida, c). Given that the verti-
Atlantic more homogeneously with stations in the Irminger cal profile of the range of AIC values across all 255 models
Sea, the Iceland Basin and the Labrador Sea, giving relaen each layer show a maximum between 800 and 1500 m
tively more weight to the subpolar region than CLIVAR does. (Fig. 5b), model selection can make a significant difference
These regions are characterized by anomalously low tempein this layer whose variance is dominated by the contrast be-
ature and low salinities relative to the basin average. As a retween the extreme properties of Mediterranean Sea Overflow
sult of the differences in sampling, regressions derived fromWater, Subpolar Mode Waters and Labrador Sea Water, water
the North Atlantic GLODAP data may a priori be considered masses that are separated by a sharp front located along the
more representative of the mean basin-scale while the CLINorth Atlantic Current. On the other hand, the vertical pro-
VAR fits may be more influenced by the subtropics and thefile of the layer-specific AIC range across all models shows
subtropics/subpolar transition. a minimum between 2000 and 2700 m suggesting that this
A quantitative analysis of the terms in the selected for-layer is a priori less sensitive to the form of the particular re-
mulae in Figs.2 and 3 as a function of depth reflects the gression formula. This does not mean that the fits in this in-
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Fig. 4. Summary of the frequency of occurrence of the variables in the formulae of the best fitting models in each size class given the 1995
GLODAP (a, b) or the 2005 CLIVAR(c, d) stations and the difference between the two cdse$). The color scale indicates the total
number of times a variable is present summed over each best-fit formula across all size classes for each horizantahayeaximum is

8 for each layer)(a, c, e)Relative frequency of occurrence of each variable integrated over all depth layers and normalized to the maximum

D
possible occurrence, for each varialep ; = Z?g " whereD is the number of vertical layers.

terval are necessarily good, however. The minimum AIC pro-lection varies with depth, with some layers being particularly
file shows a relative maximum between 2000 and 2700. Thesensitive to the choice of regression formula.
difference between the maximum and minimum AIC valueis eMLR relies on differences between fit predictions and not
lowest below 4000 m where the fits are also best, suggestingn single fit quality, however. This implies that co-located
a priori that many equivalent models can be used to fit thesystematic misfit errors, that is the systematic error of us-
DIC field in that range. ing the wrong empirical model to represent the true, yet un-
While Figs.2 and 3 indicate that there is some volatil- known, underlying model governing the distribution of the
ity in terms of the best-models identified as a function of anthropogenic carbon fraction at a given time, can cancel
depth, quite a few models have AIC values within 10 % of during subtraction of the model predictions if the misfit error
the depth-specific AIC range from the minimum AIC in each is similar at both times@oodkin et al.2011). This system-
layer (highlighted in black, Figea). Differences in AIC val-  atic misfit cancelation effect reduces the influence of misfit
ues can be relatively small between many of the regressiomrror on the final carbon change estimates and can attenuate
models. Often, these closely fitting formulae fall in related the role of regression model selection on the overall eMLR
groups, e.g. the nitrate term replaces the phosphate termmesults.
oxygen and AOU swap. While a strict identification of the  The systematic misfit cancelation effect is greatest when
minimum AIC values overall or within complexity classes regression formulae and the sampling grid are temporally
can result in model formulae with different structures, sum-invariant, and when the magnitude of the spatial variance
mary regression statistics like AIC suggest that the DIC fieldpattern that drives the regression is not greatly influenced
can be fitted to similar degrees of precision using a variety ofby temporal variability. In the more realistic case of a non-
different models. Although this work does not consider mea-homogenous and temporally variable sampling network, the
surement uncertainty, this additional source of noise wouldsystematic misfit cancelation effect is further regulated by the
further blur boundaries between regression formulae. Theséact that regression fits not only reflect temporal changes but
considerations about model fit suggest the possibility of us-also changes in how the main spatial variance is captured by
ing closely related models when convenience dictates, fothe various sampling networks (see Appendix A). This means
example to maximize data coverage in cases when measuréiat the geographical distribution of the regression residuals
ments for particular tracers are missing. These results alsmay change, thus modulating the net influence of the system-
indicate, though, that the importance of regression model seatic misfit cancelation effect and the importance of regression
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model selection on the eMLR results. This can happen evetto interpolation errors that directly impact the eMLR esti-
when the same set of predictor variables are used to fit botimates. Model selection, in the context of eMLR, should then
sets of stations and even if the overall quality of the regres-be mindful of the spatio-temporal scales characteristic of the
sion fits, as measured by summary diagnostics like AIC fordomain analyzed in relation to the overall objectives of the
example, are very good. This is because the empirical defstudy (regional evaluations, basin-scale integrals, etc). Se-
inition of what is considered noise and what is consideredlecting regression simply because they lead to smaller resid-
signal, even for a fixed formula, may change depending oruals can be helpful, but this his not a sufficient criterion for
the distribution of stations. model selection.

Since fewer outliers with smaller misfit are generally
found for regression fits from more complex models, one ) )
could expect that the influence of the systematic misfit can8 Recovery of the change in anthropogenic carbon
celation effect is less when summary regression diagnostics S9Nl by eMLR

are indicative of good fit, such as when AIC or the residual,, . . . . : .
. ; While the question of variable station coverage and associ-
sum of squares is low, as opposed to when summary diagnos-

. o . g : ated dataset variance does not arise when dealing with ex-
tics of regression fit quality are poor. Clearly, if fit residuals ) .
. . . . actly repeated datasets, as in previous model-based eMLR
are small, their addition or subtraction will have a smaller ef- ; . : .
evaluation studied gvine et al, 2008 Goodkin et al.2011),
fect on the net results but that also means that more of the . . : - .
: . : : it is an important issue for more realistic basin-scale eMLR
variance in DIC will be considered to be part of the anthro- o . o .
o . . : pplication. Previous applications of eMLR have required
pogenic signal and less will be considered to be associate

with natural variability. This raises the question of model e structure of the regression formula to be constant as a

- . o function of time and derived the anthropogenic signal by dif-
overfitting. When the observational network varies, it may be . T :
. ) ference between the regression coefficients. However, direct
beneficial to accept worse local fit that make fewer assump- . ) o ) .
: . . _."'subtraction of the regression coefficients is only possible be-
tions about the underlying structure of the anthropogenic sig- ; : .
. . . . cause the models are linear. The equivalent signal can also be
nal relative to the noise and are less susceptible to interpo-

lation errors than to select regressions that fit observation obtained by subtracting the predicted DIC values obtained af-

better but that may be overly specialized towards local fea—%er parallel application of the regression equations to the data

tures and whose signal/noise partitioning will be strongly af- from both time points (Eq4). This second approach opens

fected by small changes in the observational network. Whenthe conceptual possibility of using separate regression mod-

the sampling grid is changing in time, it is possible that a?i::epssiﬂtbly nonlinear models, derived independently at each

regression model becomes highly specialized for one sam- . . .
9 gnly sp The main argument for using a constant model structure in

pIing network while bging unrepresentative of another set Oftime is that the physical and biogeochemical processes main-
stations or of the main variance pattern on the layer, e\/er{aining the DIC field are relatively constant and should thus

when the two station subsets are taken at the same time a : - .
. . . e constrained by the same empirical models. In practice,
from the same general geographic domain. This may lea . -
here is no guarantee that empirical formulae represent these
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physical and biogeochemical processes accurately. In add’ Strategy 1 ("best-AIC") o
tion, if the observational network varies, the variance in the | D e e I
data will change and regression formulae will match these | 8 Vacm R i
different patterns of variance, such that the concept of “best’ < °\o—o—o:g:::°—°—nﬁmﬁm“z‘° [~
formula becomes an ad hoc function of depth, stations distri- 1 e 887 Y icm '*9"\-»*..)..\. Y
bution and sampling density. N -
This section investigates the overall performance of eMLR 1 . /’\a -2

7

1 ~

1 e /

) AIC, hybrid @=aa-@ .
© | \ _—o ACcilopar g~
O g8

and contrasts results obtained by the two limiting concep-
tual approaches described above, namely: strategy (1) use
a composite of statistically optimized formulae with sets of
explanatory variables that are allowed to vary in time and as
a function of depth, and strategy (2) use of regression formu- 2
lae with a constant set of explanatory variables at all depth:
and times but with regression coefficients optimized indepen-
dently at each depth and time. Furthermore, to highlight the
role of changing the observational network, the change in 1
carbon resulting from these two strategies using GLODAP J'FMAMUYJ J AsS oND

data in 1995 and CLIVAR data in 2002 ") are con-

trasted with complementary analyses that hold the observaFig. 6. Relative error (left y-axis) and absolute value (right y-axis)
tional networks fixed in time (1995 GLODAP compared to ©f the anthropogenic carbon inventory change calculated month-by-
2005 GLODAP, and 1995 CLIVAR compared to 2005 CLI- month between 1995 and 2005. (MOM4/TOPAZ, black) Inventory

