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Abstract. Analytical models are presented for currents along

vertical magnetic field lines due to slow bulk electron mo-

tion in plasmas subject to a gravitational force. It is demon-

strated that a general feature of this problem is a singularity

in the plasma pressure force that develops at some finite al-

titude when a plasma that is initially in static equilibrium is

set into slow motion. Classical fluid models thus do not al-

low general steady-state solutions for field-aligned currents.

General solutions have to be non-stationary, varying on time

scales of many periods of a plasma equivalent to the Brunt–

Väisälä frequency. Except for very special choices of param-

eters, a steady-state solution exists only in an average sense.

The conditions at large altitudes turn out to be extremely sen-

sitive to even small changes in parameters at low altitudes.

Low frequency fluctuations detected at large altitudes in the

polar regions need not be caused by local low frequency in-

stabilities, but merely reflect small fluctuations in conditions

at low altitudes.

Keywords. Ionosphere (electric fields and currents)

1 Introduction

Plasma atmospheres in magnetic polar regions have a den-

sity gradient along magnetic field lines. Steady-state static

solutions are readily obtained for these cases where we have

a balance between gravitational effects and thermal particle

pressures (Pannekoek, 1922; Rosseland, 1924). In general

both ions and electrons will contribute, although we note that

for most relevant ionospheric cases the electron temperature

is larger than the ion temperature, Te > Ti. These steady-state

conditions are often disturbed by magnetic field-aligned cur-

rents.

The simplest equilibrium solution is found for the isother-

mal case Te = Ti ≡ T , with the plasma density varying as

n= n0 exp(− 1
2
z(m+M)g/T ). In this case the constant grav-

itational force n(m+M)g balances the plasma pressure force

2T dn/dz. It might be assumed that given a static exponential

density variation without field-aligned currents (de la Beau-

jardiere et al., 1993), we also have this variation with field-

aligned currents, and then use this exponential form for cal-

culating an integrated resistivity, etc. The argument is, how-

ever, misleading. As soon as the electrons flow along the ver-

tical magnetic field lines (or nearly vertical: the magnetic

field only needs to have a significant vertical component)

there is no longer a simple altitude-density relation. Even a

small electron flux introduced at the lowest part of an ini-

tially exponential vertical density profile can give rise to large

relative variations at higher altitudes because of the expo-

nentially small plasma density there, ultimately resulting in

a pressure discontinuity. Since n→ 0 for z→∞, even in-

finitesimal perturbations propagating upwards from a given

altitude will lead to relative perturbations that become large

at some altitude.

The present paper addresses the conditions with electrons

flowing along magnetic field lines, emphasising the case of

field-aligned currents. The analysis will be restrictive in the

sense that only bulk electron flows will be considered, thus

excluding cases where an electron beam is causing the cur-

rent. We argue, by giving an example for a simple yet realistic

generator model, that such bulk motions are particularly rel-

evant for the polar ionospheres. The generator model has in-

terest in itself, but serves here also to allow an estimate of the

magnitude of electron flow velocities that can be expected.

The paper is organised as follows: in Sect. 2 we present a

simple model for a likely source of field-aligned bulk elec-

tron flow in the ionospheric E and F regions, where the free
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energy for the generator mechanism originates from a steady-

state electric field perpendicular to the magnetic field lines.

Some preliminary results of this model generator have been

published before (Garcia and Pécseli, 2013). In Sect. 3 we

discuss a simplified analytical model with cold ions that il-

lustrates the basic problem associated with currents along

magnetic field lines in plasmas with vertical density gradi-

ents. In particular the model serves to illustrate that Lam-

bert’s W-functions enters naturally in solutions for problems

of this type, a detail that could otherwise be “lost” if the full

set of equations were addressed from the outset. The model

of Sect. 3 is appealing, but contains some simplifications

which makes it unrealistic (albeit not nonphysical). Several

of these simplifying assumptions are remedied in Sect. 4. Fi-

nally, Sect. 5 contains our conclusions.

2 Battery mechanism

The basic problem approached in the present study concerns

bulk electron flows in plasmas in gravitational fields. This

problem will be particularly relevant for plasma motions in

polar regions where the magnetic field lines have a domi-

nant vertical component. In this section we first discuss a

simple model for a generator that induces magnetic field-

aligned electron flows. Currents can be caused by diffuse au-

roral electron precipitation that is generally distributed over

a large spatial region (Ossakow and Chaturvedi, 1979). Here

we focus on a different current generating mechanism, in-

duced by steady-state horizontal electric fields E0 imposed

perpendicular to B in the ionospheric E region. The basic

generator mechanism is due to differences of electron and ion

mobilities in the E region where ωce� νen while �ci ≤ νin.

The electron and ion collision frequencies with the neu-

tral background gas are νen and νin. These neutral collision

frequencies decrease rapidly with altitude (Gurevich, 1978;

Kelley, 1989; Dyrud et al., 2006), see for instance Fig. 1.

