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Abstract. The ocean’s role in modulating the observed
1–7 Pg C yr−1 inter-annual variability in atmospheric CO2
growth rate is an important, but poorly constrained process
due to current spatio-temporal limitations in ocean carbon
measurements. Here, we investigate and develop a non-linear
empirical approach to predict inorganic CO2 concentrations
(total carbon dioxide (CT) and total alkalinity (AT)) in the
global ocean mixed layer from hydrographic properties (tem-
perature, salinity, dissolved oxygen and nutrients). The ben-
efit of this approach is that once the empirical relationship
is established, it can be applied to hydrographic datasets that
have better spatio-temporal coverage, and therefore provide
an additional constraint to diagnose ocean carbon dynam-
ics globally. Previous empirical approaches have employed
multiple linear regressions (MLR) and relied on ad hoc geo-
graphic and temporal partitioning of carbon data to constrain
complex global carbon dynamics in the mixed layer. Synthe-
sizing a new globalCT/AT carbon bottle dataset consisting
of ∼ 33 000 measurements in the open ocean mixed layer,
we develop a neural network based approach to better con-
strain the non-linear carbon system. The approach classifies
features in the global biogeochemical dataset based on their
similarity and homogeneity in a self-organizing map (SOM;
Kohonen, 1988). After the initial SOM analysis, which in-
cludes geographic constraints, we apply a local linear opti-
mizer to the neural network, which considerably enhances
the predictive skill of the new approach. We call this new
approach SOMLO, or self-organizing multiple linear output.
Using independent bottle carbon data, we compare a tradi-
tional MLR analysis to our SOMLO approach to capture the
spatialCT and AT distributions. We find the SOMLO ap-
proach improves predictive skill globally by 19 % forCT,

with a global capacity to predictCT to within 10.9 µmol kg−1

(9.2 µmol kg−1 for AT). The non-linear SOMLO approach
is particularly powerful in complex but important regions
like the Southern Ocean, North Atlantic and equatorial Pa-
cific, where residual standard errors were reduced between
25 and 40 % over traditional linear methods. We further test
the SOMLO technique using the Bermuda Atlantic time se-
ries (BATS) and Hawaiian ocean time series (HOT) datasets,
where hydrographic data was capable of explaining 90 % of
the seasonal cycle and inter-annual variability at those multi-
decadal time-series stations.

1 Introduction

The ocean’s role in modulating rising atmospheric carbon
dioxide (CO2) levels has been found to be very important
(Khatiwala et al., 2012; Sabine et al., 2004). A variety of
data-based estimates suggest net oceanic uptake for CO2 to
be 2.1± 1.0 Pg C yr−1 (1 Pg = 1015 g) since the year 2000, or
about 25–30 % of anthropogenic CO2 emissions over that pe-
riod (Jacobson et al., 2007; Khatiwala et al., 2009; Manning
and Keeling, 2006; McNeil et al., 2003; Mikaloff-Fletcher et
al., 2006; Takahashi et al., 2009). Between 1990 and 2009,
atmospheric CO2 accumulation rates vary between 1 and
7 Pg C yr−1, indicating large inter-annual variability from
both the terrestrial and oceanic reservoirs (Sarmiento et al.,
2010). Although our long-term, decadal-scale understanding
of oceanic CO2 uptake has advanced, our shorter-term under-
standing (seasonal to inter-annual) of ocean carbon dynamics
remains poorly constrained due to current data limitations.
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Atmospheric CO2 observations, inversion techniques and
ocean models suggest a large range for inter-annual vari-
ability in oceanic CO2 uptake (0.1–1.5 Pg C yr−1) (Bender et
al., 2005; Le Qúeŕe et al., 2003; Patra et al., 2006; Rayner
et al., 2008). However, from an oceanic perspective, our
understanding of natural variability of ocean carbon has
come about sporadically, dominated by regional time-series
measurement programs (e.g. Bermuda Atlantic time series
(BATS) and Hawaiian ocean time series (HOT)). Without a
better understanding of shorter-scale natural variability, the
ability to constrain and understand the time-evolving capac-
ity for the ocean to absorb atmospheric CO2 in a high-CO2
world will be limited, particularly since some evidence sug-
gests the ability for the ocean to absorb CO2 has slowed
since the late 1980s as a consequence of decadal-scale trends
in winds and oceanic circulation (Le Quéŕe et al., 2010;
Sarmiento et al., 2010).

Standard hydrographic measurements in the ocean (tem-
perature, salinity, dissolved oxygen and nutrients) are sam-
pled and analysed much more frequently than inorganic car-
bon. With the deployment of satellites, gliders and ARGO
floats providing an immense capacity for capturing short-
term seasonal to inter-annual variability in the oceans, the
question is, can this new information be used to help infer
and diagnose short-term carbon dynamics in the ocean?

The oceans inorganic carbon system can be fully con-
strained by knowing any two measurements within its inor-
ganic carbon constituents; partial pressure of CO2 (pCO2),
total dissolved carbon dioxide (CT), total alkalinity (AT) or
pH. Significant time and resources have been devoted on na-
tional and international levels to survey the global oceanic
CT andAT distribution. However, even with approximately
330 000 bottle measurements taken sporadically over the
past 30 years, our ability to globally understand natural sea-
sonalCT and AT dynamics has been hindered due to the
large spatio-temporal limitations in this current accumulated
dataset (Key et al., 2004).

AutonomouspCO2 measuring devices mounted mainly
onto commercial shipping vessels has resulted in a global
network of approximately 6.4 million ocean surfacepCO2
measurements (Takahashi et al., 2012). ThispCO2 dataset
has given us the best idea of seasonal (Takahashi et al., 2009;
herein after referred to as T-09) to inter-annual (McKinley et
al., 2011; Park et al., 2010; Telszewski et al., 2009) CO2 vari-
ability within the ocean. However, the globalpCO2 dataset
cannot inform us on some very important processes and bio-
geochemical dynamics that modulate atmospheric CO2. The
ocean’s biological carbon export flux has been estimated
to be between 11 and 16 Pg C yr−1 from satellite chloro-
phyll a measurements (Falkowski et al., 2000), some 5–8
times the net oceanic CO2 absorption from the atmosphere.
Small changes in the biological carbon flux have large and
important implications for atmospheric CO2. However, this
large signal is yet to be constrained from inorganic carbon
data itself, since it requires constraints on mixed-layer car-

bon dynamics rather than just sea-surface constraints like the
pCO2 climatology. Secondly, without equivalentAT or CT
measurements,pCO2 by itself cannot provide insights into
partitioning the biological carbon pump into both organic and
calcification components, particularly important with regard
to future ocean acidification impacts. Previous estimates on
this “rain ratio” (organic/calcifier export flux) have needed
to assume a constant redfield ratio on nutrient changes in the
oceans mixed layer (Sarmiento et al., 2002). Finally, spatio-
temporal deficiencies in thepCO2 dataset in regions like the
Southern Ocean introduce uncertainties in the direct eval-
uation of short-term variability. To understand seasonal to
inter-annual variability in these regions requires methods that
have better spatio-temporal coverage than is constrained by
historicalpCO2 sampling. Here, we seek to diagnose sea-
sonal to inter-annualCT andAT concentrations in the mixed
layer that provide independent, but important additional con-
straints to the global sea-surfacepCO2 climatology.

To varying degrees, concentrations ofCT andAT are influ-
enced by the solubility of CO2, biological processes, vertical
and lateral water transport and direct CO2 exchange with the
atmosphere (Sarmiento and Gruber, 2006). Ocean mixing is
largely controlled by density dynamics via temperature (T )
and salinity (S) variations in the ocean, which also regulate
the solubility of CO2 (Weiss, 1974). Information on nitrate
(N), silicate (Si), phosphate (P) and dissolved oxygen (DO)
variations provide insight into the biological influences on
oceanic inorganic carbon (Anderson and Sarmiento, 1994).
From this, it should be implicit that we can derive empirical
relationships between these standard hydrographical param-
eters and the carbon constituents. If a robust empirical rela-
tionship is established, we could apply our model to the order
of magnitude more in situ measurements of these standard
hydrographic parameters (Boyer et al., 2009) or the objec-
tively analysed 1◦ × 1◦ climatologies (e.g. Locarnini et al.,
2010) to give us new constraints on seasonal to inter-annual
carbon dynamics in the mixed layer.

The use of the global sea-surfacepCO2 dataset would be
ideal to develop such empirical algorithms. However, these
continuouspCO2 measurements generally have no coincid-
ing biogeochemical information (i.e. DO or nutrients) that
could help establish an empirical relationship. Some have
used satellite chlorophylla measurements to help constrain
ocean surfacepCO2 with varying degrees of success (Chen
et al., 2011; Chierici et al., 2009; Telszewski et al., 2009).
The benefits of using ship-based bottle measurements ofCT
andAT, is that they are almost always complemented by a
suite of hydrographic and biogeochemical parameters (T , S,
DO and nutrients) that can be used to help derive empirical
relationships.

Wallace (1995) verified a multiple linear regression
(MLR) concept by successfully capturingCT usingT , S, Si
and apparent oxygen utilization (AOU) in the North Atlantic.
Several studies have since investigated this MLR approach in
capturing the surface distribution ofCT andAT (see Table 1).
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Table 1.Previous empirical approaches to constrain surfaceAT andCT distributions.T is temperature,S is salinity, DO is dissolved oxygen,
AOU is apparent oxygen utilization, N is nitrate (NO−

3 ), Si is silicate (SiO4), P is phosphate (PO3−

4 ), Chl a is chlorophylla, Lat is latitude,
and Long is longitude.

Study Response Predictors Na RSEb Author
Region (µmol kg−1)

Global NAT
c T 1740 5 Millero et al. (1998)

Global AT T , T 2, S, S2, Long 5692 8.1 Lee et al. (2006)
Indian Ocean AT T , S, N, AOU, Depth, Lat, P 2363 4.5–6.4d Bates et al. (2006)
Southern Ocean AT S, N, Si 1200 8.1 McNeil et al. (2007)
Arctic Ocean AT T , S 853 26.9, 75 Arrigo et al. (2010)
Global NCT

c T , T 2, N ∼ 4900 7 Lee et al. (2000)
Indian Ocean CT T , S, N, AOU, Depth, Lat, P 2395 4.4–6.0d Bates et al. (2006)
Southern Ocean CT T , S, DO, N, Si 1032 8 McNeil et al. (2007)
Arctic Ocean CT Chl a, T , S 853 33.4, 61.6, 17.3 Arrigo et al. ( 2010)

a Number of measurements used in the study.
b Residual standard error as quoted by the authors.
c Salinity normalized concentrations ofCT andAT.

(
×

35
S

)
.

d Range of RSE values presented for the four monsoonal/inter-monsoonal seasons.

Divergent biological and mixing regimes throughout the
ocean have made it difficult to use linear empirical tech-
niques on a global scale. Researchers have traditionally par-
titioned the global bottle dataset geographically, hydrograph-
ically and temporally in an attempt to improve the ability of
linear approaches to model the non-linear relationship be-
tween inorganic carbon and the standard hydrographic pa-
rameters. Here we use a non-linear empirical modelling ap-
proach to avoid this ad hoc partitioning and show that it de-
livers considerable improvements in predictability. We use
a self-organizing map (SOM; Kohonen, 1988) to classify
or cluster measurements of hydrographic parameters into
groups and then establish the relationship between these pa-
rameters andCT/AT separately for each group. SOMs have
already been found to be well suited in extracting features of
the ocean surfacepCO2 dataset in the North Atlantic using
a combination of modelled and remotely sensed parameters
to constrain the system, (Friedrich and Oschlies, 2009a, b;
Lefèvre et al., 2005; Telszewski et al., 2009).

To contextualize this work, we firstly explore the use of the
traditional MLR approach to diagnose global seasonal car-
bon dynamics in the ocean. To do this, we employ the MLR
approach on a newly synthesizedCT/AT bottle dataset of
∼ 33 000 mixed-layer samples. Next, we present our SOM-
based approach to diagnose seasonal carbon dynamics on a
global scale, which better accounts for non-linearities that
would limit the ability of the MLR approach. To compare
the MLR and our SOM approach, we develop an indepen-
dent test approach to assess the model’s skill. We then use
the BATS and HOT in situ time series as an explicit test for
our new approach and finally show the capacity of the model
to capture coherent, spatial and temporal carbon fields over
the global ocean.

2 Global carbon measurements and training dataset

The extraordinary effort to collate and synthesize the bottle
hydrographic and biogeochemical data has been conducted
by several groups; including GLODAP (GLobal Ocean Data
Analysis Project; Key et al., 2004), CARINA (CARbon diox-
ide IN the Atlantic Ocean; CARINA Group, 2009a, b, 2010)
and PACIFICA (PACIFic Ocean Interior CArbon project;
Suzuki et al., 2013).

Precision in measuring bottleCT and AT samples has
consistently improved over the past 30 yr as a result of ad-
vances in techniques and apparatus (Bradshaw et al., 1981;
Johnson et al., 1987). However, it was not until the intro-
duction of standard operating procedures and certified ref-
erence materials (Department of Energy, 1994; Dickson et
al., 2003; Dickson et al., 2007) that the quality consistency
of independent laboratory measurements was achieved and
is currently estimated to be±2 µmol kg−1 (Dickson et al.,
2007). To account for any systematic measurement biases be-
tween independent laboratories when combining data, a sec-
ondary quality control (QC) method was incorporated by the
project groups to identify and smooth out any inconsisten-
cies, as outlined in Tanhua et al. (2010). The internal consis-
tency of the CARINACT/AT dataset has been estimated to
±2.5 µmol kg−1 (Tanhua et al., 2010). More recent additional
measurements we included in the global dataset underwent a
1st QC check to remove measurements that were flagged as
bad or questionable under the World Ocean Circulation Ex-
periment (WOCE) convention (Joyce and Corry, 1994).

For this work, 470 cruises from GLODAP, PACIFICA,
CARINA, CLIVAR and miscellaneous sources were merged
with the BATS and HOT measurements to form the global
carbon training dataset, as shown in Table 2. We refined the
global data to be within the mixed layer (Supplement A),

www.biogeosciences.net/10/4319/2013/ Biogeosciences, 10, 4319–4340, 2013



4322 T. P. Sasse et al.: Diagnosing seasonal to inter-annual surface ocean carbon dynamics

Table 2.Data sources of our global merged dataset.

Source Number of
Measurements

CARINA 12 599
PACIFICA 9690
GLODAP 6674
CLIVARa 1689
AAIW b 755
BATSc 705
HOTd 540
NACPe 291
Miscellaneous 192
Total 33 135

a Climate Variability and Predictability.
b Antarctic Intermediate Cruise.
c Bermuda Atlantic time series.
d Hawaiian ocean time series.
e North Atlantic Carbon Program.

non-coastal (Supplement B) and data post-1980 due to large
uncertainties in early measuring techniques. The final num-
ber of usableCT/AT discrete measurements in the global
mixed layer was∼ 33 000.

Whilst the spatial coverage of the refined data is consistent
over all major ocean basins (Fig. 1a), there are approximately
45 % less wintertime measurements than were collected dur-
ing summertime (Fig. 1b), which we examine here as a po-
tential cause for bias when applying our approach.

Normalization of CT measurements

Global atmospheric CO2 concentrations during the 1980s,
1990s and 2000s have increased at 1.60± 0.56, 1.47± 0.66
and 1.90± 0.38 ppm yr−1, respectively (Thomas Conway
and Pieter Tans, NOAA/ESRL,www.esrl.noaa.gov/gmd/
ccgg/trends). Mixed-layer measurements ofCT were cor-
rected for temporal anthropogenic CO2 uptake to the ref-
erence year 2000 by calculating the change in mixed-layer
CT in equilibrium with the atmospheric CO2 increase using
observed Revelle factors (see supplement material C for de-
tails). This approach is somewhat equivalent to that of T-09
where allpCO2 measurements values were corrected to the
year 2000 using a rate of 1.5 µatm yr−1.

There are regions of the ocean where upwelling and sea–
ice inhibit air-sea gas exchange, resulting in considerable
CO2 disequilibrium (e.g. Southern Ocean, equatorial Pa-
cific). The anthropogenic CO2 correction technique used
here, like those for T-09 and Lee et al. (2000), will be bi-
ased in these regions. However, by performing a test using no
anthropogenic CO2 correction (Supplement D), we demon-
strate the very low impact this anthropogenic correction has
to our final result. This is in part due to the large natural fin-
gerprint ofCT (±50 µmol kg−1) relative to the small changes

(∼ 1 µmol kg−1 yr−1) resulting from anthropogenic CO2 up-
take.

3 Testing algorithm skill: a systematic independent
test (SIT) approach

Most empirical studies report statistical errors calculated as
the residual standard error (RSE) from linear regressions. For
example,CT in the Indian Ocean was reported to be predicted
to within ±5 µmol kg−1 using a suite of hydrographic pa-
rameters (Bates et al., 2006),±8 µmol kg−1 for the Southern
Ocean (McNeil et al., 2007) and±7 µmol kg−1 for a global
dataset (Lee et al., 2000). However, an independent dataset
not used in the regressions is needed to accurately report true
statistical uncertainty for any empirical approach.

Here, we developed a “systematic independent test” (SIT)
approach in order to compare the MLR and NN empirical
approaches consistently. The SIT method evaluates the al-
gorithm’s skill through an independent test of each cruise
or time series without using it in the training or regression
dataset. This implies that for a training data pool consist-
ing of n cruises andi time series,n + i unique algorithms
with identical model configurations are used to predict the
excluded cruise or time series measurements. Calculating the
residual standard error (RSE; Eq. 1) using all (or a subset) of
the cruises and time-series independent predictions then pro-
vides a better and accurate estimate of the algorithms global
(or regional) skill. In Eq. (1), the independent predictions
and in situ measurements are represented byyindp−pred and
yin−situ respectively, whileN defines the number of discrete
samples.

RSE=

√∑(
yindp−pred− yin−situ

)2

N − 2
(1)

The reason we independently test each cruise dataset indi-
vidually, rather than a randomly selected subset of the data,
is due to similar concentrations of carbon and auxiliary mea-
surements within local casts of the same cruise. As there are
typically two to three measurements within each cast of the
training dataset, the independent prediction of one of these
measurements will give a misleading representation of the
model’s true skill, as the remaining two measurements with
a very similar “biogeochemical fingerprint” will be used to
train the algorithm. The prediction of an entire independent
cruise is a more robust measure of the algorithm’s skill.

4 Traditional MLR approach

4.1 Method description

Multiple linear regression is a numerical estimation of the
linear relationship between a set of predictor variables,
x = (x1, . . . ,xn, . . . ,xN ), and response variable,y, (Eq. 2).

Biogeosciences, 10, 4319–4340, 2013 www.biogeosciences.net/10/4319/2013/
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Fig. 1. (a)Global distribution of the training dataset,(b) seasonal and(c) yearly histograms of the training dataset separated into Southern
(light shade) and Northern (dark shade) Hemispheres. Southern Hemisphere seasons are defined as summer (Dec–Feb), autumn (Mar–May),
winter (Jun–Aug) and spring (Sept–Nov), Northern Hemisphere seasons are opposite.

y = β0 +

N∑
n=1

βnxn , (2)

whereβ0 andβn represent the intercept and empirically de-
rived coefficients respectively. Multi-collinearity (MCL) be-
tween predictor variables and non-normality of the residual
errors are both issues that may affect the predictive and di-
agnostic ability of a MLR. To minimize the effect of these
issues, the empirical relationships betweenCT/AT and the
standard hydrographic parameters were constrained using a
forward stepwise robust MLR routine.

Following the schematic in Fig. 2, the routine initiates by
ranking predictor variablesp1, . . . ,pn, . . . ,pN according to
their degree of linear correlation to the response variable,y;
wherepn,1 represents the parameter with the highest correla-

tion. The primary model (M1) is then established by apply-
ing a least-squares MLR between the top ranked predictor
variable (pn,1) andy to constrain the regression coefficients
β0 andβn,1. The routine then expands onM1 in step 3 by
regressing the top two ranked predictor variables (m = 2);
wherem represents the modelled predictor variable with the
lowest correlation toy.

To determine if MCL exists in the expanded model (Mm),
we calculate the variance inflation factor (VIF) for each mod-
elled variable inMm and compare them to VIF values calcu-
lated for the same variables modelled inMm−1. The exis-
tence of MCL is identified if the VIF value for any predictor
variablepn,i (wherei < m) increased by 5. For the scenario
when MCL is detected, the model is updated with interaction
terms between the newly added predictor variable (pn,m) and
any modelled variable with a VIF increase greater than 5. An

www.biogeosciences.net/10/4319/2013/ Biogeosciences, 10, 4319–4340, 2013
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Fig. 2.Schematic diagram of our robust forward MLR routine.

analysis of variance (ANOVA) between the previous model
(Mm−1) and expanded model (M∗

m) is then applied to evalu-
ate the significance of the newly added predictor variable and
interaction terms. If the expanded model is found to statisti-
cally constrain the system with a higher degree of skill with
a 95% confidence interval, the updates are accepted and the
routine returns to step 3 to incorporate the next lowest ranked
predictor variable (i.e.m = m + 1).

If MCL is not detected, a null-hypothesis test based on the
t statistic is applied to determine if the coefficient of the new
predictor variable is significantly different from 0 (i.e. the
new predictor is important in constraining the system). If it
does not differ from 0 with a 95 % confidence interval, the
new predictor variable is defined as insignificant and is sub-
sequently rejected from the model. The routine then returns
to step 3 to again expandMm with the next lowest ranked
predictor variable.