39
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VAR ACfixed) changes calculated from the “true” values on the original model
The three-dimensional North Atlantic eMLR results and 9"id: (ACY """ gray) mapping the ‘“true” values sampled at the

the associated absolute errors are presented below at varioG ODAP or CLIVAR stations,AC?(yb”d, dark green and magenta)

levels of integrations. Basin-integrated inventory changes aré@fter mapping the hybrid composite best-AlC solutions obtained

presented first. Because basin-scale inventories integrate ov8pm regressions specific for each time and sampling ”EthXé’ék pro-

the whole volume, they are less sensitive to random errorgi€cted either onto the GLODAP or CLIVAR stations, @& (™,

Vertical profiles of the layer-specific inventory changes are!'9t green and orange) by holding the observational networks fixed
. . .in time while allowing for the fixed-network best-AIC models to

presented next. These integrate horizontally, along the d'i/aryintime

rection along which the regressions are performed. Column- '

inventory changes are presented last. These represent verti-
cally integrated results, perpendicular to the direction along

which the eMLR analysis is performed. mapping process introduces a compensating5 % over-
estimation in GLODAP but 1% underestimation in CLI-

6.1 Basin-scale inventories VAR, as measured by maps produced from true values sam-
pled at the station locations. Even when the observational

6.1.1 “Best AIC” strategy networks are held fixed in time, mapping can only account

for about half the difference between the GLODAP and CLI-

The simulated (true) change in North Atlantic carbon inven- VAR cases (difference betwee:fCé'L%gXAeF? and ACéL?VR)I(?ed'

tory between 1995 to 2005 is 4.12PgC (MOM4/TOPAZ) Fig. 6), however. The other half represents a systematic bias
and does not vary much throughout the year indicating thathat results from the influence on regression of the different

seasonality is fairly constant between these two years §Fig. coverage of the sampling networks. The fact that errors asso-

the minimum is 4.11PgC in March and the maximum is gjated withACé'L(l:\',,fi’éed are about-10% WhiIeACé'&g’fg

4.13PgC in August; differences are calculated month-by-grrors are about-5 % gives further support to the idea that
month, i.e. January 2005-January 1995, etc.). In contrastne GLODAP station coverage is more representative of
the relative errors of the basin-integrated “best AIC” eMLR the gverall North Atlantic domain than CLIVAR, even if
estimates (strategy 1) systematically underestimate the trug ODAP has fewer stations. Because the hybrid inventory
values and vary seasonally from abeed % in November  changes (with temporally varying sampling networks) repre-
to —8% in February when the observational network is al- sent the convoluted influence on the signal/noise partitioning

lowed to g?caggbe dfor results projected onto the CLIVAR sta-gue to both temporal variability, which is a common factor
, nyori

tions (ACc yar ) OF from about-3% to—6 % for GLO-  for both networks, and changes in observational networks,
DAP (Acé"L%Bf’F['d, Fig. 6). the hybrid results tend to be intermediate between the two

Mapping explains some of the offset between the GLO-limiting fixed-network cases. _ _
DAP and CLIVAR resuilts: the underestimation is less severe The seasonal signals foxC%'© ™4 and Ac%'™ P
in the GLODAP case than in the CLIVAR case because theare amplified relative to the ideal mapping-only results
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(ACY PP Fig. 6, X is a dummy variable to indicate GLO- convective activity will have a larger effect on the overall

DAP and CLIVAR). Since the seasonal amplitude of the eMLR estimate as the systematic misfit cancelation effect
mapping error is small, the amplified seasonal cycle of thewill not be able to correct the bias introduced by the dy-
eMLR estimates must reflect seasonal variations in the sysnamical mismatch between the two empirical fits. The am-
tematic misfit cancelation effect. Seasonal differences inplified seasonal evolution of the error in Fig.relative to

basin-integrated inventory amount to about 4% when thetheAC?(""”pmgcases is thus a representation of how temporal
sampling network changes. The GLODAP-CLIVAR differ- variability in given domains is captured differently by two
ences are less, about 2—3 %, in the fixed network case. Thgifferent observational networks.

seasonal amplitude for CLIVAR is greater than for GLODAP

in the fixed-network case, but the shape of the seasonal cy-

cle is otherwise mostly parallel between the GLODAP and6.1.2 Constant formula strategy

CLIVAR results. Nevertheless, the shape of the seasonal cy-

cle is different between the hybrid and fixed-network results ) . N
(Fig. ). The relative and absolute errors in the determination of the

Standard summary diagnostics of overall regression qualg:hange in North .Atla_ntic carbon inventory resulting from the
ity (AIC, mean residual sum of squares, coefficient of de- use of eMLR with fixed regression structures (strategy.Z)
termination) are all indicative of excellent fits for both sam- for bqth the GLODAP and CL!VAR da;asets, for the hybrid
pling networks, at all times and depths for the “best AIC” and fixed network cases, projected either backward or for-
fits. All “best A,IC" fits are significant atp < 0.001 with ward in time onto the corresponding stations, are shown on

R? > 0.98 and with mean standard error of the residuals typ-F19- 7 for all 255 first-order models. E|ghﬁygfr|i\ée percent of
ically smaller than the modern measurement uncertainty of!l models tested yield basin-integrated”,”" estimates
DIC (~4pmol kgL, consistently smaller than 2 pmoliy that are within 20 % of the true value, with 73 and 76 % re-
below 500 m). Upon closer inspection, small seasonal variaSulting in an underestimation when results are mapped from
tions in fit diagnostics exist (mostly in the tep200m) indi-  the GLODAP or CLIVAR stations. For the\C&Spap and
cating that for both GLODAP and CLIVAR and both in 1995 AC2®9, - cases, these values change to 99 and 97 % be-
and 2005 it is more difficult to fit first-order linear models low the 20% error and 64 and 80 % resulting in under-
to summer and fall data (May-October) than to winter dataéstimation. The mean relative errors across all models are
(January—March). The relative error of eMLR-derived basin-—7.5% (for ACG gpap), —5-3% (for ACE \agr), —2.0%
scale inventory c/ngnf_ges is larger in summer and smaller irffor ACE{5ap) @nd—4.3% (forACEas). All means are
winter for the ACA'C: ixed cases, following broadly the sea- significantly different from 0 (two-tailed test, p < 0.001).
sonal cycle in fit quality. It is not clear, however, how to re- Estimates obtained from projecting the hybrid results either
late the seasonal changes in fit quality to the net effect on th&ackward or forward in time on the GLODAP or CLIVAR
ACK'C ™ resuilts as the seasonal cycle of fit quality diag- Stations are well-correlated (Pearsor: 0.93, p <0.001),

nostics and the hybrid inventory errors are phase shifted. Th€onfirming that the influence of mapping errors is small
errors associated with the basin-integrareﬁA'C’ hybrid ; when considering basin-scale inventories. The correlation
X

ventory change estimate are smallest in the fall, early winterS Slightly less strong for the fixed-network cases (Pearson’

and largest in the spring. p =0.85,p < 0.001). o
Deep convection in winter, shifting of the Gulf Stream and . 1 "€ across-model average underestimations of the 10yr

North Atlantic Current, shoaling of the mixed layer in spring !nventory change is-0.3, —0.22, —0.08 and—0.18PgC

and blooms all contribute to the presence of sharp horizontal” absolute terms for the GLODAP and CLIVAR hybrid-

property gradients across the basin that are difficult to prop"etwork cases and the GLODAP and CLIVAR fixed-network

erly represent with linear models empirically defined over ¢2S€S: Most results easily meet the LSCOP critedem(ler

broad geographic scales from sparse datasets. Owing to tHg &> 2009 gresenged in ;‘he introdt;ction for the North At-
systematic misfit cancelation effect, however, it is not only [antic as 51 %, 60%, 87 % and 89 % percent of the regres-

these processes and features that matter, but also how eaciP" formulae yield results within 0.5Pg C of the true esti-

of these processes and features vary inter-annually and hofifat€- Considering that about one third of the global carbon

each affect the datasets used at each time point as a wholEVentory is in the North Atlantic§teinfeldt et al.2009 and
For example, convective activity may be a critical process lo-

assuming a global 3PgC increase over 10yr, 1PgC is pro-
cally, but if the sampling network (and the regression fit) is PoSed as a North Atlantic target over 10 yr: 91 %, 93 %, 99 %
not greatly influenced by the convective region, this will only

and 98 % percent of the models tested produce North Atlantic
have a small influence on fit quality. On the other hand, if a

carbon inventory change estimates within 1 Pg C of the true
second sampling network is influenced by the convective reYalue. It is clear that most regression models produce esti-
gion (arguably GLODAP) and it is compared with a fit from mates of the m_tegrated basm-_sc_ale decadal mventory_change
another network that is not (arguably CLIVAR), changes in that meet desired accuracy limits. Results are consistently

better when the observational network is fixed in time than

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 483X1-2013
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Fig. 7. Relative (left y-axis) and absolute (right y-axis) error in the change in anthropogenic carbon inventory for strategy 2 (constant model
structure for all layers) between July 1995 and July 2005 for all possible 255 first order linear models. Hybrid results obtained by using
combinations of regression models specific for 1995 GLODAP and 2005 CLIVAR sampling networks and projected either onto the 1995
GLODAP or the 2005 CLIVAR dataﬁ(C?(yb”d) are shown in dark green and magenta. Parallel results obtained by using combinations of
models specific for each sampling networks when holding the observational networks fixed in time and projected onto the 1995 GLODAP
or the 2005 CLIVAR dataACE'("ed) are shown in light green and orange. Model size is indicated by the color strip on top. Mapping errors
calculated from the “true” values are show as the horizontal dashed green (1.3 %, GLODAP) and ma@éatit&s, CLIVAR) lines. The

dotted horizontal blue line{6.9 %) shows the relative error when calculating the inventory change between 2005 and 1995 using the
contemporary carbon fields, without removing natural variability.