For altitudes above some 120–130 km, the electrons and ions

are both drifting with approximately the same E0×B/B2-

velocity. We model the E region as a collisional horizontal

“slab” of thickness D with ωce� νen while �ci ≤ νin. For

altitudes above approximately 120 km, we ignore collisions

altogether, see Fig. 1. The mobilities for single particle mo-

tion in the Hall current direction are given through

UH =
1

1+ ν2/ω2
c

E0×B

B2
, (1)

where ωc and ν are the cyclotron and neutral collision fre-

quencies for the respective species, and UH is the appropri-

ate velocity component in the Hall current direction. Ap-

plying this expression to the electron velocity within the

given limiting parameter values we find Ue ≈ E0/B and

Ui ≈ (�ci/νen)
2E0/B� Ue. We will ignore the steady-state

ion velocity in comparison to the electron velocity so that

the relative velocity becomes Vd ≡ Ue−Ui ≈ Ue in the E re-

Figure 1. Altitude variation of collision frequencies, νe, νi, and tem-

peratures Te, Ti, together with the corresponding variation of the

sound speed, with Vd being the difference between the ion and elec-

tron drift velocities calculated for E0 = 20 and 40 mV m−1. Note

that the collisions frequencies have variable values at the top, while

parameters like Cs,Te,Ti,Vd ≡ Ue−Ui have their values on the

bottom axis. For the altitude range shown we can take the electron

and ion cyclotron frequencies to be constant, ωce = 9.5× 106 and

�ci ≈ 170 rad s−1, respectively, with �ci corresponding to an aver-

age ion mass of 31 amu.

gion, while Vd ≈ 0 in the F region. As far as the steady-

state electron–ion velocity differences are concerned, this is

a good approximation.

We have a net Hall current (the electrojet current) due

to the neutral drag on the ions (Stubbe, 1968) that implies

that electron and ion steady state drifts differ (Primdahl and

Spangslev, 1977). The model for the current generation can

also be understood in the E0×B–moving frame, where the

neutral component is in motion. To interpret the free energy

driving the current as an externally imposed electric field E0

or a neutral wind is merely a question of choosing the frame

of reference.

If we now have a local plasma density enhancement with a

density gradient perpendicular to B with ∇⊥n0 ‖E0×B as

in Fig. 2, we have a local enhancement of the net current in

that region since E0 is imposed externally to give a constant

velocity while the number of charge carriers is locally en-

hanced. The height integrated electron current per unit length

in the direction perpendicular to ∇⊥n0 is denoted I0+ I1 in

the enhanced density region (with density n0+1n between

the two intervals a and b in Fig. 2). This current is not com-

pensated at the boundaries of this magnetic flux tube: in re-

gions a and b, the current I1 therefore has to expand along the

vertical magnetic field lines as illustrated in Fig. 2. It can not

escape downward into the D region because of the high col-

lisionality there with a corresponding low electron mobility.

Upwards, into the F region, we can have a current propagat-

ing (Primdahl and Spangslev, 1977; Primdahl et al., 1987).
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Figure 2. Illustration of a vertical cross-section through a magnetic

flux tube with enhanced plasma density. At the top we show details

of the geometry and density variations, while at the bottom of the

figure we illustrate the currents generated by a steady-state electric

field E0 ⊥ B. The thickness of the E region is D ≈ 10–20 km.

This current will flow along magnetic field lines and in the

direction perpendicular to ∇⊥n0.

The present simple battery model has relations to standard

models for auroral arcs (Boström, 1964; Prölss, 2004). The

density enhancement model ensures that a current will al-

ways have a return current (see Fig. 2) so there is no net

charge building up. The present model corresponds to a cur-

rent generator and has no a priori imposed potential drop.

The current I1 in the model illustrated in Fig. 2 is carried

by the electrons, both in the ionospheric E and F regions.

Since the DC ion mobility is low in the E region, we can

assume the ion drift velocity there to be negligible. By the

ion continuity equation, this assumption has the consequence

that the bulk ion velocity is also negligible at high altitudes.

Due to the abundance of electrons in the E region, a quasi

steady state is achieved rapidly where electrons are flowing

from the large plasma density E region into the smaller den-

sity in the F region. On the side facing the E0×B-drift in

region a in Fig. 2, the electrons have to flow from a smaller

plasma density into the larger density in the E region. In this

latter case, stationary conditions will need more time to be-

come established. In region b in Fig. 2 the electron drift will

enhance upward travelling low frequency waves (Garcia and

Pécseli, 2013), in region a unstable waves are propagating in

the opposite direction.

The conservation of net current (I0+I1) through the cross-

section between regions a and b in Fig. 2 will act as an am-

plification for current densities and average electron flow ve-

locities. For regions outside the enhanced plasma density flux

tube we have a net electrojet current obtained by integrating

over the E region, i.e. I0 = J0D = en0DE0/B. By Kirch-

hoff’s laws we have, for instance, at the region b in Fig. 2

where J1 is the current density, that eD1nE0/B ≈ J1b =

be(n0+1n)Ue, giving the vertical electron drift velocity es-

timate Ue ≈ (1n/(n0+1n))(D/b)E0/B. In the ionospheric

E region (Kelley, 1989) we often have E0 ≥ 20 mV m−1,

which gives E0/B ≈ Cs, with Cs being the ion sound speed,

so we can argue that substantial electron drifts can be

achieved by this mechanism. In Fig. 1 we show two exam-

ples for relative ion–electron horizontal flow velocities in-

duced by E0 ⊥ B in the collisional ionospheric plasma, i.e.

examples for E0 = 20 and 40 mV m−1.

