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Abstract. To investigate the physical mechanism responsible
for substorm triggering, we performed a superposed-epoch
analysis using plasma and magnetic-field data from THEMIS
probes. Substorm onset timing was determined based on au-
roral breakups detected by all-sky imagers at the THEMIS
ground-based observatories. We found earthward flows as-
sociated with north–south auroral streamers during the sub-
storm growth phase. At aroundX = −12 Earth radii (RE),
the northward magnetic field and its elevation angle de-
creased markedly approximately 4 min before substorm on-
set. Moreover, a northward magnetic-field increase associ-
ated with pre-onset earthward flows was found at aroundX =

−17RE. This variation indicates that local dipolarization oc-
curs. Interestingly, in the region earthwards ofX = −18RE,
earthward flows in the central plasma sheet (CPS) reduced
significantly approximately 3 min before substorm onset,
which was followed by a weakening of dawn-/duskward
plasma-sheet boundary-layer flows (subject to a 1 min time
lag). Subsequently, approximately 1 min before substorm on-
set, earthward flows in the CPS were enhanced again and at
the onset, tailward flows started at aroundX = −20RE. Fol-
lowing substorm onset, an increase in the northward mag-
netic field caused by dipolarization was found in the near-
Earth region. Synthesizing these results, we confirm our pre-
vious results based on GEOTAIL data, which implied that
significant variations start earlier than both current disruption
and magnetic reconnection, at approximately 4 min before
substorm onset roughly halfway between the two regions of
interest; i.e. in the catapult current sheet.

Keywords. Magnetospheric physics (magnetotail; storms
and substorms) – space plasma physics (magnetic reconnec-
tion)

1 Introduction

Substorms are phenomena which take energy from the solar
wind, store it as a form of magnetic-field energy, and then re-
lease that stored energy over a short time interval, triggered
by some mechanism. During a substorm, field-aligned cur-
rents above the polar ionosphere intensify and auroral ac-
tivity is enhanced. Associated with these variations, auro-
ral electro-jet currents are intensified, resulting in heating of
both the plasma and neutrals in the polar ionosphere. Mean-
while, current disruption (CD) and magnetic-field dipolar-
ization occur in the night-side magnetosphere at a distance
of approximately 10 Earth radii (RE; defined with respect to
the centre of the Earth). In addition, fast plasma flows as-
sociated with southward-directed magnetic fields (known as
“plasmoids”) are formed in the magnetotail beyond∼ 30RE.
In this manner, substorms play an important role in stabi-
lizing the Earth’s magnetosphere by releasing its excess en-
ergy. The processes characterizing substorms are related to
one another, and various aspects of substorms have been
studied since their discovery (e.g. Akasofu, 1964; Russell
and McPherron, 1973; Nishida, 1978). In addition, many
models have been proposed to explain their properties, such
as the near-Earth neutral-line (NENL) model (Hones, 1976;
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Baker et al., 1996), the CD model (Chao et al., 1977; Lui et
al., 1990; Lui, 1996), the thermal-catastrophe model (Smith
et al., 1986), the boundary-layer model (Rostoker and East-
man, 1987), the magnetosphere–ionosphere (M–I)-coupling
model (Kan et al., 1988), the ballooning-instability model
(Roux et al., 1991; Cheng and Lui, 1998), the field-line res-
onance (FLR) model (Samson et al., 1992), the plasma-sheet
divergence model (Lyons et al., 2003) and the near-Earth
transition-region (NETR) model (Haerendel, 2010), among
others. However, most arguments related to substorm trig-
gering focus on whether they start from about 8RE downtail,
as predicted by the CD model, or from∼ 20RE earthwards,
as predicted by the NENL model. Thus far, no consensus has
been reached.