when it varies, though. The fixed-GLODAP cases produceVAR hybrid-network eMLR results and better than 33 %
the best results overall. and 51 % of the GLODAP and CLIVAR fixed-network solu-
All models with 7 or more terms and all the composite tions. Although regression-model selection does not appear
best-AIC solutions (strategy 1) for every month (Féy pro- to be a fundamental concern when the goal is to calculate
duce estimates that are better than the 0.5PgC error limithe decadal basin-scale inventory change, comparindlL&ig.
and thus exceed the success criterion proposed in the LSCO#&hd f clearly indicates that a small 6.9 % error actually cor-
report Bender et a.2002. Simpler models, such as mod- responds to relatively large differences in the distribution of
els z140 and Z1%0, which stood out particularly in Fig2  the recovered carbon change signal: it represent the error pat-
and 3, also fall within the 0.5Pg C accuracy limit. In fact, tern shown in Figlf. Since positive and negative errors can-
looking at the formula structure of the best 20 models with cel each other, basin-integrated measures are not particularly
respect to how close their predicted inventory changes arsensitive tests of quality. The next sections contrast results
to the true value indicates that, across all fixed-network andbtained by different regression models and show they can
hybrid-network cases, 5 to 7 4-term models are present in thiglso result in substantially different interior distribution even
list consistently, along with 1 to 7 3-term models and 3 to 6 if their integrated inventory change estimates are close to the
5-term models. Interestingly, there is only one 7-term modeltrue value.
in the top-20 list and no 8-term or 1-term model, indicating
that some intermediate complexity regression models can aff-2 ~ Layer-specific inventories
parently outperform more complex models in estimating the

basin-integrated carbon change. Vertical profiles of the absolute errors of the 1995 to

- ; . P 2005 layer-specific inventory changes calculated by eMLR
Comparing the change in carbon inventory implied by the
paring d y P y layer-by-layer for all first-order models (strategy 2) for the

contemporary carbon field (Fige) without any effort to cor- hybrid o _
rect for natural variability (Figlf) to the true anthropogenic ACgLopap CaS€ are shown in Figa. Although the magni-
carbon change (Figla) would result in only a-6.9% er- tude of the errors vary.slightly when the resglts are mapped
ror. This would also be within the acceptable limits. In fact, from eMLR results projected on CLIVAR stations, the shape

this result is better than 68 % of either GLODAP and CLI- Of the layer-specific inventory change profiles are mostly
similar between CLIVAR and GLODAP results.

Biogeosciences, 10, 4804831, 2013 www.biogeosciences.net/10/4801/2013/
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Fig. 8. (a)Absolute errors between the North Atlantic eMLR predicted inventory change, mapped from estimates at GLODAP stations, and
the true inventory changes integrated on each horizontal model [Bygrafid for each first order regression model (strategy®)Ver-

tical profiles of the layer inventory changes aiji vertically integrated layer inventory change (from the bottom to the surfage, The

true, natural and contemporary (Cont.) layer inventory changes between July 1995 and July 2005 are shown, together with the “best AIC”
composite solution and results from mod2i2? and 2140 (dotted) and their merged products spliced at 1500 m (gray).

The general shape of the fixed-network layer-specific in- The 1500-3500 m layer also displays large changes in the
ventory error profiles also tends to be similar to the hybrid- natural carbon component (green line, Fg.and c). Closer
network results, as indicated by the dominantly linear rela-inspection of the model tracer fields indicates this is primar-
tionships in Fig.9a and b. Deviations from the:1L line in ily a reflection of variations in convective activity and as-
Fig. 9a and b show that the large errors tend to be genersociated water mass reorganization. The changes in model
ally smaller in the fixed-network cases than in the hybrid tracers consistently point to water mass aging in the deeper
cases, however. There is no relationship between the differfayers due to shallower convective mixing in 2005 relative to
ences in layer specific inventories between the hybrid andl995, when deeper waters were better ventilated.
fixed network cases and the absolute errors of the fixed- Similar to the basin-integrated inventory changes (Fg.
network results (Fig9c, d). An inverse linear relationship the Acé:_%gyAtg'd case (yellow line, Fig8b and c) does
exists, though, between the fixed-hybrid differences and theéot produce the most accurate profile. Fig@e and c
absolute error calculated between the hybrid results and thghow that an eMLR solution spliced from simpler 4-term
true values (Fig9e ,f). This relationship is mostly due to models, namely those identified in Fig and display-
points in the depth range 300-2300m as indicated by théng a high degree of vertical continuityZt in the up-
color-code of the points in Fi@e and f. The discontinuity in - per 1500 m andz*% below that depth), can reproduce
the 600-1000 m layer visible in the hybrid results (RBg)  the true layer-specific inventory change profile almost ex-
does not exist in theACRY . results. ACTI  esti-  actly. As indicated in Fig2, the family of 4-term models
mates tend to consistently overestimate, not underestimateghows strong vertical continuity between layers, with es-
the true values in that zone, as is the case above and belogentially four formulae able to cover all depths from 100
that layer. This is less clear in theC{;), case. Although  to 4000 m. Specifically, these 4-term models (numbers 140,
the Aced o and AC®S, o results are well correlated, 99, 100 and 150, ordered by the relative frequencies with
most discrepencies between these two cases are in the deptthich they are selected) contain the following predictor vari-
range 500-1700 m, indicating that network differences haveables: Z140= {9, POy, Si, Ak}, Z%° ={(S,6, POy, AOU},
the most influence on the results on these horizons. 7100_ 15 9. POy, Oo}, 2150 = {NO3, POy, Si, Alk}.

Aspects of the vertical profiles in Fig are consistent Model 7140 is the model structure used Hriis et al.
with features of the AIC profiles in Figh. One notable sim- (2009 for their North Atlantic analysis and&% is the
ilarity is the band of relative AIC highs centered around model used bylLevine et al.(2008. Interestingly, while
2000 m (Fig5a, ¢) which coincides with a layer of systemat- Levine et al(2008 applied this formula globally to model
ically strong underestimation (Figa). The region between fields between 200 and 2000 m on every grid point, Rig.
1500 to 3500 m is where most of the error (underestimationsuggest this formula is more appropriate in the upper 200 m
Fig. 7) in the basin-scale inventory change estimates is gengiven the GLODAP station coverage. Modé18® and z100
erated (Fig8c). This is true for all fixed-network and hybrid- are nearly identical, the only difference between the two be-
network cases. ing the use of @ or AOU. Model Z1°9, which fits the data

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 48X1-2013
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The color scale identifies points from depth interval representative of the layering iBaFig.

well in the range 2000 to 4000 m is interesting in that it doessame data that partly constitute GLODARef et al, 2004
not include eithep or S in its formula. This reflects the fact in thatregion. Itis then reassuring that bétfiis et al.(2005
that the dynamic range of these tracers is small in that deptland our results converge towards the same mo#é&f%
range relative to that of other tracers (Appendix Thisis  for the appropriate size-class. Similarly, the synthetic model
gualitatively consistent with the classic studiesBsbecker  dataset used byevine et al.(200§ was most heavily in-
(1974 and Broecker et al(1985 who relied on nutrient-  fluenced by the subtropical regions. This is becdLségne
based composite quasi-conservative tracers (“NO”, “PQO”) toet al.(2008 included every grid box in their analysis and did
characterize the flow path of deep waters in the Atlantic. ~ not subsample their model to mimic the station coverage of
While some of the models identified from the GLODAP the observational datasets. In that sense, the spatial bias of
analysis (Fig.2) are also present in the CLIVAR analysis their dataset is more like CLIVAR, and it is again reassuring
(Fig. 3), their vertical stacking can differ. This is the case that modelz%, or related models, be most representative in
for models 2%, 7100 and z19, Given the CLIVAR sta- these two cases.
tions, Z140 the model ofFriis et al. (2005 takes a promi- Given that this analysis uses a physical and biogeochem-
nent role in the top 200m while modelg® and z1%° istry model as a source of data, thavine et al (2008 used
the model ofLevine et al.(2008, occupy the space be- a different circulation and biogeochemistry model and that
tween 300 and 500 m. Modelg®’ = {S, 6, NOs, Alk} and Friis et al.(2009 used observations, it is encouraging to note
Z%®={S,0,PQy, Si} belong essentially to the same model how well the regression formulae proposed by each study
group asz®° and Z1% as all these models feature salinity, converge when presented in the context of their sampling
temperature and phosphate (or nitrate) as dominant variablegrids. Whether a simple combination of the regression for-
797, 798 extend the influence of this model group down to mulaeZ1% = (S, 6, POy, O,} andZ14% = {9, POy, Si, Alk},
about 3000 m, although the continuity is not as clear as withas indicated in Fig8b and supported by Fi@, is appropri-
modelsZ14? or Z1%0in the GLODAP case. ate for application of eMLR to the real dataset remains to be
The differences betweeFriis et al. (2009 and Levine seen. Based on the analysis of the layer inventories, the fact
et al. (2008 can be explained by the results of our analysis.that the TOPAZ model is a state-of-the-art biogeochemistry
Friis et al.(2005 performed their analyses on data located in model and the robust correspondence with other studies, it
the Subpolar North Atlantic (North of 4NN, South of Ice-  would appear, however, that these are a priori good candi-
land) and many of the data usedFriis et al.(2005 are the  date formulae in the North Atlantic.

Biogeosciences, 10, 4804831, 2013 www.biogeosciences.net/10/4801/2013/
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Fig. 10. Calculated eMLR anthropogenic carbon column inventory change between July 2005 and 1995 mapped from either the GLODAP
(green) or CLIVAR (magenta) stations when the sampling networks change inmim%y?”d). Black contours are drawn in increment of

5 mol m~2. White contours reproduce the shape of the best possible pattern obtained from mapping the true values sampled at the station loca
tions (1b). Results are shown for modéts b) Z190= (S, 6, POy, 05}, (c, d) Z140= {9, POy, Si, Alk}, (e, f) Z130 = {N O3, P04, Si, Alk},

(9) Z295 = {9, NO3, Si, AOU, Alk}, (h) for the “best AIC” models selected by minimum AIC for each layer and each time point (strategy 1)
and(i) the merged product usirg4° below 1500 m andz1%0 above.

Obviously, absolute errors cannot be used as guides fo6.3 Column inventories
model selection when working with real data. Based on the
analysis of the layer inventories, the criterion of vertical con- Figure 7 shows that acceptable basin-integrated inventory
tinuity of statistically selected models can seemingly be usedchange estimates can be obtained from different regression
to guide model selection and define their extent of use verformulae. Yet, these formulae produce vertical profiles of the
tically in conjunction with a general oceanographic assess!ayer-specific anthropogenic carbon inventory change that
ment of the regression residuals. As shown in Blg.these ~ can vary and yield biases in the ocean interior (B)g.This
criteria can be applied to isolate model formulae that per-Section presents a complementary view, investigating the ge-
form as well or better than more complex formulae when ographical distribution of the eMLR-calculated column in-
evaluated at the basin-scale inventory level or when look-ventory change, the associated absolute error patterns and
ing at layer-specific inventory change profiles. Layer inven-their correlations with the vertically integrated true signal
tories integrate over large horizontal scales, however, and ind the natural variability pattern.
the direction (horizontal) along which the regression fittingis  Illustrative column inventory change estimates for
performed. Because regression analysis is designed to minthe AC;yb”d case resulting from the use of fixed
mize the distance of the data relative to the mean, if the datanodel structures at all depths but with regression co-
are symetrically distributed around the layer mean value, itefficients optimized layer-by-layer and for the GLO-
is likely that positive and negative residuals cover more orDAP and CLIVAR datasets independently (strategy 2)
less equal areas and largely cancel upon integration. Layefare shown in Fig.10a—g. The corresponding absolute
inventories can then underestimate potential problems. Therror maps calculated between mecg‘(yb”d estimates
next section contrasts horizontal inventory changes with in-and the true Change in column inventory (F@) are
ventory changes calculated vertically, perpendicular to theshown in Fig. 11a-g. Results for the 4-term models
direction along which the regressions are performed. 7100— (5,6, POy, Oo} (a, b),Z1%= {6, PQy, Si, Ak} (c, d)

and Z1%0 = {NOs, POy, Si, Alk} (e, f), selected based on

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 48X1-2013
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Fig. 11. Absolute errors in anthropogenic carbon column inventory changes between July 2005 and 1995 mapped from either the GLODAP
(green) or CLIVAR (magenta) stations calculated from sampling networks that change inﬂiﬁﬂé(b('d). Dashed (negative) and solid

(positive) contours are drawn in increment of 6 maifn The thick lines marks the 0 contour. Results shown for mogels) Z1% (c, d)
7140 (e, f) z150 (g) Z295, (h) for the “best AIC” models selected by minimum AIC for each layer and each time point (strategy 1) and
(i) the merged product using!4° below 1500 m andz1% above.

Figs.2 and3, are shown on both figures. Parallel results ob- network RMSE & 2 mol m2) are closer to the RMSE due
tained by holding the observational networks fixed in time to mapping only (Figl5). In comparison, the RMSE of the

(Acgi(xe‘j) are shown in Figsl2and13. vertically integrated natural variability pattern in Fitf. is
Differences in the vertically integrated patterns between4.2 mol nT2. This means that even if not all the natural vari-

ACE{%iSAp (Figs.10and11a, c, e) anmcg{?\’xR (Figs.10  ability is accounted for by eMLR (there remains an offset

and11b, d, f) are small relative to differences in error patterns relative to the mapping-only results), hybrid-network results
observed between results generated from different regressioaccount for about 45 % of it, while fixed-network solutions
formulae. This is also true in the fixed-network cases, butcan remove about 81 %.
differences amongst the column inventories obtained by ap- The magnitude of RMSE for hybrid and fixed-network
plying various regression models in the fixed-network casedesults and the range of RMSE values across all models
(Fig. 12) are much smaller than differences amongst esti-(4—5 mol nT?) confirms that, in the North Atlantic and when
mates for the hybrid cases. These examples show that regrefie observational networks changes in time, mapping is not
sion model selection has a much greater influence on the findhe dominant factor controlling the basin-scale structure of
results when the location of the stations change in time tharthe error maps shown in Fid.1, even if mapping errors
when the observational network is constant. This is a consecan be locally significant in unsampled dynamic regions.
quence of the systematic misfit cancelation effect. The influence of mapping is relatively more important when
The root-mean-square error (RMSE) of column invento-the observational network is fixed in time, however. In that
ries obtained by mapping the true results sampled at eicase, because the results are more accurate, a large fraction
ther GLODAP or CLIVAR stations (Figlc, d) can be (about 75%) of the total RMSE is due to the “bull's eyes”
thought of as the best realizable RMSE given the stain Fig. 12, some of which are due to mapping and under-
tions available. The RMSE due to mapping only is aboutsampling (Figsic, d). Calculating the errors relative to the
half (~ 1.5 molnT?2, Fig. 14) the RMSE of the best eMLR mapped true values (Figb) effectively removes the “bull’'s
hybrid-network results® 3moln2). The smallest fixed- eyes” off the Grand Banks and in the North American Basin.
This does not address the overestimate in the Irminger Sea

Biogeosciences, 10, 4804831, 2013 www.biogeosciences.net/10/4801/2013/
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Fig. 12. Absolute errors in anthropogenic carbon column inventory changes between July 2005 and 1995 mapped from either the GLODAP
(green) or CLIVAR (magenta) stations calculated from sampling networks that do not change inﬂ]ﬂf@‘ﬂ). Thin dashed (negative) and

solid (positive) contours are drawn in increment of 6 molmThe thick lines marks the 0 contour. Results shown for mogel) Z100,

(c, d) 2140 e, f: z150 (g) 205 and for cases when the “best AIC” models are selected for each layer and each time point (strategy 1) for
(h) GLODAP and(i) CLIVAR.