Once each predictor variable has had an opportunity to up-
date the model (i.e.m = I ), any desired higher order variable
terms are incorporated into the model on the provision the
first order term was found to be statistically significant. The
routine then prunes the model through an iterative process
that removes insignificant terms based on thet test. Once all
terms are statistically significant, the final stage of the routine

applies a robust MLR to the set of significant terms to reduce
potential influences from outliers.

This MLR routine is well suited for optimizing the model
and dampening the influence of outliers that cannot be rea-
sonably identified as bad measurements. This aspect is par-
ticularly important when the global dataset is subject to ad
hoc geographical and/or temporal separation methods, where
measurements not consistent with the bulk biogeochemical
dynamics within a region have the potential to affect the
model.

4.2 Ad hoc vs. universal MLR

To investigate the application of the traditional MLR method,
we compared the skill of using one single regression glob-
ally (universal MLR) to an ad hoc approach that partitions
the dataset into regions (ad hoc MLR). We based the ad
hoc approach on dividing the global carbon dataset on the
geographical and temporal guidelines outlined by Lee et
al. (2006, 2000) and Bates et al. (2006). In this way, the
global dataset was subset into 5 geographic regions to con-
strain theAT system, and 11 geographic regions, 8 of which
were subjected to further separation into summer and winter
months to constrainCT (see Fig. 3). The universal method
simply uses the entire global dataset without division.

4.3 MLR results

When universally applying the traditional MLR on the
∼ 33 000 global mixed-layerCT measurements, the statisti-
cal regression RSE is 15.1 µmol kg−1 when usingT , S, DO,
P, N and Si as predictors (Table 3). If applying the ad hoc
geographical and temporal separations, the statistical regres-
sion RSE reduces to 13.2 µmol kg−1. However, when the in-
dependent test (SIT) is used to evaluate the regressions, er-
rors increase to be 16 µmol kg−1 for the ad hoc approach
and 15.6 µmol kg−1 for the global regression. ForAT, op-
timal predictors were found to beT , S, S2, DO, P and Si,
while a global MLR algorithm captured the signal to within
11 µmol kg−1 using the SIT approach. All empirical relation-
ships for the global and ad hoc MLR models can be found in
Supplement Tables T1 and T2.

The MLR approach and results give us a framework to
attempt to develop a better method that captures any po-
tential non-linear biases that are contributing to errors of
±16 µmol kg−1 in CT predictions and± 11µmol kg−1 for AT
on a global scale.

5 Neural network approach

5.1 Overview of the neural network approach

A self-organizing map (SOM) is an algorithm that uses an it-
erative approach to classify multi-dimensional data into dis-
crete groups, or neurons, usually arranged in a 2-dimensional

Biogeosciences, 10, 4319–4340, 2013 www.biogeosciences.net/10/4319/2013/
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Table 3.Universal and ad hoc MLR results for (a)CT and (b)AT.

RSE (µmol kg−1)

Regression Independent test (SIT)

Region Zonea Nb N cruisesc Ad hoc Universal Ad hoc Universal

(a) Subtropical 1 5388 109 11.9 17.1 15.2 17.3
Eq. Pacific 2 752 14 11.3 16.8 18.9 17.7
North Atlantic 3 4626 69 13.2 15.5 15.5 16.2
North Pacific 4 2344 112 17.7 17.2 16.8 17.5
Southern Ocean 5 7856 75 12.5 12.4 16.4 12.8

Global 20 966 289 13.2 15.1 16.0 15.6

(b) Subtropical 1 4917 94 10.2 10.2 11.0 10.4
Eq. Pacific 2 513 7 6.9 12.4 9.4 13.0
North Atlantic 3 3181 53 7.7 10.0 7.9 10.1
North Pacific 4 1956 88 14.3 16.4 14.8 16.6
Southern Ocean 5 6084 58 8.0 9.1 9.4 9.8

Global 16 651 224 9.5 10.8 10.4 11.1

a Corresponding geographical region in Fig. 3.
b Number of measurements in the corresponding region.
c Number of unique cruises/time series in the region.

Fig. 3. Spatio-temporal division of the global training dataset for the ad hoc MLR approach. Black boundaries are common for bothCT and
AT models, while red boundaries are forCT only and blue forAT only. A red asterisk indicates that MLRs were developed for both summer
(Nov–Apr for austral hemisphere) and winter (May–Oct for austral hemisphere) periods to constrainCT. Boreal summer/winter seasons are
opposite.

grid. Using an algorithm that employs discrete clustering is
appealing, as it removes the need for the type of ad hoc parti-
tioning we discussed in Sect. 4.2. This has led to application
of SOMs in a wide range of disciplines (Abramowitz, 2005;
Hsu et al., 2002; P̈ollä et al., 2009).

Figure 4 illustrates the routine of SOM training and predic-
tion. For a training dataset ofP samples consisting of predic-
tor variablesx and response variabley, the SOM clustering

process allocates each sample to one ofJ neurons (some-
times also called clusters, nodes or groups). The neurons are
typically arranged in a 2 dimensionalA × B matrix so that
we represent a node asja,b. The clustering algorithm aims
to ensure that nodes that are nearby in this matrix contain
samples that have similar values of the predictor variablesx.
The y = f (x) input–output mapping is then completed by
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Fig. 4.Schematic diagram of neural network training and prediction
phases.

performing a linear regression betweenx andy separately
for each neuron.

These SOM and regression parameters can then be used to
make predictions ofy for an independent set ofQ predictor
samples(x1, . . . ,xq , . . . ,xQ). First, eachxq is allocated to
a SOM neuron, based on its similarity to the SOM weights
from the training dataset. This is the “winning neuron” for a
particular samplej (xq). Then the regression parameters for
j (xq) are used to predictyq .

Here we explore two variants to this approach. The first,
as described above, uses a multiple linear regression at each
neuron, which we describe here as self-organizing multiple
linear output (SOMLO). The second takes the mean of all
response values belonging to a node, which we will call self-
organizing map mean (SOMM). We now describe both in
more detail.

5.2 Initialization of the model constraints

For our implementation, the input–output pairs (xp, yp), 1≤

p ≤ P in the training dataset are some subset ofx = (T , S,
DO, N, Si, P), andy = CT or AT. To ensure each predictor
variable has an equal opportunity to define the features of the
SOM during the training routine, we zero-mean and scale the
variables by their standard deviation so that their distribution
and range are similar. For nitrate, phosphate and silicate, due
to the exponential distribution of their measurements, we first
log10 scale their measurements.

TheJ -neuron SOM we use here is structured in a hexag-
onal topology for the current study (Fig. 4). Careful consid-
eration needs to be exercised when defining the size of the
SOM, as too few neurons will not capture all important fea-

tures, while too many will over-fit the training dataset. Each
neuron (ja,b) is then assigned an initial weighting vector (ω)
of length equal to the number of input variables, and whose
values are randomly selected from the input variable range.