In this context, Nishimura et al. (2010) reported that a spe-
cific sequence of events determines substorm onsets; i.e. they
are initiated by a poleward boundary intensification (PBI)
and flow through north–south arced motion equatorwards
(“N–S streamers”), towards the quiet arc at the onset’s lat-
itude. This suggests the importance of earthward transport
of new plasma during a substorm’s onset. Recently, these au-
thors also reported that the earthward plasma flows which are
associated with N–S streamers must originate from the dis-
tant neutral line (DNL) rather than the NENL, based on ob-
servations with the ARTEMIS probe in conjunction with au-
roral observations using the THEMIS ground-based all-sky
imager (ASI) array. They suggested that the NENL is not
related to either pre-onset flow or auroral activity, but that it
becomes active during the expansion phase (Nishimura et al.,
2013).

Meanwhile, our superposed-epoch analyses of GEOTAIL
data have shown that magnetic reconnection and dipolar-
ization in the near-Earth magnetotail occur simultaneously
(within a 2-minute time interval, which is equivalent to our
time resolution) with auroral breakup, and we also found the
variations commonly regarded as precursors to substorm on-
set halfway between the NENL and the dipolarization re-
gion. Guided by this result, we proposed a new mechanism
of substorm triggering: the catapult (slingshot) current-sheet
relaxation model (Machida et al., 2009). In this model, the
DC Poynting flux towards the central plasma sheet (CPS)
is enhanced during the substorm’s growth phase. Approx-
imately 4 min before its onset, the catapult current sheet
relaxes, causing earthward plasma flows which accompany
low-frequency electromagnetic waves just prior to substorm
onset. The catapult current sheet couples strongly with the
near-Earth region, producing large perturbations that initiate
current disruption and magnetic-field dipolarization. At the
same time, the tailward edge of the catapult current sheet be-
comes very thin, so that a magnetic neutral line, specifically
the NENL, forms and magnetic reconnection starts. The most
important feature of this model is that the cause of substorm
triggering is located halfway between the CD regions and the
NENL.

In the present study, we perform a superposed-epoch anal-
ysis using THEMIS data to further confirm the validity
of various substorm triggering models, including our own
model.

2 Method of analysis

Several of our previous studies (Machida et al., 1999;
Miyashita et al., 1999, 2000, 2003, 2009) focused on struc-
tural changes in theX–Y plane (i.e. the equatorial projec-
tion of the near-Earth magnetotail) during substorms; oth-
ers focused on structural changes in the meridionalX–Z

plane (Machida et al., 2000, 2009). The method used in
our previous studies has the advantage that it enables us
to investigate both temporal and spatial variations in var-
ious parameters based on a minimum number of assump-
tions, and that it offers a perspective view of substorms. Here
we focus on both the structure in theX–Z plane and tem-
poral evolution in the equatorial plane using data from the
five THEMIS probes (Angelopoulos et al., 2008a) to per-
form a superposed-epoch analysis. Magnetic-field data and
plasma-moment data obtained with the Flux Gate Magne-
tometer (FGM) (Auster et al., 2008), Electrostatic Analyzer
(ESA) and Solid State Telescope (SST) (McFadden et al.,
2008) instruments onboard the THEMIS probes (each with
3 s time resolution) are used. Using these data is advanta-
geous in the sense that the THEMIS probes explore the mag-
netosphere inside 10RE, where CD and dipolarization occur,
and significant auroral activity is mapped onto that region.
In addition, the use of simultaneous observations from five
probes increases the data volume. To further improve the re-
liability of our superposed-epoch analysis, we used the auro-
ral substorm onset list prepared by Nishimura et al. (2010),
who obtained substorm onset times from auroral breakups,
and the THEMIS ASI data with its remarkably short single-
frame time resolution, typically 3 s. Our analysis covers
the period from November 2007 to April 2009, which in-
cludes both the period investigated by Nishimura et al. (2010)
and also an extended period publicly accessible on the
Web athttp://www.atmos.ucla.edu/~toshi/files/paper/Toshi_
THEMIS_GBO_list_distribution.xls. Those events which
were preceded by pseudo-breakups, as well as those compris-
ing multiple onsets, were kept, but we selected only the first
substorm onset for our analysis in these cases. Events accom-
panied by clear N–S streamers and those without clear N–S
streamers were both contained as was done by Nishimura et
al. (2010). However, they found that streamers are commonly
seen several minutes prior to auroral substorm onset.

We selected data from the intervals when each THEMIS
probe was located individually in the region defined by
−7.5 > X(RE) > −23 and −2.5 < Y(RE) < 7.5, where
X and Y are the probe’s location in Geocentric Solar
Magnetospheric (GSM) coordinates. We collated these data
in columns with 1RE width in theX direction in the region
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Fig. 1. Schematic illustration of our method of obtaining structures
in the meridional (X–Z) plane.

earthwards of−11.5RE, just like we did with the GEOTAIL
data (Machida et al., 2000). BeyondX = −11.5RE, we set
the column width to 2RE, so as to adjust for the limited num-
ber of THEMIS observations on the tailward side (see Fig. 1).
A total of 642 events were analysed; we assigned multiplicity
orders ofN when the data fromN different probes were used
for a given event. (The net number of substorms detected
was 195.) We assigned the data to the appropriate column
depending on theX coordinate of each probe. The numbers
of events assigned to each column were 43, 74, 111, 201,
122, 19, 24, 35, 6 and 7 for the columns centred at−8, −9,
−10,−11,−12,−14,−16,−18,−20 and−22RE, respec-
tively. Next, we sorted the data into 3 s resolution units for
every 1 min (i.e. one event is composed of 20 data points),
assuming that events with largerβiX = nkTi/(B

2
X/2µ0) val-

ues were located closer to the plasma sheet’s centre. Here,n,
Ti , BX, k andµ0 are the plasma density, the ion temperature,
theX component of the magnetic field, Boltzmann’s constant
and the magnetic permeability of free space, respectively.

We separated each column into seven bins to homogenize
the number of data points in each bin. We subsequently eval-
uated the physical parameters in each bin by averaging the 3 s
resolution data, such as the ion number density, temperature
and velocity vector, as well as the magnetic-field vector, over
1 min intervals. An advantage of this method, compared with
that in whichβiX is taken as the ordinate, is that it provides
information regarding the scale length (thickness) in theZ

direction. (The probability of detecting a particular struc-
ture is approximately proportional to its thickness.) We show
the distribution ofβiX in the X–Z (proxy) plane in Fig. 2a
and that ofβi = nkTi/(B

2/2µ0) for the three components
of the magnetic field in Fig. 2b, for reference. The inclina-
tions of the five THEMIS probes were 7.0◦ for P1 and P2,
9.0◦ for P3 and P4, and 4.5◦ for P5; they are distributed

around an inclination of 7.5◦, the value of the GEOTAIL in-
clination. The apogees are 31.6, 19.8, 12.1, 12.1 and 10.0RE
for THEMIS P1 through P5, respectively, and all THEMIS
probes have perigees in the range between 1.1RE and 1.4RE.
In contrast, the GEOTAIL apogee is 30.0RE and its perigee
is 10.0RE. According to the model of Tsyganenko and Fair-
field (2004), the approximate upperZ limit scanned by the
THEMIS probes is 6RE, which is almost the same as that
pertaining to the GEOTAIL data.

3 Results

3.1 Temporal evolution of the meridional structure

Figure 3a shows the northward magnetic fieldBZ in the
X–Z (proxy) plane. The contribution from the Earth’s
dipole magnetic field is significant on the earthward side
of X ∼ −12RE. BeyondX ∼ −12RE, a BZ ∼ 0 region is
present on the side of the lobe. The nonzeroBZ field ex-
tends from the inner dipole magnetic field toX ∼ −20RE.
Near X ∼ −14RE, BZ becomes smaller than in both its
earth- and tailward neighbours in the CPS. Figure 3b
shows the elevation angle of the local magnetic-field vec-
tor θ = atan[BZ/sqrt(B2

X+ B2
Y )], which has similar charac-

teristics to those of the northward magnetic field,BZ. The
earthward side ofX ∼ −12 RE is affected by a large con-
tribution from the Earth’s dipole magnetic field, to which
a relatively thin layer of nonzeroθ (corresponding to the
thin plasma sheet) is added. The tailward boundary of this
layer approaches Earth untilt = −3 min and the layer is thin
aroundX = −14RE, reflecting the smallBZ field in that re-
gion. TheBZ values are very small beyondX ∼ −20RE (not
shown). The thickness of the nonzeroθ layer in the region
−12 >X(RE) >−20 seems to become smaller untilt = 0,
causing magnetic-field stretching.

Figure 3c shows the plasma pressure,Pth (i.e. the sum
of the ion thermal pressure measured by ESA and SST)
and the electron thermal pressure measured by ESA. Inside
X ∼ −12RE, the plasma sheet is thick. In the vicinity of
X = −14RE, there is a gap similar toBZ andθ . The other
high-pressure area covers the region fromX ∼ −15RE to X

∼ −19RE.
Figure 4a–c shows the time evolution of1BZ, 1θ and

1Pt ; i.e. the deviations of the northward magnetic field, the
elevation angle and the total pressure (i.e. the sum of the
plasma pressure and the magnetic pressure), respectively, us-
ing average values (t = −12 min tot = −10 min). As shown
in Fig. 4a, the increase caused by dipolarization starts at
t = 1 min and progresses to a very wide area earthwards of
X = −12RE at t = 2 min. A small positive1BZ region in
the CPS atX ∼ −16RE is related to the earthward flows.
Negative1BZ variations, however, appear along almost the
entire boundary between the plasma sheet and lobe att =

−6 min and they are again noticeable atX ∼ −11RE and
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Fig. 2.Temporal evolution of(a) βiX and(b) βi , as defined in the text.

X ∼ −20RE. This BZ decrease is one of the most distinc-
tive signatures to occur in the near-tail region. TheBZ de-
crease on the earthward side seems to reflect the same vari-
ation as that recently reported by Saito et al. (2010). After
substorm onset, the earthward side of this negative1BZ vari-
ation is overcome by a positive1BZ contribution. The varia-
tion of the elevation angle,1θ , is approximately proportional
to 1BZ. Therefore, the time evolution shown in Fig. 4b is
similar to that in Fig. 4a. A large increase in1θ also occurs
abruptly att = 2 min earthwards ofX = −12RE and propa-
gates tailwards.

The total pressure gradually increases on the side of
the lobe untilt = −1 min at−10> X(RE) >−14, which is
caused by magnetic pressure enhancement. In contrast, the
total pressure decrease is caused by a plasma-pressure de-
crease in either the plasma sheet or the near-Earth equato-
rial region. After the onset, the total pressure decreases near
X = −14RE, and it increases both earth- and tailwards of
that region in accordance with the recent results obtained by
Miyashita et al. (2012).
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Fig. 3. Meridional structure of the magnetotail betweenX = –7.5RE andX = −23RE. (a) Northward magnetic field,BZ ; (b) elevation
angle of the magnetic field,θ ; and(c) thermal plasma pressure,Pth, based on ESA and SST data.

Figure 5a–c shows the ion-flow velocities, which are es-
sentially the same as the plasma-flow velocities. Before sub-
storm onset, both CPS flows and plasma-sheet boundary-
layer (PSBL) flows are present atX <−13 RE, as reported
previously (Machida et al., 2009), although the latter are
not necessarily clear in the region tailwards ofX = −18RE
because of limitations inherent to the use of small-number
statistics. The appearance of moderate earthward flows at
X <−13RE prior to substorm onset is consistent with the
result of a previous case study based on THEMIS data (Xing
et al., 2010b). Interestingly, the CPS flows earthwards ofX =

−18RE become weak betweent = −3 min andt = −2 min,
and they are enhanced aftert = −1 min. At t = 0, tailward
flows start to develop atX ∼ −20RE. In the present study,
substorms of different magnitudes are selected and used in
our analysis, but they are all full substorms. Therefore, this
is regarded as the typical nature of full substorms. Also note
that the values of the flow velocities of individual events

exceed the present value, since the flow channel is relatively
confined to within a narrow region, mostly in a given bin in
the CPS region consisting of both flow and nonflow events,
and the values shown are averages.

The absoluteVY value was evaluated, because the flows
bifurcate atX ∼ −11RE and both dawn- and duskward
flows are present. These flows, essentially flows perpendic-
ular to the magnetic field, are populated in the PSBL from
t = −5 min to t = 1 min (compare Fig. 5b with Fig. 2a and
b). The large|VY | layer insideX ∼ −11RE seems to be thin
and becomes more distinct att = −2 min. The value of|VY |

subsequently becomes small fromt = −2 min tot = 0 in the
region earthwards ofX = −18 RE, with a ∼ 1 min time de-
lay owing to the weakening ofVX. After the substorm onset,
however, that layer spreads again. The lower trace of the large
|VY | layer in the pre-onset phase corresponds to the region
where we found a significant reduction in both1BZ and1θ .

www.ann-geophys.net/32/99/2014/ Ann. Geophys., 32, 99–111, 2014
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Fig. 4.Meridional displays of the deviations of(a) the northward magnetic field,1BZ ; (b) the elevation angle,1θ ; and(c) the total pressure,
1Pt , with respect to the relevant average values representative of the interval fromt = −12 min tot = −10 min.

The temporal evolution of−sign(BX)VZ shown in Fig. 5c
corresponds to an enhancement of the DC Poynting flux to-
wards the CPS. Before the substorm onset, this is caused by
plasma convection during the growth phase. However, after
the substorm onset, it is enhanced because of magnetic re-
connection; i.e. the pronounced structure of−sign(BX)VZ

corresponds to plasma inflow towards the separatrix of the
magnetic-reconnection topology. Such distinctive plasma
motion was also found in the case studies of Angelopoulos
et al. (2008b) and Lyons et al. (2010).

3.2 Time evolution in the equatorial region

Figure 6a shows the time evolution of the earthward flows
VX in the CPS region. It was constructed by selecting two
bins from the bottom of each panel in Fig. 5a and evaluating
average values for those bins as a function ofX. Earthward
flows (in red) at−13> X(RE) >−23 att = −6 min weaken
at t = −3 min andt = −2 min. At t = −1 min, they start to

develop at−10> X(RE) >−17. Tailward flows (in blue in
Fig. 6a), which appear downtail fromX ∼ −19RE at t = 0,
are consistent with a tailward-flow study based on GEOTAIL
and POLAR data (Ieda et al., 2008). If we compare this panel
for VX with the panel forBZ in Fig. 7a, we see that these
tailward flows accompany a small negativeBZ (southward-
pointing) magnetic field, which indicates the occurrence of
magnetic reconnection. These tailward flows grow into a
well-developed plasmoid in the downtail region (e.g. Birn
and Hesse, 1991; Machida et al., 1994; Ieda et al., 1998).

Figure 6b shows the value of|VY | at the equator. Enhance-
ment of this parameter occurs atX ∼ −14RE at t = 0. There
is an approximately 1 min time lag between the enhancement
of VX in the vicinity of this region associated with substorm
onset. The value of|VY | further increases aftert = 1 min.
Fast dawn- and duskward flows can be created by bifurcation
of earthward flows caused by their encounter with the high-
pressure and dipolar magnetic-field region on the near-Earth
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Fig. 5. Meridional displays of(a) the earthward-flow velocity,VX; (b) the dawn-/duskward flow velocity,|VY |; and (c) the flow velocity
towards the CPS,−sign(BX)VZ .

Fig. 6. Time evolution of(a) the earthward-flow velocity,VX; (b) the dawn-/duskward flow velocity,|VY |; and(c) the flow velocity towards
the CPS,−sign(BX)VZ , in the equatorial region.

www.ann-geophys.net/32/99/2014/ Ann. Geophys., 32, 99–111, 2014
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Fig. 7. As for Fig. 6, but for(a) the northward magnetic field,BZ ; (b) its deviation,1BZ ; and(c) the change in elevation angle,1θ , in the
equatorial region.

side. In the present superposed-epoch analysis, the northward
magnetic-field increase owing to magnetic-flux pile-up pre-
dicted by the flow-braking model (Shiokawa et al., 1997) is
not necessarily clear at this boundary. Instead, magnetic-flux
pile-up can be seen before the onset aroundX ∼ −16RE, as
we will explain below.

Similarly, flows diverging from the equator along the
magnetic-field line in blue appear aroundX = −14RE af-
ter t = 1 min in Fig. 6c. On the other hand, convective flows
towards the CPS are seen aroundX = −14RE before and
subsequently atX = −20RE after the onset. The latter cor-
respond to the inflow associated with magnetic reconnection.

Figure 7a and b show the time evolution ofBZ and1BZ

at the equator, respectively. The apparent propagation of the
1BZ < 0 region from the earthward to the tailward side
can be seen if we ignore the positive increase aroundX =

−16RE. This variation in1BZ is associated with plasma-
sheet thinning. The occurrence of such a signature has been
anticipated (Akasofu, 1977; Lui et al., 1977). A significant
positiveBZ enhancement (1BZ > 0) following the onset has
been attributed to dipolarization (Nagai, 1982). Another no-
table enhancement aroundX = −16RE at t = −6 min and
t = −5 min is caused by magnetic-flux transport and pile-
up associated with convective earthward flows tailwards of
X ∼ −16RE: see Fig. 5a (Baumjohann et al., 1990; An-
gelopoulos et al., 1992; Shiokawa et al., 1997; Slavin et al.,
1997; Shue et al., 2008). It is difficult to distinguish the de-
crease inBZ beyondX ∼ −20 RE after the onset from that
caused by plasma-sheet thinning. We think that it is caused
by magnetic reconnection with the magnetic neutral line at
X ∼ −20RE, considering the slightly negative value ofBZ in
that region and the fact that tailward flows appear in Fig. 6a.
The location of the NENL is relatively close to the Earth
compared with the value obtained by Imber et al. (2011)
based on the same THEMIS data. This may be attributed to
the method of data selection; i.e. all travelling compression

region (TCR) events were used in their study, but only the
first full substorm events were used in ours. The time vari-
ation of 1θ shown in Fig. 7c is similar to that of1BZ. At
two locations,1θ exhibits positive values even before the on-
set, atX ∼ −8RE andX ∼ −17RE. In terms of theBZ and
θ increases, dipolarization appears to occur atX ∼ −11RE
and propagates both earth- and tailwards. The other increase
in θ , at X ∼ −17RE, is caused by earthward flows prior to
substorm onset. Negative, positive and then negative varia-
tions in 1BZ and1θ in the catapult current sheet fromX
∼ −13RE to X ∼ −18 RE indicate that local dipolarization
occurs aroundX ∼ −15RE, although the entire current sheet
is stretched approximately 4 min before the onset. This vari-
ation is critical for our understanding of the destabilization
of the catapult current sheet and, therefore, of substorm trig-
gering.

Figure 8a shows the time evolution of the duskward elec-
tric field, EY , at the equator, which we evaluated using the
relationE = −V × B. The largeEY region that appears at
X ∼ −20 RE at t = −6 min propagates earthwards, which
is consistent with the results of Liu et al. (2011), who anal-
ysed the earthward-transported magnetic flux and found it
to be proportional to the time integral ofEY . As expected,
regions characterized by largeEY correlate well with signif-
icant earthward flows.

Figure 8b showsBrms (i.e. is the root-mean-square value
of the magnetic-field deviations from the average value for
one spin period, 3 s), which essentially represents the low-
frequency wave activity in the 0.33–16 Hz frequency range.
This parameter exhibits a positive correlation with the earth-
and tailward flow velocities,|VX|. In particular, some en-
hancement initially appears atX ∼ −20RE; the enhanced
region subsequently shifts earthwards. An abrupt enhance-
ment occurs atX ∼ −13RE at t = 0, followed by global
enhancements across a wideX range immediately following

Ann. Geophys., 32, 99–111, 2014 www.ann-geophys.net/32/99/2014/
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Fig. 8. As for Fig. 6, but for(a) the duskward electric field,EY ; (b) the root-mean-square value of the magnetic field,Brms; and (c) the
deviation of total pressure,1Pt , in the equatorial region.

substorm onset (t = 1 min). This parameter also correlates
well with EY .

The deviation of the total pressure,1Pt , in the equatorial
region, in essence equivalent to the variation in the plasma
pressure, is shown in Fig. 8c. There are two distinct regions
of negative1Pt , centred atX ∼ −9RE and X ∼ −18RE.
However, positive1Pt (i.e. an indication that the plasma
pressure increases) occurs atX ∼ −14RE at t = −1 min,
which is associated with an enhancement of earthward flows.
After the onset, the region of positive1Pt coincides with the
region subjected to earthward flows. Earthward flows prior
to substorm onset accompany the plasma-pressure decrease.
It is possible that they correspond to a structure known as
a plasma bubble (Pontius and Wolf, 1990; Chen and Wolf,
1993; Sergeev et al., 1996). ThePt increase atX ∼ −8RE
after t = 1 min is predominantly caused by high-energy ions
with energies in excess of 25 keV. Those variations are con-
sistent with the results of recent studies (Miyashita et al.,
2009; Dubyagin et al., 2010; Xing et al., 2010a).

4 Summary and discussion

We obtained temporal and spatial variations of the near-Earth
magnetotail in the meridional plane as well as their time evo-
lution in the equatorial plane. The results can be summarized
as follows.

1. We found a minimum structure inBZ and Pth at X

∼ −14RE around substorm onset.

2. Dipolarization and possibly CD start att = 1 min
and progress to a very wide area earthwards of
X = −12RE at t = 2 min.

3. Associated with plasma convection towards the CPS,
the magnetic pressure is enhanced in the lobe. Fol-
lowing substorm onset, the total pressure decreases at
X = −14RE and it increases both earth- and tailwards
of that region.

4. Before substorm onset, both CPS and PSBL flows are
present in the region atX <−13RE. The earthward
flows in the CPS, as well as the dawn-/duskward flows
in the PSBL earthwards ofX = −18RE, become weak
just prior to the onset. This seems to be a characteristic
of full substorms.

5. Local dipolarization characterized by small positive
1BZ was found aroundX = −17RE and is associated
with the earthward CPS plasma flow. This may affect
the initial location of the NENL.

6. Magnetic reconnection occurs aftert = 0; its occur-
rence can be confirmed by the generation of tailward
plasma flows with negativeBZ and significant earth-
ward flows with positiveBZ, as well as enhancement
of the convective flows of the lobe plasma towards the
CPS.

7. During the pre- and post-onset phases of a substorm,
parameters such asVX, EY , Brms and1Pt show sim-
ilar variations; i.e. the active region approaches the
Earth. Substorms start when such active regions reach
the region of−12> X(RE) >−15.

8. Following a substorm’s onset, considerable variations
in VX, VY , BZ, EY , Brms andPt spread abruptly across
a wide area earthwards ofX = −12RE.

Comparing the present results based on THEMIS data with
our previous results from GEOTAIL (Machida et al., 2009),
the locations ofBZ reduction are different. The location of
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Fig. 9.Schematic illustration of the catapult current-sheet relaxation model. See the text for details.

BZ reduction is found at−12> X(RE) >−15 in the present
study, whereas it was at−15> X(RE) >−19 in our previ-
ous study. In addition, the equatorialBZ peak in the mid-
tail is located atX ∼ −19RE only 6 min prior to the onset,
whereas closer to the onset moment it shifts closer to Earth
atX ∼ −16RE in the present study. A similar earthward dis-
placement in the peak of the earthward-flow velocity can be
seen in the equatorial plane associated with that shift. In con-
trast, the equatorialBZ peak is located nearX = −20RE at
5 min before the onset; it subsequently shifts toX ∼ −18RE
at the time of the onset. As for the plasma flow, in contrast to
the GEOTAIL-based scenario in which the earthward-flow
enhancement is seen at all times prior to the onset, in the
THEMIS-based scenario it disappears betweent = −3 min
andt = −2 min.

The time intervals covered by THEMIS in the context of
the present study (November 2007 to April 2009) and by
GEOTAIL analysed in our previous study (Machida et al.,
2009; April 1996 to December 2002) are different. