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Abstract. We reconsider the nonlinear resonant interaction

between three electrostatic waves in a magnetized plasma.

The general coupling coefficients derived from kinetic theory

are reduced here to the low-frequency limit. The main contri-

bution to the coupling coefficient we find in this way agrees

with the coefficient recently presented in Annales Geophys-

icae. But we also deduce another contribution which some-

times can be important, and which qualitatively agrees with

that of an even more recent paper. We have thus demonstrated

how results derived from fluid theory can be improved and

generalized by means of kinetic theory. Possible extensions

of our results are outlined.

Keywords. Magnetospheric physics (solar wind–

magnetosphere interactions)

1 Introduction

The nonlinear interaction between three waves in the low-

frequency range (i.e. below the ion-cyclotron frequency ωci)

was studied in a recent paper (Lyubchyk and Voitenko, 2014)

by means of a two-fluid plasma model. Such wave interac-

tions are of basic interest in investigations of the solar corona

and the solar wind, as well as in the Earth’s magnetosphere

and ionosphere, and the corresponding nonlinear phenomena

(Shukla, 1999; Eliasson and Shukla, 2009) have also been

observed by spacecrafts (Briand, 2009). It should be noted

here that the space-frame frequencies measured in the so-

lar wind plasma are strongly Doppler-shifted, and that the

plasma rest-frame frequencies can be significantly lower than

ωci. Lyubchyk and Voitenko (2014) have studied the nonlin-

ear interaction of these waves in the electrostatic limit and

outlined, with much physical insight, the decay processes as

well as possible applications.

2 The low-frequency electrostatic coupling coefficient

In the present paper we are going to reconsider the way to de-

duce the results for nonlinear electrostatic wave interaction.

Accordingly, we first remind the reader that it is possible to

write the coupled equations for three waves satisfying match-

ing conditions ω3 = ω1+ω2 and k3 = k1+ k2 as in

dW1,2

dt
=−2ω1,2ImV (1)

and

dW3

dt
= 2ω3ImV, (2)

whereW = ε0E∗ ·(1/ω)∂(ω2ε).E is the wave energy, ε is the

usual textbook dielectric tensor (Swanson, 1989), and ImV

stands for the imaginary part of V (Stenflo, 1994; Brodin and

Stenflo, 1990), where

V =
∑

s
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∫
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∑
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(
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where F0 is the unperturbed distribution function, ωjd =

ωj−kjzvz−pjωc, Ij (= exp(iθj ))= (kjx+ikjy)/kj⊥, ωc =

qB0/m is the cyclotron frequency, q/m the charge to mass

ratio, and B0 = B0ẑ is the external magnetic field. For nota-

tional convenience we have omitted the index “s” denoting

particle species on all quantities. The general velocity vec-

tor ujpj has been presented previously by Stenflo (1994) and
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Brodin and Stenflo (2012). In the electrostatic limit it is

ujpj =
q8j

mωjd

(
1−ω2

c/ω
2
jd

) (4)

·

(
kj −

iωc

ωjd
ẑ× kj −

ω2
c

ω2
jd

kj ẑz

)
Jpj ,

where Ej =−ikj8j is the electric field amplitude of wave

j and Jpj is the Bessel function of order p with ar-

gument kj⊥v⊥/ωc. Furthermore, the wave energy density

can be written Wj = ωjε0k
2
j

∣∣8j ∣∣2∂ (ε(ωj ,kj ))/∂ωj , where

ε(ωj ,kj ) is the scalar dielectric function in the electrostatic

limit, described by the well known formula (cf. Hasegawa,

1975; Swanson, 1989; Stenflo, 1994):

ε(ωj ,kj )= 1+
∑
s,p

q2

mε0k
2
j

∫
dv

ωjd

(
pωc

v⊥

∂F0

∂v⊥
+ kjz

∂F0

∂vz

)
J 2
p .