5.3 SOM training routine

Once all the neuron weights have been initialized, training
is an iterative process designed to cluster theP samples into
J neurons. For each iteration step of the model (τ ), the in-
put data samples are individually presented to the SOM in
a random order and the neuron whose weights are closest to
the current input sample is declared the “winning neuron” for
that sample, using

distance(xp,ωj ) =

[
N∑

n=1

(
xp,n − ωj,n

)2

]0.5

. (3)

That is, the “winning neuron”,j (xp), for samplexp is sim-
ply the neuron that minimizes this distance. Once the win-
ning neuron is established, the weights of the winning neu-
ron, as well as those neurons in its topological neighbour-
hood in the SOM, are then adjusted towards the value of the
current sample value (xp) via

ωj (τ + 1) = ωj (τ ) + hj,j (xp)

(
xp − ωj (τ )

)
. (4)

In this expression,hj,j (xp) determines the extent to which a
node’s weight is brought closer to the current sample value
(termed a “learning rate”,h ≤ 1). It also determines the size
of the neighbourhood around the winning node that receives
a significant adjustment. We use

hj,j (xp) = η(τ)exp

(
−

dj,j (xp)

2σ 2(τ )

)
, (5)

wheredj,j (xp) represents the discrete distance in the SOM
topology between the winning neuronj (xp) and an arbi-
trary neuronj , andσ 2(τ ) andη(τ) are the neighbourhood
width and learning rate respectively. As the model progresses
through iterations,σ 2(τ ) ensures that the neighbourhood
width shrinks from a value that significantly adjusts most of
the neurons to finish with only adjusting the winning neuron.
Similarly, the learning rateη(τ) decreases with iterations, so
that regional features of the SOM gradually develop as itera-
tions continue.

The form of the model used here is known as a supervised
SOM, whereby distributional information of the response pa-
rameter (CT orAT) is used as an additional constraint beyond
the hydrographic information (T , S, DO, etc.) in clustering
the global dataset into the set ofJ neurons. For more detail
see Supplement E.

5.4 Completing the input–output mapping

We complete they = f (x) in one of two ways. First, the
mean of all output valuesyp belonging to a node is used

Biogeosciences, 10, 4319–4340, 2013 www.biogeosciences.net/10/4319/2013/



T. P. Sasse et al.: Diagnosing seasonal to inter-annual surface ocean carbon dynamics 4327

– the SOMM. Alternatively, we use MLRs with the training
data assigned to the winning neuron to establish this relation-
ship (see Fig. 4). Here we use MLRs after the SOM training
through the application of either a principal component re-
gression (PCR; see supplement F for details) or our forward
stepwise robust MLR routine (see Sect. 4.1). To ensure confi-
dence in regression coefficients, a minimum threshold value
of 10 times the number of predictor parameters was imple-
mented. If the number of data points assigned to the win-
ning neuron is below this threshold value, data from the sec-
ond most similar neuron is merged with the winner, and then
third, until the data pool reaches the threshold limit.

5.5 Predicting with the SOMLO / SOMM system

For any independent input data vector (xq ), we can predict
the output value (yq ) using the SOM trained above via a two-
step process. First, determine which neuron in the SOM each
new data sample is closest to using the distance measure in
Sect. 5.3 (Eq. 3). Then the output value (ofCT or AT) is de-
termined using either the mean value of the winning neuron’s
training output values (using the SOMM) or the regression
parameters established with training data.

6 Application to the global ocean

6.1 Optimization of the global model

To converge on the optimal SOMLO approach for the ocean
carbon mixed-layer dataset, we employed a two-phase pro-
cess. Firstly, three unique subsets of ocean carbon data were
extracted to ascertain which hydrographic parameter combi-
nation worked best. In the second phase we applied the SIT
approach to make an out-of-sample assessment of the global
skill of the model.

6.1.1 Defining optimal predictor parameters

Correlations between hydrographic parameters may lead to
redundancy in the information predictor variables provide.
To investigate the importance of each variable in informing
the SOM or constraining the MLR, we perform tests that
exclude the variables one at a time (Fig. 6). These test the
ability of the models to capture three unique independent
datasets that each represent about 10 % of the global carbon
dataset (Table 4). As an example, Fig. 5 presents the spa-
tial distribution of the T1 independent dataset, constituting
11.4 % of the global training dataset.

To explore the optimal SOM configuration, 800 iteration
steps were used to train the SOM, using neuron map sizes
ranging from 9 to 529 for every different input variable com-
bination, with the ultimate aim to converge on the model with
the lowest RSE.

Salinity was found to be the most important parameter for
capturing the mixed-layer carbon signal, followed by temper-

Table 4. Summary of the three independent datasets used to con-
strain the general configuration of the SOMLO model.

Independent Number of Percentage of
dataset measurements global dataset

T1 3769 11.4
T2 2919 8.8
T3 3391 10.2
Total 10 079 30.4

ature then nutrients (Fig. 6). The final optimal parameter set
and SOM neuron size using the three independent tests were
(SOPSi, 25) and (TSPO, 56) for the globalAT andCT mod-
els respectively (Fig. 7). ForCT, the SOMLO model using
PCR constrained the system with a higher skill than the ro-
bust MLR, whilstAT was better constrained using the robust
MLR model.

The addition of phosphate beyond temperature, salinity
and dissolved oxygen improved the prediction ofCT by
∼ 27% or 5.1 µmol kg−1 (Fig. 7). Without air–sea gas ex-
change modulating its behaviour, phosphate likely provides
clearer constraints on organic matter production and respira-
tion than dissolved oxygen alone. The redundancy of nitrate
for bothCT andAT (Fig. 7) is likely due to the near constant
stoichiometric uptake rate of phosphate and nitrate by pho-
tosynthesizing organisms. The preference of phosphate over
nitrate may be a result of the continual production of organic
matter by nitrogen fixers after the nitrate pool is completely
depleted (Gruber and Sarmiento, 1997). Furthermore, the re-
naming of samples where only “nitrate + nitrite” was listed
to nitrate in the GLODAP and CARINA products (Key et
al., 2004) may serve to introduce additional biases in using
nitrate.

Precipitation and dissolution of calcium carbonates
(CaCO3) affects the concentration ofAT twice as much as
CT (Sarmiento and Gruber, 2006). As waters high in sili-
cate tend to relate to high biological respiration by diatoms (a
non-calcifying organism), and waters of low silicate foster a
more conducive environment for calcifying organisms (such
as coccolithophores) (Kirchman, 2012), silicate helps con-
strain the spatial patterns of CaCO3 cycling which influence
AT.

Salinity’s significant importance in constraining theAT
system is likely due to the known high correlation between
these two parameters (Millero et al., 1998), whereas the ad-
dition of temperature to the parameter set is redundant, as
pointed out by some earlier studies (e.g. McNeil et al., 2007).

6.1.2 Importance of geography in the model

Carbon data from geographically diverse ocean regions will
be clustered into the same neuron when input–output con-
centrations are similar. For example, a cluster of similar bio-
geochemical data in the North Atlantic Ocean can be equally
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Fig. 5.Distribution of the T1 independent dataset.

Fig. 6. RSE results for theCT (open triangles) andAT (black
circles) SOMLO models when applied to the three independent
datasets. Numbers under the dotted lines represents the optimal
number of neurons to constrain the system. Excluded parameter rep-
resents the variable not used in the SOMLO training and testing.

represented by those in some parts of the North Pacific
Ocean, despite there being little ocean inter-connectedness
between these two carbon datasets on shorter timescales.
Spatial length scales of variability are known to be within
ocean basins, not between them, especially those constrained
by land. Without applying geographical boundary condi-
tions, non-linearities may be introduced into the final MLR,
which would limit the models predictive skill. To test this hy-
pothesis, optimal model configurations were trained with the
inclusion of geographical input parameters during the train-
ing of the SOM, but were excluded as predictor parameters
in the linear regressions.

To reduce the influence of longitudinal discontinuity at
±180◦ in the mid-Pacific, we shifted all longitude values
by 160◦ W (or 20◦ E), thereby setting the 180◦ discontinu-

Fig. 7.Optimal RSE values for(a) CT and(b) AT SOMLO models.
Numbers above the line represent the optimal number of neurons.
Parameter set represents the combination of parameters used to train
and test the SOMLO model, where O represents dissolved oxygen.

ity at a position that bisects continental Africa and Europe
(see Supplement Fig. F1). We also tested a normal vector to
the Earth ellipsoid (n-vector) that transforms the 2-D lati-
tude/longitude position system into a 3-D vector while main-
taining unique vectors for every geographical position. Em-
ploying a version of then-vector presented by Gade (2010),
we transformed latitude and longitude values using

n =

 sin(latitude)
sin(longitude)cos(latitude)
cos(longitude)cos(latitude)

 . (6)
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Fig. 8. Skill of optimal SOMLO models with geographical con-
straints. Numbers below dashed line represent the optimal number
of neurons.

We found introducing geographical information to be a pow-
erful addition in improving the skill of the method forCT by
16 % or 2.2 µmol kg−1, however there was little improvement
for AT (Fig. 8). The optimal SOMLO configuration addition-
ally incorporates longitude and n-vector geographical inputs
in constrainingAT and CT respectively, and increased the
optimal number of neurons to 64 forCT.

To better understand and visualize why geography is
important, we compare the spatial distribution of neurons
for CT models trained with only biogeochemical informa-
tion, and both biogeochemical and geographical information
(Fig. 9a, b). To illustrate the spatial distribution of the as-
signed neurons for the global carbon dataset, we plot the neu-
rons using different colours. Here, each colour represents a
neuron, while shades of colours indicate close similarity in
the weighting vectors. The broad regions of similarity that
are captured when the SOM is constrained by only biogeo-
chemical properties include the Southern Ocean, sub-tropical
gyres, North Pacific and North Atlantic (Fig. 9a). However,
these ocean “fingerprints” extend beyond the known spatial
length scales, for example linking features in the Southern
Ocean to those of the North Atlantic, while zonal bands
stretch across ocean basins (Fig. 9a). When biogeochemi-
cal and geographical information are incorporated into the
SOM training routine, the resulting distribution preserves the
neuron boundaries at known frontal zones, such as the sub-
tropical convergence zone, but is able to constrain the classi-
fication of data to be within each ocean basin (Fig. 9b). Using
geography is an important additional constraint that implic-
itly shortens the length scales of variability which dominate
seasonal mixed-layer dynamics in the ocean.

Fig. 9.Distribution of assigned neurons for optimalCT SOM mod-
els trained with(a) biogeochemical information only and(b) bio-
geochemical and geographical information.

It is important to note that the addition of geography did
not alter the optimal parameter set for the technique.

6.1.3 SOMM/SOMLO comparison

Optimal model configurations were tested with neuron
sizes extending up to 2500 to explore the ability of the
SOMM model in constraining the three independent datasets
(Fig. 10). Using all data the SOMM model converged on
an RSE value of 16 µmol kg−1 in constrainingCT. Although
the SOMM is powerful in constraining complex non-linear
datasets, spatio-temporal limitations in the current global car-
bon dataset hamper the SOM’s mean-mode ability to predict
CT on a global scale.

We found using a local multiple-linear optimizer (i.e. the
MLR) in addition to the global SOM optimizer to signifi-
cantly improve the model’s ability to constrain globalCT by
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Fig. 10.Skill comparison between the SOMLO and SOMM models in capturingCT.

Fig. 11.Distribution of global systematic independent test absolute
residual errors for(a) CT and(b) AT.

∼ 27% or 4.4 µmol kg−1. Similar findings are found for the
AT model.

6.2 Measuring the improvement over traditional MLR

To evaluate the skill of the two independent approaches used
here (MLR versus SOMLO), we tabulated the results of each
technique based on the global SIT predictions divided into 5

Fig. 12.Geographical distribution of the 277 samples located within
300 km of a major coastline and with a SIT residual error greater
than±50 µmol kg−1 for CT and/orAT.

geographical regions and evaluated globally (Table 5). The
SOMLO approach improves the predictive skill ofCT by
between 11 and 30 % for all 5 regions (Table 5). In par-
ticular, known complex dynamical regions with global CO2
importance like the equatorial Pacific, Southern Ocean and
North Atlantic are where the non-linear SOMLO approach
excelled, improving the prediction ofCT by between 23
and 30 % (or 4–6 µmol kg−1). From a global point of view,
SOMLO improves the predictive skill ofCT in the mixed
layer by∼ 19 %.

For AT, the benefits of using SOMLO are much weaker,
with only a marginal global improvement by 6.7 % (or
0.7 µmol kg−1) and even deterioration of detection in the
equatorial Pacific and North Atlantic. This is most likely
a result of the carbonate system being less prone to non-
linearities and complexity, thereby limiting the benefits of

Biogeosciences, 10, 4319–4340, 2013 www.biogeosciences.net/10/4319/2013/



T. P. Sasse et al.: Diagnosing seasonal to inter-annual surface ocean carbon dynamics 4331

Table 5.Skill comparison between the traditional MLR and SOMLO approaches for (a)CT and (b)AT.

RSEa (µmol kg−1)

Region Zoneb Nc Ad hoc MLR SOMLO % Improvement

(a) Subtropical 1 5388 15.2 13.5 11.2
Eq. Pacific 2 752 18.9 13.3 29.7
North Atlantic 3 4626 15.5 11.7 24.5
North Pacific 4 2344 16.8 14.3 14.9
Southern Ocean 5 7856 16.4 12.7 22.6

Global 20 966 16.0 12.9 19.4
(15.6)d (17.4)d

(b) Subtropical 1 4917 11.0 9.2 16.4
Eq. Pacific 2 513 9.4 9.6 −2.1
North Atlantic 3 3181 8.0 8.5 −6.3
North Pacific 4 1956 14.8 14.4 2.7
Southern Ocean 5 6084 9.4 8.8 6.4

Global 16 651 10.4 9.7 6.7
(11.1)d (12.6)d

a Calculated using the SIT predictions.
b Corresponding geographical region in Fig. 3.
c Number of measurements.
d Universal MLR.

Table 6.Regional and global SOMLO skill evaluation (see supplementary Fig. F2 for map of spatial division).

RSEb RSEb Nc Nb

Region Zonea CT AT CT AT

Arctic Ocean 1 26.6 22.1 782 795

Subpolar North Atlantic 2 11.6 9.0 4425 2641
Subtropical North Atlantic 3 9.1 6.6 1481 1254
Equatorial Atlantic 4 13.7 13.0 654 582
Subtropical South Atlantic 5 10.6 8.7 659 551

Subpolar North Pacific 6 11.2 14.7 2053 1615
Subtropical North Pacific 7 11.1 8.2 2367 1446
Equatorial Pacific 8 11.2 8.3 1524 802
Subtropical South Pacific 9 12.3 7.7 1824 1404

Subtropical North Indian 10 22.1 13.4 143 168
(Exc. Bay of Bengal) (13.9) (7.5) (111) (136)
Equatorial Indian 11 11.8 7.7 512 500
Subtropical South Indian 12 11.5 5.6 1411 1388

Southern Ocean 13 8.7 8.8 3950 3088
Sub-Antarctic waters 14 9.5 8.5 2250 1474

Global 11.8 10.2 24 035 17 708

Global (below 70◦ N) 10.9 9.2 23 253 16 913

a Corresponding geographical region in Supplement Fig. F2.
b Residual standard error (µmol kg−1).
c Number of measurements in the region.
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Fig. 13.Global independent test (SIT) predictions versus in situ measurements and residual error density distribution for optimal(a–b) CT
and(c–d)AT SOMLO configurations.r2 is r-squared correlation, andN is number of samples.

SOMLO, since it better constrains more complex non-linear
systems.

6.3 SOMLO regional error assessment

To scrutinize the spatial skill of the SOMLO model, abso-
lute values of the global SIT residual errors were interpo-
lated around the in situ sample locations using VG gridding
software in the Ocean Data View (ODV) program (Schlitzer,
R.: Ocean Data View,http://odv.awi.de, 2011). Although the
Arctic Ocean, Bay of Bengal and Sea of Okhotsk are regions
not well constrained by the technique, the majority of the
ocean maintains a relatively homogenous residual error range
(Fig. 11). These unconstrained regions are either coastal or
marginal seas with known locally complex biogeochemical

regimes, so it is understandable that a trained global open-
ocean technique will poorly constrain these local regions.

Further investigation of the 395 samples with a SIT resid-
ual error greater than ±50 µmol kg−1 for CT and/orAT, re-
vealed that 70 % (277) are located within 300 km of a major
coastline (Fig. 12). Since a study by Gibbs et al. (2006) iden-
tified terrestrial influences extend up to 345 km from land and
well beyond our bathymetric defined coastal ocean limit of
500 m (Supplement B), these anomalous independently pre-
dictions are likely the result of land–ocean interactions af-
fecting the carbon and SHP concentrations. Separating the
SIT predictions into 14 different regions and removing these
anomalous coastal samples then provides the most accurate
constraint on the models regional open-ocean skill (Table 6).
Again we find the Arctic Ocean and Bay of Bengal are the
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two regions were the model’s skill is poorest. Through the
exclusion of Arctic Ocean measurements (North of 70◦), the
final estimate for the global open-ocean accuracy forCT and
AT is 10.9 and 9.2 µmol kg−1 respectively.

To investigate skewness, we plot the SOMLO global SIT
predictions versus the in situ measurements (Fig. 13a, c). For
CT, skewness is limited (R2 = 0.98), giving us confidence
in the model’s ability to accurately capture the concentra-
tions ofCT andAT for any given set of temperature, salinity,
dissolved oxygen, (silicate forAT), and phosphate measure-
ments in the open ocean mixed layer.

Finally, we found no strong seasonal bias in our SOMLO
predictions (Fig. 14).

7 Application to the Bermuda Atlantic and Hawaiian
ocean time-series sites

The SOMLO technique was trained on a globalCT andAT
dataset that consisted mostly of sporadic one-time cruises in
time. To test how well seasonal to inter-annual variability is
captured using our technique, we use carbon time-series data
from the BATS and HOT stations as a test bed.

7.1 Predicting the North Atlantic seasonal cycle for
inorganic carbon (BATS)

Located in the Sargasso Sea, the BATS hydrographic site is
a high frequency measurement program of carbon and auxil-
iary parameters that has been ongoing since 1989. To test the
global SOMLO model in reconstructing the BATS seasonal
cycle, we firstly re-trained the global algorithm without us-
ing the BATS 1989–2007 carbon time-series dataset. We then
use the measured monthly hydrographic properties between
1987 and 2007 to independently predictCT andAT concen-
trations at the BATS site and finally compare our predicted
carbon values to the in situ measurements to investigate the
skill of the technique. We also independently predictCT/AT
values with the traditional MLR approach as a further test.

Figure 15a and b shows the measured versus predictedCT
andAT annual cycles at BATS. Within the uncertainty of the
SOMLO prediction, both the magnitude and structure of the
seasonalCT cycle at BATS is well constrained, capturing
90 % of the signal (Fig. 15a). For a global MLR approach,
the seasonal cycle is overestimated significantly by∼ 50 %.
ForAT, the small seasonality is captured by both techniques
(Fig. 15b).

To gain better insight into how the SOMLO substantially
improves the prediction of the BATS seasonal cycle from the
traditional MLR analysis, we investigate the neuron distribu-
tion forCT in the northwestern Atlantic (Fig. 16). Applying a
traditional ad hoc MLR analysis requires defining somewhat
subjective longitude and latitude boundaries for the data to
be used in the linear regressions. Here, as an illustration we
use the spatial boundaries of 30 to 70◦ N and 40 to 85◦ W

Fig. 14. SOMLO CT/AT seasonal independent test RSE values.
Southern Hemisphere seasons are defined as summer (Dec–Feb),
autumn (Mar–May), winter (Jun–Aug) and spring (Sept–Nov).
Northern Hemisphere seasons differ by 6 months.

that were also used by Lee et al. (2000) in their MLR ap-
proach. The traditional MLR explicitly uses all carbon data
within the prescribed region, whilst the SOMLO approach
partitions the data into neurons without any prior geographic
constraints. The benefit in this approach is that when we are
applying the SOMLO to a new dataset (in this case BATS)
the SOM only uses neurons (data) most consistent with its
“biogeochemical fingerprint”, and therefore reduces the po-
tential bias that would be introduced from including all data
in the regression.

7.2 How well does SOMLO capture inter-annual
signals?

Inter-annual variability ofCT at BATS is captured to within
the uncertainty of the SOMLO technique over the 18 yr pe-
riod (Fig. 17). This illustrates a new potentially powerful way
to diagnose year-to-year carbon variability in the ocean by
using the many more long-term hydrographic time series that
are available in the ocean (McNeil, 2010). To further test
the SOMLO approach in capturing inter-annual variability
of CT, we predict theCT signal at the HOT time series as
reported by Brix et al. (2004). The SOMLO prediction cap-
tures the smoothed inter-annual trend line at the HOT site to
within 85 % (Fig. 18).

The BATS and HOT comparisons provide additional con-
fidence that the SOMLO approach provides good constraints
on both seasonal and inter-annual variability ofCT, so that it
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Fig. 15.BATS in situ and independently predicted seasonal cycles
for (a) CT and(b) AT. Black dots show the in situ measurements
and blue shaded region represents the uncertainty in SOMLO pre-
dictions.

could be used on a wider scale to help understand the ocean’s
role in modulating atmospheric CO2.

8 Comparison to previous techniques

It is important to emphasize reported error estimates of pre-
vious empirical studies to those calculated here. RSE values
presented by previous empirical studies (see Table 1) are cal-
culated from the regression’s residual error rather than inde-
pendent tests as done here, so direct comparisons between

Fig. 16. Distribution of assigned neurons in the northwestern At-
lantic region for optimalCT SOMLO model (30 to 70◦ N and 40
to 85◦ W). Numbers represent the neuron each measurement was
assigned to (maximum of 64).

previous studies and our results are not valid. We use the
systematic independent test approach (see Sect. 3) in order
to accurately report the differences between our results and
previous traditional MLR results.