and does not alter the main structure of the error maps, howz2%° (not shown) are similar in magnitude and structure to
ever. results from modekZ 4% and to the “best-AIC” case. Differ-
Results from the 8-term modet?®® tend to be simi-  ences between these results are small and regional.
lar to the “best AIC” composite estimates from strategy 1  Although model Z2%° is closely related to model
(Figs.10h, 11h and12h, i). This is because models with the Z2%°= {9, NOs, Si, AOU, Alk} (Fig. 10g) that was used in
lowest overall AIC values also tend to be the more complexthe observational study dfanhua et al(2007), who ana-
ones in the absence of analytical uncertainties (Figsnd lyzed zonally oriented data in the subtropical North Atlantic,
3). This can be seen in Fig.4a, b and d where the points the magnitude of the column inventories predicted by these
corresponding taZ2%® systematically overlap the AIC clus- two models differ strongly when applied over the basin-scale.
ter. The tight clustering of the AIC results in Fiy4is due  The replacement of POn Z2%° with AOU in Z2% results
to the small influence that interannual changes in seasonalitin much larger underestimations in the whole zone between
has on the results relative to the errors induced by regressiorihe Caribbean and Ireland (Fitylg). Formulaz2%® is never
The regression model producing the smallest overallselected as a best-fit model given the station coverage con-
RMSE for ACg{%‘gAp and ACQ{?{,‘ER (Fig. 14) is 5-term  sidered here (Fige2 and3). 2% also results is better col-
model 229 = (9. NOs, POy, Si, Alk}. The relative success Umn inventory estimates tha®®> when the observational

of model 22% in the hybrid-network case would be hard to network is fixed (Fig12g), but differences are small.

predict based uniquely on the fit statistics. Figuesnd 3 Model Z'%, which in contrast taz**° does not use Si or
showz2%is only selected as a best-fit model in its size-classAlk but ratherS and G in addition to PQ and¢ as predictor

on a few deep horizontal layers and in the GLODAP casevariables, produces smaller overestimates than madél
only. Fit 229, in spite of not yielding the smallest residuals, in the subequatorial region, the eastern Atlantic and in the

. ) . : : : 0
is consistently very good as large portions of the water col-I'minger Sea in the hybrid-network cases B results

this model (Fig.5). Column inventory changes from model American Basin and the Labrador Sea (Fitf&, b andl1a,
b), producing greater overall RMSE (Fig4). Differences

www.biogeosciences.net/10/4801/2013/ Biogeosciences, 10, 48X1-2013
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Fig. 13.Mapped anthropogenic carbon column inventory changes calculated from sampling networks that do not changatfﬂﬁ?ﬁyz (
(a, 9) 2199, (b, hy z14%and(c, i) z15C. In these panels, black contours are drawn every 5 mdtmwhite contours reproduce the shape
in Fig. 1b. Differences between the fixed and hybrid ca&le@f(xed— AC?(yb”d) are shown for GLODAR(, e, f) and CLIVAR (j, k, I);
contours drawn every 6 molTf with a thick line at 0 mol 2.

betweenz1% and z14% are smaller in the fixed-network case  Nutrient-based modet150 uses neither of the physical pa-
(Figs.12a—d andL3a—b, g—h). rametersd, S nor Oy, and produces yet another inventory
A composite result built fronZ1% in the top 1500m and  pattern in the hybrid-network case (Fitde, f), with RMSE
7140 pelow that depth (Figl0i), as suggested earlier based intermediate betwee40 and Z1%° (Fig. 14). The error
on the analysis of the layer inventory change profile (B)g.  patterns forZ1°0 are typified by large-scale overestimations
produces a column inventory change map that is yet differ-over the subequatorial and eastern Atlantic and large-scale
ent from all other examples shown in FI0. Although this  underestimations over the Northwest Atlantic (Flde, f).
solution improves the signal along the western boundary rel-This is in drastic contrast with the column inventory pro-
ative to thez1% pattern (Fig10a) and results in an accurate duced byZ%0 in the fixed-network case (Figl2e, f and
quantification of the layer-specific inventory change profile 13c, i). Z1°Cis the model that produces the smallest RMSE
(Fig. 8) and of the basin-scale inventory change, the largein that case (Figl5).
signal in the Labrador Sea and subpolar region is missing. Although RMSE values between modet$®, 7140 and
The RMSE of this composite case is intermediate betweerZ1%0 vary by less than 1 moln? and each represents the
that of Z190 and 2140 (asterisks, Figl4). best-fit regression models over substantial parts of the wa-
ter column (Figs.2 and 3), the dynamical interpretation
that would be associated with the eMLR column inventories
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of each model's RMSE relative to the true valu@is. d) Corresponding correlations calculated using the absolute error patterns. Only
correlations withp < 0.05 are plotted. The RMSE due to mapping only are shown by vertical green (GLODAP) and magenta (CLIVAR)
lines. Correlations calculated using the true mapped values instead of the eMLR results are shown as horizontal green (GLODAP) and
magenta (CLIVAR) lines; thin dotted lines (b) mean correlations are not significantat 0.05. The solid horizontal gray line ift) shows

the correlations between the true values (no mapping) and the natural carbon change pattern.
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produced by these models (Fit0) when the observational understanding of the penetration pathway of anthropogenic
network changes in time vary dramatically. Of these threecarbon.

examples, carbon changes produced by m@dé? are clos-

est to the true signal (Fida), indicating greatest uptake in 6.4 Correlations

the Labrador Sea, elevated values that extend zonally east- o
ward around 50N, and southward propagation along the The degree of pattern similarity between the mapped eMLR

western boundary (FiglOc, d). In contrast, results from column inyentory changes, the co_rre_s_ponding error patterns,
7150 show weak basin-scale gradients with little subpolar- the true signal and the natural variability component are fur-
subtropical difference (FiglOe, f). These hybrid-network ther examined here using non-parametric Kendall correlation

results also exaggerate the carbon change west of Gibraltghalysis. Correlation coefficients)(with p-values smaller

while grossly underestimating the role of the Labrador Seathan 0.05 are plotted in Figé4 and15 as a function of the
RMSE of column inventory change estimates.

Results from modeZ1% would even indicate a clockwise
northeastern boundary intensification of the column inven-
tory change (Figl0a, b) that is inconsistent with the verti-
cally integrated changes of the true signal (Hia).

Results produced by the fixed-network cases are more congg expected, eMLR column inventory changes with lower
sistent with each other and with the true carbon inventorypyse are better correlated with the true simulated carbon
change pattern than the hybrid-network results. The greatéhange map (Figsl4a and15a). Correlation coefficients
est differences between the hybrid and fixed-network resultgon g 1o plateau around~ 0.7 when RMSE is smaller than
occur in the subpolar gyre region, where column inventoryz 7 moln2 in the hybrid-network case, however. Maximum
changes predicted byCy" are typically larger than those  correlations are slightly higher, around~ 0.8, in fixed-
predicted by theAC'Y™™ cases (Fig13d—f, j-). This is  network cases. This plateau effect reflects convergence of the
the manifestation of the mid-depth (500-1700 m) differenceseMLR solutions towards a particular pattern, i.e. the broad-
seen in the layer-specific inventory changes in Baxf. In scale pattern captured in Figic, d, g, h andl3a—c, g—i.
that region, the fixed-hybrid differences are smaller whenChanges in RMSE below 3.7 mol nT2 increasingly rep-
mapped from CLIVAR stations (Figl3—l) than mapped resent regional scale differences, while results beyond that
from the GLODAP stations (Figl3d—f). The fixed-network  breakpoint in slope (Figd4a andl5a) largely represent ma-
results also tend to produce smaller changes in column invenjor differences in basin-scale patterns.
tories than the hybrid cases in the Eastern Atlantic, between |deally, no correlation should exist between the absolute
the coasts of Portugal and Senegal. This fixed-hybrid differ-error and the true signal since the error should be zero ev-
ence is larger in the CLIVAR case than in the GLODAP caseerywhere. Nonetheless, a weak negative correlation is in-
(Fig. 13d—f, j1). troduced between the error and the true signal (Eih)

Clearly, eMLR-derived column inventory change patternsby the mapping process and the fact that high-change re-
depend on the choice of regression model used in the calculagions are undersampled and thus underestimated. There is
tion, even if most results produce basin-integrated inventoryno clear relationship between the correlation coefficients and
change estimates within tolerated accuracy limits. The vari-RMSE for the hybrid-network case (Fifj4b), although the
ability between results and the influence of regression mode\ariance amongst-values tends to be less for cases with
selection is strongly modulated by the temporal evolution oflower RMSE. Correlation results from the fixed-network
the observational network. Solutions obtained when the obcases show less scatter than their hybrid counterparts and
servational network is fixed in time are better and less vari-do point toward a systematic reduction of the correlation be-
ables than when the spatial sampling density varies. None ofiveen the error with the true signal with decreasing RMSE
the regressions tested yield totally unbiased results but eMLRFig. 15b). The dominantly negative correlations in Figl
results appears to converge towards a particular large-scalgnd15b are of greater magnitude than the mapping-anly
error pattern. This pattern is characterized by an overestimavalues because most eMLR solutions tend to produce over-
tion of the column inventory in the Irminger Sea and in the estimates in large regions of the North Atlantic, principally
Eastern subtropical Atlantic, and an underestimation in theat low latitudes and in the Eastern half of the basin, regions
Western subtropical Atlantic and along the path of the Northcharacterized by a small true column inventory change signal
Atlantic Current. Both layer-inventories and column invento- (Fig. 1a) while also underestimating the carbon change over
ries point towards the intermediate and deep subpolar regiothe North American Basin and in parts of the subpolar region
as the root cause for the biases. While some formulae pro¢Fig. 11), two regions characterized by large carbon changes
duce column inventory patterns that are mostly similar to the(Fig. 1a).
true signal and that can be readily interpreted, others result in
patterns whose interpretation would lead to significant mis-