Magnetic field-aligned currents in the polar ionospheres

are observed indirectly by the magnetic field variations they

give rise to or measured “in situ” via instrumented space-

crafts (Smiddy et al., 1977; Primdahl et al., 1979; Lyons

et al., 1979; Primdahl et al., 1987). Observed current den-

sities have a large range of variation, 1–50 µA m−2 are re-

ported, often observed as two current sheaths with opposite

current directions. The variability of these currents along the

space-craft trajectories are large, and it is often assumed that

the lower limit of the thickness of current layers is deter-

mined by the electron Larmor radius, while an upper limit

may be given by the size of the auroral oval. The variability

of the current density is usually assumed to be due to a spa-

tial variation that is sampled by the moving rocket, but with

one rocket only the variation cannot be distinguished from a

larger scale temporal variability.

The field-aligned currents can have sufficient intensity to

make the plasma unstable (Kindel and Kennel, 1971; Garcia

and Pécseli, 2013) and are important for the conditions of

the ionospheric plasma. By plasma currents, here we mean

bulk electron flows. Conditions where the currents are due,

for instance, to energetic electron beams require a different

analysis. We note, however, that in cases where field-aligned

currents are due to fast electron beams, the return current is

generally expected to be carried by slow bulk electron mo-

tions (Arnoldy, 1974).

For a numerical estimate we take a plasma density near

the ionospheric F maximum of 1012–1013 m−3: in this case, a

current density of J ≈ 50 µA m−2 corresponds to an electron

velocity of 30 m s−1, i.e. 10–20 % of the ion sound speed, Cs.

At higher altitudes, 1500 km for instance, the plasma den-

sity decreases to approximately 5×108 m−3, as observed by

the Freja satellite (Khotyaintsev et al., 2001), and the elec-

tron flow velocity has to increase correspondingly in order to

maintain a constant net vertical current.
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260 O. E. Garcia et al.: Field-aligned currents

3 Perturbations of a steady state: a simple model

To illustrate the basic problem addressed in this work we now

consider an analytically solvable steady-state model for the

case where density gradients are aligned with magnetic field

lines. To simplify the problem we let the magnetic field be

vertical along the z axis, with gravitational acceleration g be

in the negative z direction, and consider a one-dimensional

model. We have a momentum equation for isothermal elec-

trons with density ne, bulk fluid velocity ue, charge−e, mass

m and temperature Te,

nemue

due

dz
=−eneE−

d(Tene)

dz
−mneg, (2)

and similarly a momentum equation for the ions with tem-

perature Ti, charge e and mass M ,

niMui

dui

dz
= eniE−

d(Tini)

dz
−Mnig. (3)

Considering the simple generator model outlined in Sect. 2

we assume that the current is carried by the electrons so that

ue 6= 0 and take at first ui = 0. This generator model injects

slow upward moving electrons on one side of a magnetic

field-aligned density enhancement. In the standard terminol-

ogy of electrical circuits, this model corresponds to a current

generator different from a voltage generator applied between

the bottom and top of the ionosphere: we find the former to

be most relevant here.

Model problem with Ti = 0

For the simplest case with Ti ≈ 0, we have E =Mg/e. With

a constant electric field the Poisson equation gives ne = ni.

We thus do not have to assume charge neutrality or quasi-

neutrality explicitly, it follows automatically here irrespec-

tive of the Debye length. If also ue = ui = 0 we find a sim-

ple solution ne = n0 exp(−z(M +m)g/Te), where n0 is the

plasma density at z= 0. In this equilibrium, the electron

pressure sets up an electric field that balances the gravita-

tional force on the ions. There is no current associated with

this electric field.

For ui = 0, ue 6= 0, the electron continuity equation with a

constant outgoing electron flux gives uene = ue0n0. Since the

plasma density decreases with increasing altitude, this im-

plies that electrons must be accelerated in the positive z di-

rection.

With E ≡−dφ/dz, where φ is the electrostatic potential,

we find the following result by integrating the electron mo-

mentum equation with constant Te:

m

2

(ue0n0)
2

n2
= eφ− Te ln

(
n

n0

)
+
m

2
u2

e0−mgz

=−Mgz− Te ln

(
n

n0

)
+
m

2
u2

e0−mgz. (4)

The choice of an integration constant ensures that the elec-

trostatic potential φ = 0 at z= 0, where n= n0. For small z,

the term on the left side of Eq. (4) is negligible due to the

smallness of the electron inertia. However, as the density de-

creases for large z, the velocity increases, and eventually the

left hand term becomes important. On the other hand, we can

approximate (m+M)gz≈Mgz in Eq. (4) and ignore the ef-

fect of the gravitational force on the electrons as compared to

that on the ions. Our steady-state model here, and its gener-

alisations in Sect. 4, differ from models discussed by Knight

(1973) by retaining the gravitational effects that create the

vertical density gradient, which in turn gives rise to a veloc-

ity variation through the continuity equation. As shown in

the following, the resulting basic equations and their gener-

alisations do not allow a global steady-state solution with a

relative electron–ion flow.

In normalised units with η ≡ ne/n0 and ξ ≡ z/L, with

L≡ C2
s /g, we have from Eq. (4):

ξ −A2
=−

A2

η2
− lnη, (5)

or

2(ξ −A2)=− ln

(
η2 exp

(
2A2

η2

))
, (6)

giving

−2A2 exp
(

2(ξ −A2)
)
=−

2A2

η2
exp

(
−

2A2

η2

)
, (7)

with A2
≡

1
2
(m/M)u2

e0/C
2
s ≥ 0, where Cs =

√
Te/M is the

ion sound speed. Only the magnitude of ue0 enters A in

Eq. (6), not its direction. The expression (6) gives the nor-

malised vertical position (i.e. altitude) as a function of

plasma density, see also Fig. 3 that shows ξ = ξ(η) as given

by Eq. (5). The expression (6) already indicates the root of

the problem. We expect that the plasma density varies mono-

tonically with ξ , but see readily that the right hand side of

Eq. (6) has a lower bound and varies monotonically in two

intervals separated by the local maximum at η =
√

2A2. The

altitude variable ξ on the left side of Eq. (6) has, on the other

hand, unbounded variation.

The expression (6) can be inverted analytically by intro-

ducing Lambert’s W function (or the “ProductLog” func-

tion) that often appears in physical problems (Valluri et al.,

2000), sometimes unexpectedly. The function W(x) returns

the principal solution for ζ in x = ζ exp(ζ ), where W(x) is

real for x >−exp(−1). In Fig. 4 we give some basic details,

specifying in particular the two real branches W0 and W−1.

For the normalised density, we find here that

η2(ξ)=−
2A2

W0(−2A2 exp(−2A2+ 2ξ))
. (8)

With η being a physical quantity, we have the left side of

Eq. (8) being positive. Unphysical solutions have the right

hand side of Eq. (8) being negative or complex, where we

Ann. Geophys., 33, 257–266, 2015 www.ann-geophys.net/33/257/2015/
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Figure 3. Variation of ξ = A2
− ln

(
ηexp

(
A2/η2

))
with varying

η, shown here for A= 0.05 and 0.1 with full and dashed lines, re-

spectively. The thin dashed line gives the gravitational exponential

atmosphere without electron flow, i.e. A= 0.

recall that Lambert’s W function can be complex. The nor-

malised electron plasma pressure force −dη/dξ becomes

singular at ξ = ξc ≡ A
2
−

1
2
(1+ln(2A2)), where ξc ≈− ln |A|

for small |A|. The electron density is no longer real-valued

when ξ > ξc. At ξ = ξc we find a singularity in plasma pres-

sure while ue =
√
Te/m there.

A special case is found for A2
= 1/2, where ξc = 0.

For this particular parameter choice we have η2(ξ)=

−1/W0(−exp(2ξ − 1)), but we note that by its definition,

this A value corresponds to ue0 = Cs

√
M/m, which is a very

large and unrealistic value.

The sensitivity of ξc to parameter variations is usually ex-

pressed by the derivative, here dξc/dA= 2A−1/A, which is

large when A is small. The conditions at large altitudes are

extremely sensitive to even small changes in parameters at

low altitudes.

We can also express the normalised electron bulk flow ve-

locity ζ ≡ ue/Cs by first rewriting Eq. (2) as

m

M

due

dz
=−e

E

Mue

−
Te

M

d

dz

1

ue

=−
g

ue

+
C2

s

u2
e

due

dz
, (9)

where we used eE =Mg. With the normalised units used

before, we would write this expression as(
m

M
−

1

ζ 2

)
dζ 2

dξ
=−2. (10)

Since the right hand side is always negative, and the electron

velocity has to increase with altitude for a decreasing density,

i.e. dζ 2/dξ > 0, we require ζ 2 <M/m, or in physical units

ue <
√
Te/m. Since |dζ/dξ | →∞ as |dη/dξ | →∞ as ξ →

ξc, we must have ζ 2
→M/m as ξ → ξc, implying that the

electron flow reaches the thermal electron velocity there.

The simplified fluid model outlined here does not al-

low a general steady state solution for a field-aligned cur-

rent – the solution must be non-stationary. A characteristic

�

0 1 2 3
�5
�4
�3
�2
�1

0
1
2

x

W
�x
�

Figure 4. Illustration of the two real branches of Lambert’sW func-

tion. Full line gives W0(x), dashed line W−1(x). There is a branch-

cut at x =−1/exp(1), marked by ◦.

reference frequency can be estimated by �BV = g/Cs. Us-

ing a definition of the Brunt–Väisälä frequency in the form
√
−gd(lnn0)/dz we note that �BV is a plasma equivalent to

the Brunt–Väisälä frequency. With Cs ≈ 500 m s−1, we have

�BV ≈ 2×10−2 s−1 for the Earth’s gravitational acceleration

g ≈ 9.8 m s−2. A characteristic time scale τc for the forma-

tion of the singularity associated with the W function is then

the length scale ξcL divided by a characteristic velocity, the

sound speed Cs, giving τc ≡ ξcL/Cs = ξcCs/g = ξc/�BV�

1/�BV. The time scale is decreasing for increasing flow ve-

locities. The system tries to build-up a modified steady state

in response to an electron flow induced by a horizontal elec-

tric field E0, but since the state cannot be stationary it breaks

down, and the process repeats, resulting in slow pulsations of

the ionosphere.

4 Generalisations of the model

For the simple idealised model, we can conclude that the

plasma cannot support any global steady-state B aligned

electron flow within a simple standard two fluid model. For

realistic parameter values, only non-stationary solutions can

be expected. Albeit idealised, the model is not unphysical. It

has been used often for simplified plasma studies and it can

be realised in numerical simulations. Even though modifica-

tions of the model (as discussed in the following) give minor

changes in the results, we can expect that the plasma condi-

tions at large altitudes ξ can be very sensitive to field-aligned

electron drifts induced at small altitudes. In the following, we

relax some of the simplifications made in Sect. 3.

4.1 Ionisation and recombination

We have so far ignored ionisation and recombination, which

are important for ionospheric conditions. To include these ef-

fects in a steady-state model we generalise the quasi-neutral

ion and electron continuity equations to become

dnue,i

dz
= α−βn2, (11)

www.ann-geophys.net/33/257/2015/ Ann. Geophys., 33, 257–266, 2015
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where α = α(z) accounts for ionisation and β is a recom-

bination coefficient, which for simplicity we assume to be

constant. Since α is proportional to the neutral density (usu-

ally approximated by an exponential variation), we have

α(z)→ 0 for z→∞. The continuity equations give

ue,i =
1

n

z∫
0

(
α−βn2

)
dz′+ u0,e,i

n0

n
. (12)

In particular we have

z→∞∫
0

(
α−βn2

)
dz′→ CR, (13)

with CR being a constant limit having the dimension of a flux

density. The result (Eq. 13) will be used later on.

We now assume that ions as well as electrons lose all their

momentum at recombination, and that this is the only mo-

mentum loss. In that case we can retain the electron and ion

momentum equations in their original form to account for

the dynamics between collisions. What is then missing is a

frictional momentum loss due to elastic or inelastic electron

and ion collisions with neutrals. To simplify the notation we

retain Ti = 0 and u0i = 0 with little loss of generality. Within

this model we obtain a closed equation in the form

1

2

 z∫
0

(
α−βn2

)
dz′+ ue0n0

2

=

−
n2Mg

m
z−

Ten
2

m
ln

(
n

n0

)
+

1

2
n2u2

e0. (14)

For large z we can introduce the asymptotic limiting constant

(Eq. 13) found for the left side to give

(CR)2 ≈−
n2Mg

m
z−

Ten
2

m
ln

(
n

n0

)
+

1

2
n2u2

e0. (15)

In normalised units, where we let a constant C2 represent the

constant left side of Eq. (15), we find

−C2
≈ η2

(
ξ + lnη−A2

)
, (16)

in general with A 6= C. Compared to the case A= C, see

Eq. (5), we find that if C < A then the singular point for the

pressure force is moved to larger ξ , while C > A implies that

the singularity is found for smaller ξ . Ionisation and recom-

bination changes the position of the singularity at ξc but does

not remove it.

4.2 Altitude varying parameters, including finite ion

temperatures

The basic model can be further modified and generalised to

demonstrate that for a wide range of conditions the prob-

lem prohibits global steady-state conditions. The modifica-

tions included are finite ion pressures, Ti 6= 0, and finite bulk

ion flow velocities, ui 6= 0. The constant A is generally small

since we expect ue < Cs so ξc is generally a large altitude.

Finite ion temperatures, in particular, will modify the simple

constant electric field E =Mg/e that is found for the case

with Ti = 0.

The divergence of a magnetic flux tube might be impor-

tant, so we write the steady-state electron continuity equa-

tion as ueneF(z)= ue0n0 where F(z) accounts for an alti-

tude varying magnetic flux tube cross-section. For a magnetic

dipole, we use F(z)= (z0+z)
3/z3

0 where z0 is the reference

level taken to give F(z= 0)= 1. For ionospheric applica-

tions, we can take z0 to be of the order of the Earth radius

RE with sufficient accuracy. The the flux-tube cross-section

variation is the same for both ions and electrons.

For large ξc the assumption of a constant gravitational ac-

celeration need not be fulfilled either so we replace the grav-

itational potential in Eq. (4) or (15) as gz→ gz/(1+ z/z0),

taking again the reference level for the gravity potential at

z= 0. Quasi neutrality, ni ≈ ne ≡ n, is now an explicit ap-

proximation. The standard and by now classical model of

Pannekoek (1922) and Rosseland (1924) is recovered for

a static thermodynamic equilibrium with Te = Ti = const.

More generally we have the equilibrium solution for constant

electron and ion temperatures n= n0 exp(−(m+M)g/(Te+

Ti)) with eE = (MTe−mTi)g/(Te+Ti)≈MgTe/(Te+Ti).

The analysis includes the results of Sect. 3 as a special limit,

but the general case does not allow a simple graphical inter-

pretation as in Fig. 3.

To generalise the foregoing results from the simplified

model, again we use the basic Eqs. (2) and (3) and assum-

ing quasi-neutrality, ne ≈ ni ≡ n, we find a generic form by

adding Eqs. (2) and (3):

1

2
n

d(mu2
e +Mu

2
i )

dz
=

−
d(Te+ Ti)n

dz
−Mn

g

(1+ z/z0)2
. (17)

Inclusion of momentum conserving electron–ion collisions

in the original Eqs. (2) and (3) will not change the result

(Eq. 17). The reference density n0 does not appear in this for-

mulation of the basic equation. Referring to the basic prob-

lem (see Fig. 2) we again assume that ui ≈ 0 and denote the

bulk electron velocity by u.

Here it turns out to be a simplification to express the equa-

tions in terms of the bulk electron flow velocity rather than

the plasma density. Using the steady-state continuity equa-

tions in the general form nuF = n0u0, we therefore eliminate

the plasma density to have

m

M

1

F

du

dz
=−

d

dz

(
C2

s

Fu

)
−

1

Fu

g

(1+ z/z0)2
. (18)

We tookC2
s ≡ (Te+Ti)/M and allow for an altitude variation

of the temperatures, so that C2
s = C

2
s (z). With a little algebra
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we find that

m

M

du

dz
=
C2

s

u2

du

dz
−
F

u

d(C2
s /F )

dz
−

1

u

g

(1+ z/z0)2
, (19)

or

1

2

(
m

M
−
C2

s

u2

)
du2

dz
=

−

(
F

d(C2
s /F )

dz
+

g

(1+ z/z0)2

)
, (20)

to be compared with Eq. (10). As for the solar wind problem

(Parker, 1958; Cranmer, 2004; Parks, 2004) we find that a

steadily increasing velocity u with du/dz > 0 implies that

an electron flow velocity that is slow at low altitudes, u <

Cs

√
M/m≡

√
Te/m, and increasing, will make the left hand

side of the expression change sign, so that at some point zc

we must have a change in sign of the right hand side as well,

i.e.

F(zc)
d

dz

(
C2

s (z)

F (z)

)∣∣∣∣
z=zc

=−
g

(1+ zc/z0)2
, (21)

which defines the altitude where the electron flow velocity

becomes super-thermal. For the special case with Cs constant

and F = (1+ z/z0)
3 we have

1

F

dF

dz

∣∣∣∣
z=zc

=
3

z0

1

1+ zc/z0

=
g/C2

s

(1+ zc/z0)2
, (22)

giving zc = z0

(
1
3
z0g/C

2
s − 1

)
. For realistic parameters we

have z0� C2
s /g so this expression has solutions for z > 0

in general, but at a distance zc equaling many Earth radii. If

F = constant with a “flat Earth”, we have no such solution.

We do not know yet, however, whether this super-thermal

flow can be reached by realistic injection velocities u(0)=

u0. A solution u2
= C2

sM/m= Te/m at some altitude where

the right hand side of Eq. (20) differs from zero requires that

du2/dz becomes singular at this position.

To determine the position where the bracket-terms on the

left side of Eq. (20) is zero, we first rewrite Eq. (20) as

m

M

du2

dz
−C2

s

dlnu2

dz
=

− 2

(
F

d(C2
s /F )

dz
+

g

(1+ z/z0)2

)
. (23)

The right hand side is a known continuous function of z and

can in principle always be integrated to give

K(z)≡

− 2

z∫
0

(
F(z′)

dC2
s (z
′)/F (z′)

dz′
+

g

(1+ z′/z0)2

)
dz′, (24)

so that

m

M

du2

dz
−C2

s

dlnu2

dz
=

dK

dz
. (25)

This equation can be solved numerically for given Cs =

Cs(z) but gives difficulties for analytical results. Taking Cs

to be constant we can, however, find

K(z)= C2
s lnF 2(z)+ 2

gz0

1+ z/z0

, (26)

so that integration of Eq. (25) gives

m

M

(
u

Cs

)2

− ln

(
u

Cs

)2

=

lnF 2(z)+ 2
z0g/C

2
s

1+ z/z0

+CK.

The integration constant CK is determined by requiring

u(0)= u0. We can rewrite the previous expression as

ln

(
C2

s

u2
exp

(
u2

C2
s

m

M

))
= lnF 2(z)+ 2

z0g/C
2
s

1+ z/z0

+CK,

or

C2
s

u2
exp

(
u2

C2
s

m

M

)
= exp

(
lnF 2(z)+ 2

z0g/C
2
s

1+ z/z0

+CK

)
= F 2(z)exp

(
2z0g/C

2
s

1+ z/z0

)
C1, (27)

introducing a new integration constant C1 to be determined.

With F(0)= 1 we find

C1 =
C2

s

u2
0

exp

(
u2

0

C2
s

m

M

)
exp(−2z0g/C

2
s ). (28)

Since z0g/C
2
s � 1 and generally u0 ≤ Cs we expect C1�

1. We can solve for u2/C2
s and find in terms of Lambert’s

W function(
u

Cs

)2

=

−
M

m
W0

(
−

m/M

F 2(z)C1

exp

(
−2

z0g/C
2
s

1+ z/z0

))
, (29)

which is a physically acceptable global solution when the

right hand side is real and positive for all z. The correspond-

ing expression for the normalised plasma density η becomes

η2
=−

(m/M)(u0/Cs)
2

W0

(
−

m/M

F 2(z)C1
exp

(
−2

z0g/C
2
s

1+z/z0

)) . (30)

Numerical solutions of Eq. (20) with altitude vary-

ing sound speeds are shown in Fig. 5, where we use a

model for the altitude variation in the form Cs(z)= Cs0(1+

www.ann-geophys.net/33/257/2015/ Ann. Geophys., 33, 257–266, 2015



264 O. E. Garcia et al.: Field-aligned currents
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Figure 5. Numerical results for the electron fluid velocity with al-

titude varying sound speeds. We use the sound speed Cs0 at z > 0

for normalisation. The heavy line has AC = 2; the dashed heavy

line AC = 1. A thin dashed line gives the Lambert W solution

with constant Cs for reference, i.e. AC = 0. In all cases we have

u0 = 0.01Cs0.

AC(2arctan(z)/π)4) with AC being a constant. The numeri-

cal solutions are inaccurate at the singularity, while the thin

dashed line for Cs= constant uses the exact analytical result

Eq. (29). The singularity in the velocity variation is delayed

when the sound speed increases with altitude. The effect can

qualitatively be accounted for by taking an enhanced aver-

age electron temperature instead of T0. The restriction in us-

ing a constant sound speed is thus not significant. In Fig. 6

we show for completeness the variation of the normalised

density with normalised altitude for the three cases shown in

Fig. 5. The evolution of a steep vertical gradient can be noted.

The pressure gradient becomes singular at this position.

Inspection of Eq. (17) indicates that the ion tempera-

ture merely adds to the electron temperature, and is con-

sequently of minor importance. It is found, however, that

Ti 6= 0 changes the electric field from its constant value

E =Mg/e obtained with Ti = 0 and ui0 = 0 to E =Mg/e+

n−1d(Tin)/dz with Ti being a prescribed function of z, pos-

sibly a constant, while n= n(z)= n0u0/u(z) is determined

analytically when u(z) is determined as shown in this sec-

tion.

4.3 Electron flow velocity solutions

Some insight into the electron flow solution u= u(z) can be

found by rewriting Eq. (27) in dimensionless form by intro-

ducing ϑ ≡ (u/Cs)
√
m/M and ξ = z/L giving

exp(ϑ2)

ϑ2
=

exp(ϑ2
0 )

ϑ2
0

exp(−2z0/L)

× (1+ ξL/z0)
6 exp

(
2

z0/L

1+ ξL/z0

)
≡

exp(ϑ2
0 )

ϑ2
0

Z0(ξ). (31)

The left side is a function of ϑ solely, while the right hand

side is a function of ξ only, with parameters being M/m,

0 5 10 15 20

0.001

0.01

0.1

1

Ξ

n�
Ξ�
�n

0

Figure 6. Variation of normalised density with normalised altitude

for the three cases shown in Fig. 5.

L/z0 and the normalised injection velocity ϑ0. The two for-

mer parameters are given by the plasma conditions. In par-

ticular we have z0 equaling the Earth radius + the dis-

tance to the ionospheric E region, so that z0 ≈ RE where

RE ≈ 6.4× 106 m is the Earth radius, implying L/z0� 1.

For reference we show in Fig. 7 the left and right hand sides

of Eq. (31), where we omit the multiplier exp(ϑ2
0 )/ϑ

2
0 from

the right hand side. Both expressions exist (are single val-

ued) and are real for all values of the respective variables.

It is clear that Eq. (31) will always have solutions, but for

a physically acceptable solution we require it to exist and

be real-valued for all altitudes z, i.e. all ξ . The left side has

one and only one minimum at ϑ = 1 with functional value

exp(1). The right hand side has also one and only one min-

imum value at ξ = 1
3
(2− 3L/z0)/(L/z0)

2 with functional

value (2exp(1)/3)3 exp(−2L/z0)(z0/L)
3 exp(ϑ2

0 )/ϑ
2
0 . In or-

der to have physically acceptable solutions we consequently

require that the minimum value of the right hand side is equal

to or larger than exp(1), otherwise there will be a ξ -interval

without real solutions. This criterion gives the inequality

(
2exp(1)

3

)3(z0

L

)3

exp
(
−2
z0

L

) exp(ϑ2
0 )

ϑ2
0

≥ exp(1), (32)

giving

exp(ϑ2
0 )

ϑ2
0

≥

(
3

2

)3(
L

z0

)3

exp
(

2
(z0

L
− 1

))
. (33)

The right hand side of the inequality Eq. (33) is illustrated in

Fig. 8 for varyingL/z0. Typical values ofL in the ionosphere

are 50–100 km and z0 ≈ RE. Since L/z0� 1 for conditions

relevant to the Earth’s ionosphere, we might conclude that it

will never be possible to find a physically acceptable global

solution for Eq. (33) and thereby a steady-state electron flow

under the conditions described in Sect. 2 with ue0 < Cs, cor-

responding to ϑ0 <
√
m/M . Our conclusion is that only non-

steady flows should be expected in response to an induced

electron flow, as described in Sect. 2, with reference to Fig. 2.

Conditions for the existence of a steady electron outflow re-

quires ionospheric temperatures much larger than those ob-

served i.e. requiring much larger values of L/RE.
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Figure 7. Illustration of the left and right hand sides of Eq. (31).

In (a) we have the left side as a function of ϑ2 and in (b)

we show Z0(ξ)≡ exp(−2z0/L)(1+ ξL/z0)
6 exp(2(z0/L)/(1+

ξL/z0)). Note the different representations on the axes. In (b)

we have the full line for L/z0 = 0.025 and the dashed line for

L/z0 = 0.05.

The analysis of the present communication emphasises

electron flows induced by a current injection mechanism as

in Fig. 2, but we note the results can readily be generalised

to account for ion flows as well.

5 Conclusions

The results presented here are as far as we could come an-

alytically. Simple collisional friction terms for electrons and

ions have been studied numerically, without causing changes

in our conclusions. The results in this case also depend crit-

ically on small variable terms describing conditions in the

lower part of the ionosphere. Also in this case we will have

a large temporal variability of plasma conditions at large al-

titudes that need not be associated with local plasma insta-

bilities. The lower parts of the ionosphere, the E region in

particular, are often unstable with respect to excitation of low

frequency, long wavelength perturbations that has been stud-

ied in great detail (Kelley, 1989), and these disturbances will

cause fluctuations in ξc.

The basic features of the solution (i.e. a singular point for

the plasma pressure force) remain if ionisation and recombi-

nation are included, as well as variations of the cross-section

of magnetic flux tubes, variation of the gravitational force

with distance and altitude variations of electron and ion tem-

peratures. The critical altitude ξc can be made large by taking

small values of the injected electron flow velocity. A possibil-

ity for nontrivial steady-state current carrying solution is that
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im

um
�

Figure 8. Illustration of the right hand side of the inequality Eq. (33)

for varying L/z0.

the altitude given by the critical altitude becomes too large to

be of practical interest. It can thus be argued that if η(ξ) ex-

ists (is real) up to values of ξc equaling many Earth radii, then

the problem is not really relevant, but by this we implicitly

impose a maximum value for A2. Since A2 is proportional

to the imposed flow velocity in the boundary condition, this

restriction is in reality the same as an electron velocity limit

and thereby also a current density limitation. The location of

a current closure region is most likely to be at some 10 Earth-

radii or more (Primdahl and Spangslev, 1983), implying that

a steady-state well-behaved solution should have the pres-

sure force singularity at a position larger than this. We es-

timate that an electron flow velocity u0 should be less than

Cs0(M/m)exp(−10RE/L) to have the pressure singularity

at an altitude of approximately 10RE or more. For relevant

cases this is a very small velocity. For most conditions we

find the critical altitude to be smaller than RE.

We might speculate that a kinetic modelling, e.g. in the

form of an electrostatic double layer, might be necessary to

remedy the fluid singularity at ξc. This conjecture could be

resolved by numerical simulations.

A complete description of the battery mechanism dis-

cussed in Sect. 2 of this communication requires modelling

the current closure, which for ionospheric conditions implies

a study of the full inhomogeneous magnetic field configura-

tion (Primdahl and Spangslev, 1977, 1983). This analysis is

outside the scope of the present study.

The problem discussed in this work is related to the stan-

dard Parker model for the solar wind (Parker, 1958; Parks,

2004) and that problem has also found analytical results ex-

pressed by Lambert’s W function (Cranmer, 2004). Mag-

netic field-aligned density gradients can be generated also

in laboratory plasmas (D’Angelo et al., 1976), and basic ele-

ments of the present analysis can be applied there as well. Al-

though these and other problems are mathematically related

to the topic of the present study, it should be emphasised that

the physical conditions, the boundary conditions in particu-

lar, are different and of a different nature. A general frame-

work for combining these problems might be found (Kruskal,

1965).
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