We conduct two sets of calculations as shown in Table 7.
The first set of calculations (MLRold) involves taking the re-
gressions from a suite of prior work (Bates et al., 2006; Lee
et al., 2006, 2000; McNeil et al., 2007) and applying it to the
new larger dataset within each region. The second set of cal-
culations (MLRnew) involved developing our own set of re-
gressions using the same geographical and temporal bound-
aries and predictor variables as the previous authors within
the much larger dataset. Using the SIT predictions, the skill
of the models were calculated (RSE) and could then be di-
rectly compared to our SOMLO values (see Table 7).

The SOMLO, as shown at BATS/HOT, improves the pre-
dictive skill of CT andAT in most regions by between 10
and 40 %. Globally forCT, the SOMLO reduces the error by
28 % beyond the MLR method that was used to conduct the
only global analysis (Lee et al., 2000).

9 Diagnosing globalCT and AT distributions

Large historical and recent datasets up until 2008 of temper-
ature, salinity, dissolved oxygen and nutrients has allowed
researchers to objectively interpolate monthly 1◦

× 1◦ global
climatologies (Antonov et al., 2010; Garcia et al., 2010a,
b; Locarnini et al., 2010). Here, we employed the WOA09
ocean surface climatologies in conjunction with our SOMLO
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Fig. 17. In situ and independently predicted BATSCT measurements partitioned into years with loess fit (locally weighted scatter-plot
smoothing).

Fig. 18.In situ and independently predicted HOTCT measurements with loess fit.

model to diagnose monthlyCT andAT distributions for the
nominal year 2000.

Large-scale features in our estimated annual meanCT and
AT distributions exhibit strong agreement with bottle mea-
surements and follows our broader understanding of spatial
carbon variability (Figs. 19, 20). In the Southern Ocean, for
example, we find longitudinally homogenous bands driven
by the Antarctic Circumpolar Current (ACC), and higherCT
concentrations relative to the global-mean due to strong up-
welling of CO2-enriched subsurface waters and cooler sur-
face temperatures enhancing CO2 solubility (McNeil et al.,

2007; Metzl et al., 2006). In equatorial upwelling regions,
cold waters enriched with remineralized organic material are
brought to surface resulting in elevatedCT andAT concentra-
tions (Feely et al., 2002). As the surface water is then trans-
ported laterally from the site of upwelling, biological pro-
cesses and loss of CO2 to the atmosphere reducesCT to some
of the lowest concentrations observed globally. ForAT, max-
ima concentrations are found in the central subtropical gyres
(∼ 25◦), where stronger evaporation relative to precipitation
drives higher ocean surface salinity and thereforeAT concen-
trations (Lee et al., 2006; Millero et al., 1998). Conversely,
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Table 7.Comparison to previous empirical approaches.

RSE (µmol kg−1)

Study Response N MLRold MLRnew SOMLO % Improve- Author
variable mentd

Globala CT 13881 22.0 17.8 12.8 28 Lee et al. (2000)
Indianb CT 2052 15.2 21.4 13.0 39 Bates et al. (2006)
Southern Ocean CT 4196 17.3 8.8 9.0 −2 McNeil et al. (2007)
Global (exc. AT 10360 11.7 10.9 10.7 2 Lee et al. (2006)
North Pacific)c (8995) (10.3) (10.4) (9.9)
Indianb AT 2042 9.4 11.8 7.1 40 Bates et al. (2006)
Southern Ocean AT 4196 10.3 10.3 9.3 10 McNeil et al. (2007)

a Using only surface data (above 30 m).
b Only measurements from within our defined mixed layer were used to constrain new regressions and test previous regressions.
c The North Pacific empirical regression of Lee et al. (2006) included an interaction term between temperature and longitude. Here, longitude values
were taken to range from 0 to 360◦.
d Calculated using ((MLRnew – SOMLO)/MLRnew) × 100.

Fig. 19. Global distributions of(a) bottle CT measurements cor-
rected to the year 2000(b) annual-mean SOMLOCT predictions
for the nominal year 2000(c) GLODAP-v1.1 ocean surfaceCT dis-
tribution of Key et al. (2004).

Fig. 20. Global distributions of(a) bottle AT measurements(b)
annual-mean SOMLOAT predictions(c) GLODAP-v1.1 ocean sur-
faceAT distribution of Key et al. (2004).
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freshwater input from rivers and seasonal ice melt lowersAT
concentrations in regions like the Bay of Bengal (George et
al., 1994) and Arctic marginal waters.

Key et al. (2004) interpolated bottle measurements col-
lected between 1985 and 1999 to diagnose 1◦

× 1◦ res-
olution global climatologies forCT and AT at 33 depth
surfaces (GLODAP-v1.1; available at:http://cdiac.ornl.gov/
oceans/glodap/Glopgrid OV.html). Comparison between
the GLODAP-v1.1 0 m carbon distributions and our re-
sults shows good general agreement (Figs. 19, 20). How-
ever, our averageCT concentration between 65◦ N and 77◦ S
is 14 µmol kg−1 higher than the GLODAP-v1.1 average of
2033 µmol kg−1. In particular, the Southern Ocean and equa-
torial Pacific are where we find the largest discrepancies.
This could either reflect the uptake of anthropogenic CO2
that was not accounted for in the GLODAP study (Key et al.,
2004), or result from a 30 % improvement in Southern Ocean
data coverage since 1999. However, it’s likely that the large
spatial and temporal bias within the GLODAP dataset plays
the largest role in this discrepancy.

10 Conclusions

Here, we have exploited the global carbonCT/AT mixed-
layer bottle database (∼ 33 000) to investigate two different
empirical approaches that diagnose mixed-layer carbon dy-
namics from standard hydrographic parameters. Using inde-
pendent data as a test, the traditional multiple linear regres-
sion approach constrains theCT system to 15.6 µmol kg−1

andAT to 10.4 µmol kg−1. We then deploy a new non-linear
neural network based approach that improves the predictive
skill by 2.7–3 µmol kg−1 for CT, or ∼ 19 % over the MLR,
and 0.7–1.4 µmol kg−1 for AT or ∼ 10 %. In particular, re-
gions of known complexity and importance to carbon cycling
like the Southern Ocean, North Atlantic and equatorial Pa-
cific are where the new non-linear approach excels, reducing
errors by up to 35 % over traditional linear approaches. We
further test our neural network technique and find it to pre-
dict both seasonal and inter-annual variability of carbon at
BATS and HOT very well.

The predictive skill of the neural network approach is
shown to be spatially and temporally robust, making the
model a powerful tool for diagnosing carbon dynamics in the
ocean. In reality, the intensity of a sampling regime needed
to constrain seasonal to inter-annual variability for carbon is
so great that it will always be difficult to achieve on a global
scale. We demonstrate here, that the use of non-linear empir-
ical techniques on a global scale could potentially advance
our understanding of oceanic carbon variability, particularly
in a future where the amount of autonomous hydrographic
data is increasing exponentially.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
4319/2013/bg-10-4319-2013-supplement.zip.
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