6.4.1 Correlations between eMLR estimates and the
true anthropogenic signal
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6.4.2 Correlations between eMLR estimates and the (Figs. 14d and15d); correlation coefficients can vary from
change in natural carbon about 0.2 to 0.55 for RMSE 3.7 mol nT 2.
The significance of the correlations in Figsld and15d
indicates that the large-scale natural variability pattern is

Although being controlled by different processes and hav-never fully corrected for by horizontal basin-scale eMLR,
ing different large-scale patterns (Fitp, f), a weakly neg- even when the most complex and statistically best-fitting
ative correlation exists between the true column inventorymodels are used systematically (see AIC results in Hid.
change pattern and the pattern of change in natural carboand15d). Correlation analysis performed layer-by-layer us-
(Fig. 14c). This weak correlation is entirely due to an area ing the station predictions instead of the mapped results fur-
over the North American Basin where a large negative natuther confirm this point as the vertical profilesw¥alues are
ral carbon change occurs (Fitf) in the same region where positive and significant at most depths and for every regres-
a moderately large anthropogenic carbon increase is seesion model. This systematic shortcoming of eMLR reflects
Correlations between the eMLR-estimated column inventorythe influence of secular trends on the tracer fields. Secular
changes and the natural component are similarly weak irtrends modify the large-scale property gradients in ways that
magnitude and many are not statistically significaniglues  are not reflected by the existing tracer distribution and con-
for GLODAP versions 0f22°° and 2140 are not significant  sequently cannot be statistically represented by the empirical
but are drawn for completeness in Figlc). models derived from the spatial regressions. The variance of

Correlations in Figl4c do not vary systematically with the correlations coefficients in Figbdd and15d is a reflec-
RMSE, but there is a trend towards convergence of the cortion of the effect of regression model selection.
relation coefficient at lower RMSE<3.7 mol m~?2). Corre-
lations calculated from maps created either from the GLO- ) .
DAP or CLIVAR stations are clearly offset in the hybrid- / Discussion
network case, with CLIVAR maps resulting mostly in weakly
positive correlations. The magnitude of this offset is simi-

lar to the spread in correlations between eMLR results de-ne analysis performed here relied on snapshots of the ocean
rived from the same observational networks. Much of thegate taken either in 1995 or 2005, a situation which is overly
spread in Figl4c originates over the North American Basin jqeajistic as hydrographic sampling programs are never in-
(large positive change in anthropogenic carbon, large negasiantaneous. July was chosen to approximate the summer
tive change in natural carbon) and the Irminger Sea (smally;55 that exists in the real datasets, and the years 1995 and

change in anthropogenic carbon, large positive change iBgos were selected as they represent peaks in real sampling
natural carbon). There is no GLODAP-CLIVAR offset be- jnensity. This section discusses the possible effects of unre-
tween the correlation coefficients for the fixed-network casesglved variability on the eMLR results.

(Fig. 15¢) and these results are of similar magnitude as the
correlations induced by mapping only. Results for the “best-7.1.1  Seasonality
AIC” strategy are decoupled from?°® in Figs.14c and15c,
in spite of these results producing closely related column in-These analyses have shown that the ability of regression
ventory patterns. This decoupling is further evidence that themodels to fit the DIC data varies through the seasonal cycle.
correlations in Figsl4c and15c are mostly driven by small  The summer to winter contrast in the standard error of the
overlap regions. regressions for either the GLODAP or CLIVAR sampling is
Just as there should be no correlation between the abs@bout 5 umol kg?. This effect is restricted to the upper water
lute error maps and the true change in anthropogenic carborgolumn, however. The GLODAP 1995 to CLIVAR 2005 dif-
there should be no correlation between the error maps anterences in the standard errors of the residuals are typically
the vertically integrated change in natural carbon. No sig-smaller than 2cmol/kg, but are mostly caused by differences
nificant correlation exists between the mapping errors (e.gin the sampling grid and not temporal changes, as compar-
the best possible eMLR solutions, Fiig, d) and the natural isons with corresponding GLODAP 2005 and CLIVAR 1995
carbon pattern (Figlf), as expected (dotted lines are used cases show. Even if the upper ocean contains large anthro-
in Fig. 14 to show lack of significance). Yet, as suggested pogenic carbon concentrations, the volume is relatively small
by a visual comparison of the error patterns in Fiband  and changes in seasonality only resultid % fluctuations
12, the degree of correlation between the error maps of thgFig. 6) on the relative error of the basin-scale estimate of
eMLR solutions and the vertically integrated natural carbonthe inventory change. This seasonally varying error is small
change is systematically positive and significant (Fiig&l relative to the effect of regression model selection.
and15d). The correlation coefficients vary substantially be- The seasonal inventory change estimates in Eigiere
tween regression models and appear to be inversely propoderived using month-by-month comparisons, where January
tional to RMSE in the hybrid-network case (Fitdd). This 1995 is directly compared to January 2005, etc. In practice,
relationships breaks down with decreasing RMSE, howevereal datasets are composed of samples taken from different

7.1 Unresolved temporal variability
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seasons. The seasonal bias inherent in the data is not eeMLR calculation as the changes operate on scales that are
pected to change greatly between sampling campaigns, howeo large to be filtered out by regression analysis.

ever. Unless the seasonal biases in sample distribution con-

tained in real datasets were to change drastically (e.g. allwin7-2 Temporal sampling inconsistencies

ter versus all summer values), the seasonal sampling bias is ) ) ) )

unlikely to become a dominant source of error at the basin-1 € degree to which the use of a nominal time interval be-
scale. Additionally, given the available sample distribution, We€en sampling campaigns, an assumption we have made
differences in representativeness of the sampling grids havB€re biases the estimated uptake rate is not clear. This de-
alarger effect on the dataset variance (@) and model se- P€nds on the spatial distribution of the data and on how the
lection than seasonal changes. Lastly, since regression misfifine interval is distributed spatially, i.e. how much each sta-
are largest in the summer and early fall and hybrid-networklion influences the regressions. _ ,
eMLR solutions produce lower errors in winter (F&), ad- The target North Atlantic average uptake rate in the sim-

. . l . .
dition of winter data should result in an overall improvement Ulation is 0.443PgCyr. This number is of course ob-

of the fit quality, a consequence of reduced biogeochemi-tamed from the knowledge that exactly 10yr separate the

cal gradients during the winter and spring seasons due t§€asurements. Allowing for uncertainty in the timing of
more intense mixing, and in eMLR estimates. While seasonaf-2 Y" (I-€. 8 or 12yr), the uptake rate would vary from 0.52

1
effects can produce local extrema in residuals at particulaf® 0-34PgCyr=. These values are close to the accuracy

. . 1 . .
near-surface stations, seasonal variability tends to be filterefimits (£0.1PgCyr=) on the uptake rate implied by the
SCOP criterion (0.343-0.543 Pg Cy¥) indicating that a

out and is not expected to bias the change in carbon inventor 1 R
estimates obtained by eMLR on the space and time-scaled-1 P9 Cyr™ is about the same as a 2yr error in timing in

relevant to the Repeat Hydrography program. the North Atlantic.
Since most of the model formulae tend to produce North

Atlantic uptake estimates that underestimate the true value
(by 2—7.5% on average, Fi@), if the characteristic time in-

The synthetic datasets were generated from monthly meaHarvaIs of the dataset was smaller by 1 or 2 yr, a compensation

fields such that sub-monthly variability is filtered out by de- in the rate calculation WOUld oceur. In_ C(.)nt_rast,. the problem
sign. The magnitude of seasonal variability outweighs supWwould become worse if the characteristic time interval were

monthly variability. Since seasonal variability is unlikely to {© P€ larger than 10yr. Based on the noise-free calculations

introduce large errors in the decadal eMLR inventory Changeoerformed here, these considerations suggest that if a true in-

estimates, and since eMLR is a statistical method that relie¥€ntory change can be approximated precisely, basin-scale
on a large number of data points, sub-monthly variability is eMLR-estimated uptake rates will remain within the desired

not expected to play a role as long as spatial covariances ty2ccuracy of the true value if the bias in the characteristic time

ical of these temporal scales are small relative to the domaifnterval is smaller than abod2 yr. _ _
size. The issue of temporally staggered samples is an impor-

There exists an implicit relationship between the spatiall@nt Shortcoming of basin-scale eMLR that has yet to be ad-
scales of the system under study and the temporal scales thdféssed. Although interior DIC values can perhaps be ad-
are smoothed out by regression. As such, sub-monthly per;_usted to a nominal year (e.g. using the Fra}n3|ent steqdy state
turbations would have to affect either an extensive coherenfONCept, as used banhua et &).2007), it is not possible
region or be extremely large to have noticeable effects on thd® do the same with all the tracers. This may result in pos-

regression statistics and the eMLR results. Considering dat3/P!€ inconsistencies as samples in different regions can be
on the basin-scale for the regression analysis is then equivdlfluénced by different modes or phases of natural variability

lent to filtering out temporal variability that is uncharacteris- patterns at different times, even within a sampling campaign.

tic of that scale and is averaged out. As WOCE and CLIVAR : . .
. . .~ 7.3 Spatial sampling density
are separated by approximately a decade, consideration of

large domains consistent with spatial patterns of interannuapy, important aspect affecting the quality of eMLR results is
variability limits aliasing of shorter term variability. the spatial representativeness of the GLODAP and CLIVAR
Obviously, the same considerations place limits on theyaiasets. Ideally, datasets should measure approximately the
type of variability eMLR can be expected to remove. INter- game hydrographic regions with comparable relative sam-
annual modes of variability that have spatial scales similar t ling density, otherwise optimized empirical formulae may

the basin-scale can look like secular trends from the point of,q i different explanatory variables. Emphasis on partic-
view of eMLR depending on the relative phasing of the per-, 3 ater masses or gradients may result not only from the
turbation when observed. For these modes, even if the Obse[)'resence or absence of data in the region, but also from the

vational network were to remain fixed in time, the systematic
misfit cancelation effect may not be able to correct the in-
consistencies between empirical fit and true dynamics in the

7.1.2 Sub-monthly to inter-annual variability

station density along hydrographic cruises.
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As a consequence of inhomogenous and non-random sange.g. 1995, 2005). Due to the temporal data distribution, the
pling of the ocean, an eMLR implementation based purelybasin-scale eMLR estimate of the carbon uptake represents
on statistical arguments (i.e. “best AIC”, strategy 1) will not a weighted average over a few years. High-frequency repeat
necessarily yield the most accurate answer. This is becausgections provide a rare and valuable opportunity to evaluate
local features may be present differently in each regressioithe sensitivity of the final eMLR estimates to temporal data
fit, as these are derived from different sampling networks.inconsistencies by replacing the temporally most representa-
These differences in fit quality influence the information con- tive section with the others. These repeat cruises can also be
tained in the residual field and so affect the empirical defini-used to estimate the detection limit of eMLR directly from
tion of “natural variability”. This can be interpreted as a type data.
of overfitting, although not in a statistical sense specific to
each regression individually but in a pragmatic sense, with7.4 Additional recommendations
respect to the eMLR process as a whole.

When using the same formula in time (strategy 2), struc-As global eMLR implementations are currently being de-
tures due to regression misfit are more likely to cancelveloped by the oceanographic community, a few additional
(Goodkin et al. 2017). A quantitative assessment of this ef- points not addressed in this paper but relevant to the applica-
fect is difficult with real data, however. The difficulty comes tion of eMLR to real data are worthy of mention here. First,
of course from the fact that the sampling grid varies, mak-this study focused on the accuracy of eMLR. The related
ing point-by-point comparison of the regression misfit diffi- question of precision was only treated briefly in the theory
cult without a form of interpolation. A detailed analysis at section, and the influence of measurement errors and possi-
crossover stations may prove to be informative in that case. ble biases between data from different cruises remains to be

For real data, the problem is also that the relevant sysaddressed. Secondly, while working in smaller geographical
tematic regression misfit should in principle be between theregions will improve the regression fits, the size of regions
true anthropogenic signal and the empirical representatiorshould not be so small as to be prone to strong aliasing by
of it, not between the observed values, which are contamivariability of characteristic time scales shorter than the time
nated by natural variability, and the regression predictionsscale inherent to the Repeat Hydrography program (about
Nonetheless, a visual analysis of the geographical distribud0yr). This issue is related to the systematic misfit cance-
tion of the residuals (calculated between the observed valuelation effect as the risk of model overfitting (in the pragmatic
and the regression predictions) associated with each statiogense of eMLR) is greater in highly dynamic regions. The
in our synthetic dataset indicates that residuals are not rarrisk of overfitting for analyses performed on sections, partic-
domly distributed in space, nor are they totally uncorrelatedularly if these are cut up in small pieces, is high.
between GLODAP and CLIVAR. Spatially coherent regions  Finally, this analysis was performed on depth layers, to
with residuals of the same sign (sometimes of similar mag-mimic previous model-based assessments and for conve-
nitude) are generate®lancherel2012. nience (the model output is gridded to depth levels). An anal-

Although model selection does not influence basin-scaleysis performed on isoneutral surfaces instead of horizontal
estimates of the inventory changes very much, model selecsurfaces would likely perform better as property gradients on
tion is very important locally, affecting assessments of bothisoneutrals are smaller given that water masses mostly mix
the column and the layer inventories. The concepts of a balalong these surfaces and because isoneutral outcrops nat-
anced station coverage and of vertical continuity were usedurally follow dynamical features. Isoneutral surfaces slope
in addition to statistical measures of fit, as guides for modeland cross the nutricline, however. Since the dominant mode
selection in this study. Formally quantitative methodologiesof spatial variability of nutrient-type tracers in the ocean
that account for these additional aspect as part of the eMLRs due to their vertical distributionFukumori and Wunscgh
calculation are desirable but are still lacking. It seems alsol99J), there is a trade-off between the type of variability
conceivable to develop some criterion based on the pattereMLR has to cope with between a mixing-dominated hor-
similarity of the residual field to help select appropriate re- izontal analysis and a biology-dominated isoneutral analy-
gression models, to quantitatively exploit the systematic mis-sis. Both approaches are subject to the problem of variable
fit cancelation effect. Incorporation of prior information in end-member properties (i.e. secular trends), though. The in-
the derivation of the regression model could be used to limitfluence of the nutricline on the analysis will depend on the
the scope and variability of the regression structure in timelocation and density of the stations relative to the topog-
and constrain the geographical coherence of the misfit. raphy of the isoneutral surfaces. Solution of inverse prob-

In a few regions, multiple repeated cruises are availabldems, such as eMLR, are best when variables contained in
(e.g. OVIDE section in the Northeast Atlanticherminier  the design matrix are independent. Unfortunately, oceano-
et al, 2007). Using all of these sections in the analysis will graphic tracers tend to be highly correlated. If the vertical
bias the dataset towards these particular regions. In sucbradients projected on the isoneutrals becomes an important
cases, it is of course best to use the one cruise track that isomponent of the isoneutral variance, it is possible that the
most representative of the nominal year used in the analysiproblem of tracer colinearity may also be more important
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along isoneutral than along depth horizons since roughly 304ess likely to operate when the station coverage changes in
50 % of the interior nutrient concentrations represent rem-time, making regression model selection an even more im-
ineralized nutrients and the remineralization signal is highlyportant step when station coverage changes. Changing the
correlated across nutrient&r{derson and Sarmient©994). model structure in time to better fit the observations induces
Nonetheless, optimizing tracer orthogonality, perhaps by us€hanges in the signal-to-noise partitioning, de facto altering
ing quasi-conservative tracers {SN*, C*, PO, NO) or the working definitions of anthropogenic carbon and natural
by adding dynamic tracers (potential vorticity, sea-surfacecarbon imposed by the choice of regression model. Keeping
height) should improve the conditioning of the problem, re- the formula structure fixed increases the likelihood that the
sulting in more appropriate regression fits. systematic biases inherent to using empirical representations
of the true processes governing the distribution of anthro-
pogenic carbon form in the same geographical regions and
8 Conclusions thus cancel during subtraction in the eMLR calculation.
As hydrographic station coverage is inherently sparse and
Recasting the eMLR equations in the formalism of in- changes between observational networks are significant rel-
verse problems allows for different application strategies forative to interannual variability and relative to the large-scale
eMLR, including regression models that can change in time spatial variance patterns on horizontal layers, best-fit regres-
This opens the conceptual possibility of systematically us-sion models can behave as if they were in fact overfitted; that
ing empirical models that represent best-fit regressions thais regionally over-specialized, yielding temporally inconsis-
reflect the changing structure of the observational networkgent empirical definitions of the processes controlling tracer
available. This perspective contrasts with the traditional ap-distribution on larger or longer time-scales. For this reason,
proach that relies on model formulae that are fixed in time.simpler regression models, which may produce higher resid-
The performance of these two approaches was evaluated usal errors, may also yield better eMLR solutions as they
ing output from a global circulation and biogeochemistry make inherently fewer assumptions about the structure of the
model with a known anthropogenic signal and representasignal than more complicated models. More complex mod-
tive spatio-temporal patterns of variability from which ab- els may be driven towards regional fits at the expense of the
solute errors could be evaluated. The model was sampleiroader picture.
at observed station locations to create synthetic datasets Statistical fitness of the regressions, although helpful and
that mimic the spatial structure of the observed historicalnecessary to some degree, is not a sufficient criterion for
datasets. regression model selection in eMLR. Consideration of the
Comparing eMLR results obtained by holding regressionspatial representativeness of the sampling network, vertical
formulae fixed in time with results obtained by regression continuity of the selected regression formulae as justified
formulae that are allowed to change to reflect differences inby oceanographic knowledge and resiliency of the spatial
dataset variance imposed by a redistribution of the oceanostructure of the residual patterns to temporal variability and
graphic stations shows that more accurate results are possibtdianges in observational networks should be used as addi-
when the structure of the empirical model fits is held constantional criteria to aid the model selection process and reduce
in time. Given the working definitions of GLODAP and CLI- systematic biases of eMLR results.
VAR used here, this statement holds for basin-integrated esti- Most eMLR cases considered (most regression models and
mates, layer-specific inventory change profiles and for mapsssumptions regarding the observational networks) can re-
of column inventory changes. produce the simulated basin-integrated ocean carbon decadal
Comparison of idealized experiments in which the obser-inventory change within the threshold of acceptable uncer-
vational network is held fixed with realistic cases that incor- tainty (10 %), as proposed in the LSCOP repdtrider
porate the GLODAP to CLIVAR change in coverage indi- et al, 2002. Analysis of layer-specific and column inven-
cates that best results are achieved when the GLODAP stdery changes indicate, however, that both the station distribu-
tions are used at all times. GLODAP results are superior tation and the selection of regression models exert strong in-
the CLIVAR results because GLODAP samples the wholefluences on eMLR'’s ability to recover the true signal locally.
North Atlantic more evenly than CLIVAR does, even if GLO- Both layer-specific and column inventory change estimates
DAP has only half as many stations as CLIVAR. This resultscan err by as much as 100 % or more when the analysis is
in empirical regression models for GLODAP that are more performed on horizontal surfaces and uses inappropriate re-
representative of the North Atlantic as a whole. In contrast,gression models, even if the basin-scale inventory change is
CLIVAR models tend to be more influenced by the subtrop-in relatively good agreement with the true value. The depth
ics because of the heavier station density there. range between 500 and 2700 m is particularly sensitive to
Holding the observational network fixed in time reduces model selection. In general, the subpolar convective region is
the sensitivity of eMLR results to regression model selec-the source of most of the difference between the true signal
tion relative to the case when the network changes in timeand the eMLR-inferred signals in the North Atlantic. This is
This is because the systematic misfit cancelation effect isa consequence of insufficient sampling in this region during
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CLIVAR and also because of the strong variability in con- by the GLODAP and CLIVAR sampling networks and dis-
vective activity in the region, a type of variability that is not cusses the seasonal to interannual changes of these spatial
represented statistically in the data. patterns in the synthetic dataset used in this study.

Implicit dynamical relationships between the size of the Figure A1 shows the seasonal evolution of vertical pro-
domain analyzed (or the density of samples in particular reiles of the standard deviation in the synthetic North Atlantic
gions) and the time scales characteristic of that domain plac6&LODAP dataset for year 1995 for 8 variables. The standard
limits on the ability of eMLR to account for natural vari- deviation is calculated horizontally and independently for
ability. As eMLR relies on a statistical approach to filter out each month and each model layer. A parallel analysis using
noise, for the residual field to be representative of naturathe CLIVAR sampling grid shows similar broad-scale pat-
variability, the spatial scales of the dominant modes of natu-terns, although with slightly different magnitudes owing to
ral variability in the domain should be smaller than the sizethe different emphasis put on the Labrador Sea and the East-
of the domain. Modes of natural variability similar in scale to ern Tropical Atlantic between the two sampling networks.
the size of the domain cannot be discounted as noise by th&he variables exhibit different zones of low or high variance
spatial regressions used in eMLR. Large-scale natural vari{Fig. A1), indicating a priori the role each tracer will take in
ability patterns are treated instead as secular trends by thihe regression models as a function of depth and highlighting
fitting process and ultimately contaminate the anthropogenidhe value of each variable as a tracer for each water masses.
signal. Inadequate station density and inhomogenous sam- The seasonal evolution of variance profiles reflects the
pling exacerbate these limitations. mechanisms of water mass formation, gas exchange and eco-

Even if the best eMLR results obtained here are unable tdogical succession in the basin. The magnitude of the sea-
fully account for the large-scale natural variability pattern, sonal cycle of the standard deviation is typically 10 to 15 %
eMLR is able to remove a large fraction of it, despite our in the upper 200 m for the nutrients {0AOU, NOz, PQy,
direct and somewhat naive horizontal (instead of isoneutral)Si), and 5% for@, S, Alk and DIC. Seasonality is small
analysis. The fact that eMLR produces relatively good resultsbelow 200 m & 1-2 %). Nutrients show large variances in
in the hydrographically complex and dynamic North Atlantic late summer and fall in the top 150 m and relatively smaller
suggests that it is likely to perform well in other hydrograph- standard deviations in winter and spring (FA&f), consis-
ically simpler and less variable basins. Although further de-tent with the development of the North Atlantic Blookign-
velopment and assessment of the method is necessary, paen et al.2009. Temperature shows a maximum variance in
ticularly to address the issues of temporally variable covari-spring and summer when the subtropical-subpolar gradients
ances, full propagation of the errors, problem conditioningare strongest. The variance of salinity is small in summer and
and temporal staggering of the samples, and even if inhereris large in winter, reflecting sea-ice dynamics in the north-
limitations exist imposed by the scale of the system in rela-ern subpolar region. Seasonality of the variance is associated
tion to the relevant modes of natural variability, the eMLR with a seasonal cycle in the misfit error of linear regression
approach remains a viable candidate that can be used to exaodels and in the eMLR results.
ploit the many interior DIC measurements and evaluate the Relative to the basin-scale horizontal variance in the
large-scale evolution of the ocean carbon sink and its ratelataset, 1995 to 2005 variance changes in the vertical profiles
of change independently from other techniques. Regional reare small. These changes are typically less than 3% above
sults should be interpreted with caution, however. 500 m and less than 1 % below that depth. These changes re-

flect processes such as water mass reorganization, gyre wob-
ble, thermocline oscillation, frontal shifts, etc. Although the
Appendix A level of variance on horizontal slices in the data are relatively
constant, this is not to say that point-by-point differences in
Spatio-temporal variance patterns in the synthetic data tracer values or concentrations do not routinely exceed the
set standard deviation calculated over the whole layer. In fact,
point-by-point differences between July 1995 and 2005 for
Given that regression analysis aims to explain the dominanthe North Atlantic can be as high as 50-100 % in specific
variance patterns in a dataset, changes in the spatial and temegions (East Greenland Current, Labrador Sea, across the
poral patterns of variance can affect eMLR results by influ- North Atlantic Current, near the equatorial boundary of the
encing regression model selection. Variance variability cansubtropical gyre). The relative constancy of the dataset vari-
arise either from temporal variability or by altering the sam- ance in time sampled from a constant observational network
pling grid, which acts by weighting certain regions differ- suggests that the point-by-point changes are not a priori sys-
ently in the dataset. The structure and quality of linear re-tematic enough as to greatly bias the large-scale representa-
gressions vary depending on whether the analyses are petiveness of a given sampling grid: the GLODAP or CLIVAR
formed on sections, on regions, or on isopycnals such thasets of stations would measure features in the same approxi-
the regression models used in the eMLR context are ad hoanate proportions in 1995 and in 2005.
This section contrasts the spatial variance patterns captured
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Fig. A1. Monthly vertical profiles of the horizontal spatial standard deviation, from January to December, exprgsgéin(b) psu or
(c—h) umol kg1, for the hydrographic variables used in this study for the year 1995 as sampled on the GLODAP grid. Tick marks to the
right of the main panels show the vertical position of the vertical layers in the circulation model.
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Fig. A2. Monthly vertical profile of the month-by-month relative changes of the horizontal spatial standard deviation, from January to
December, expressed in percent relative to the 1995 values, between the synthetic 2005 CLIVAR dataset and the 1995 GLODAP dataset fol
the variables used in this study. Tick marks to the right of the main panels show the vertical position of the layers in the circulation model.
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