(5)

The coupling coefficient V determines the growth rate for

parametric instabilities. When wave 3 constitutes the pump

wave, the growth rate γ well above threshold for decay into

waves 1 and 2 is given by

γ 2
=
ω1ω2|V |

2

W1W2

. (6)

Nonlinear wave phenomena involving electrostatic high-

frequency waves have previously been studied by e.g. Yin-

hua et al. (1999). Here we will focus on the opposite regime

with waves with frequencies well below the ion-cyclotron

frequency ωci. Waves in this regime are so-called kinetic

sound waves (KSWs, see e.g. Lyubchyk and Voitenko, 2014

or Zhao et al., 2014b). Evaluating the electrostatic dispersion

relation ε(ω,k)= 0 for a two-component plasma (electrons

and ions) in the low-frequency limit we obtain

1=−
ω2

pe

k2v2
te

+ω2
pi

[
k2
z

k2

∫
G0(vz)dvz

(ω− kzvz)2
+
G1

k2

]
, (7)

where v2
te = 1/

〈
v2

ze

〉−1
and 〈. . .〉 denotes averaging over the

unperturbed distribution function. HereG0(vz) is the ion dis-

tribution function renormalized according to

G0(vz)=

∫
J 2

0 (k⊥v⊥/ωci)F0(v)v⊥dv⊥∫
F0(v)v⊥dv⊥dvz

. (8)

Furthermore

G1 =

∫
2J 2

1 (k⊥v⊥/ωci)(∂F0(v)/∂v⊥)dv⊥dvz∫
F0(v)v⊥dv⊥dvz

. (9)

Under suitable approximations, the dispersion relation

(see Eq. 7) agrees with the fluid approximation for KSWs

(Lyubchyk and Voitenko, 2014):

ω2
=

k2
zc

2
s

1+ k2
⊥
v2

ti/ω
2
ci

, (10)

where c2
s = kB(Te+ Ti)/mi , v

2
ti = kBTi/mi and kB is the

Boltzmann constant. To get this agreement we should drop

the left hand side of Eq. (7) (this quasi-neutral approximation

applies for ω2
pi/ω

2
ce� 1), expand the Bessel functions keep-

ing terms up to k2
⊥
v2
⊥
/ω2

ci, and let (ω− kzvz)
2
→ ω2

− k2
zv

2
ti

in the denominator of the integral over vz (which is a rea-

sonable approximation if the phase velocity is larger than

the ion thermal velocity, such that ion Landau damping is

small). To perform this treatment consistently, we must also

consider ω2
' k2

zc
2
s as a valid first order approximation. As

ω/kz is of the order of cs, we assume here that the ion tem-

perature is smaller than the electron temperature, in order to

avoid large Landau damping of the interacting waves. We

note that in general there is also a high-frequency branch of

magnetized ion acoustic waves with frequencies above the

ion-cyclotron frequency. That mode is not included in our

treatment, however. From now on we are therefore concerned

with three waves that fulfill Eq. (7), and where the approxi-

mation (Eq. 10) applies at least qualitatively.

We next evaluate the coupling coefficient V in the same

limit ω� ωci. We then note that V reduces to the compara-

tively very simple coefficient

Vlf = C81828
∗

3, (11)

where

C = C1+C2, (12)

with its two contributions given by

C1 =
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where G‖(vz)= 2π
∫
∞

0
J01J02J03F0(v)v⊥dv⊥ and J0j =

J0(kj⊥v⊥/ωc). Here we consider for simplicity only unper-

turbed distribution functions which have separable velocity

dependences. The term C1 is due here to the so-called scalar

nonlinearity, whereas C2 is due to the vector nonlinearity

(see Zhao et al., 2015). This follows from Eq. (3) where the

first three terms together constitute the scalar nonlinearity,

whereas the fourth term corresponds to the vector nonlinear-

ity.
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Let us first focus on the term C2. We note that provided

that Eq. (10) is fulfilled at least qualitatively, the electron con-

tribution to C2 is negligible as compared to the ion contribu-

tion. Provided the electron temperature is larger than the ion

temperature, and finite Larmor radius effects are relatively

small, we can simplifyC2 by letting ωj−kjzvz→ ωj as well

as J0j → 1 in Eq. (14). If such fluid-type of approximations

are made, C2 coincides with the expression for the coupling

coefficient presented in Lyubchyk and Voitenko (2014), used

to describe the parametric excitation of KSW : s. However,

our general expression also contains a term C1 that cannot

be neglected in general. We note that in C1, both the electron

and ion contributions must typically be kept, at least if the

electron and ion temperatures are of the same order. Further-

more, if we only use an expansion in ω/ωci, which applies if

the angles of propagation obey kjz ∼ kj⊥,C1 is 1 order larger

than C2. This may suggest that C1 is more important than

C2 in the (low-frequency) regime of consideration. However,

this is not necessarily true. To clarify the situation we need

to separate between the case where the pump wave (assumed

to have index 3) fulfills k3z� k3⊥ (case 1) and the case with

k3z ∼ k3⊥(case 2). We first consider case 1. We note that the

preferred decay channel has daughter waves that maximize

the growth rate. As the growth rate is directly proportional

to the coupling coefficient, and C2 (but not C1) increases

with perpendicular wavenumber, we note that the maximum

growth rate occurs for large perpendicular wavenumber ful-

filling

k2
1,2⊥� k2

1,2z

ωci

ω1,2

, (15)

in which case C1 is small as compared to C2. Thus for pump

waves with k3z� k3⊥, the result of Lyubchyk and Voitenko

(2014) is essentially confirmed. Nevertheless, we note the

usefulness of kinetic theory presented here, as this theory is

needed to describe the finite Larmor radius effects that satu-

rates the growth of C2 with k2
1,2⊥, as contained in the Bessel

function dependence of G‖(vz).

Next we consider case 2. For moderate values of k3⊥ ∼

k3z, the term C2 still increases with perpendicular wave

number of the daughter waves, but only linearly in k1⊥ as

(k1⊥× k2⊥)z = (k1⊥× k3⊥)z. This means that we need

k1,2⊥' |k1.2z|
ωci

ω1,2

(16)

for C2 to be of the same magnitude as C1. Given the disper-

sion relation (Eq. 10), the condition (Eq. 16) means that we

are in the kinetic regime. Thus both terms C1 and C2 must

be kept, the Bessel functions cannot be expanded, and the

substitution ωj − kjzvz→ ωj should be avoided. Finally we

note that the conditions (Eqs. 15 and 16) for large perpen-

dicular wavenumbers can be forbidden due to the resonance

conditions, in case the interacting waves are propagating in

the same direction along the magnetic field. For counterprop-

agating waves (i.e. different signs of k1z and k2z), however,

these conditions can be satisfied. As a consequence, the max-

imum magnitude of C2, which implies the strongest interac-

tion, occurs for counterpropagating waves. This has previ-

ously been pointed out by Voitenko (1998). In addition, one

can see that the factor (k2z/ω2d − k1z/ω1d) in Eq. (3) also

indicated this fact.

3 Conclusions

As described in some detail by Lyubchyk and Voitenko

(2014), decays into electrostatic waves are of particular rele-

vance for the solar wind plasma. However, it should be noted

that other decay channels are also possible; see Brodin and

Stenflo (1990), as well as Zhao et al. (2014a), wherein kinetic

Alfvén waves are an important ingredient in the nonlinear in-

teraction of the solar wind plasma. A relevant question is how

the signature of the present process can be seen in space-

crafts’ observations of the solar wind (Briand, 2009). The

plasma rest-frame frequencies studied here will generally be

Doppler-shifted by a term kj · vs, where vs is the spacecraft

velocity. Since the wavevectors of the interacting waves can

differ both in directions and magnitude, the frequency shift

will vary accordingly. In particular the frequency shifts of

the daughter waves fulfilling the conditions (Eqs. 15 and 16)

will be very large, unless the spacecraft propagates parallel

to the magnetic field. The pump wave can be scattered both

forwards and backwards, depending on the particular situa-

tion.

Finally, we stress that the present coupling coefficient

(Eq. 12) which has been derived for a collisionless plasma,

can be significantly changed when collisional effects are

taken into account (Stenflo, 1971; Kuo et al., 1998; Bulgakov

and Shramkova, 2007). This is however outside the scope of

the present work, but has to be taken into account in future

applications.

The topical editor C. Owen thanks B. Eliasson and one anonymous

referee for help in evaluating this paper.
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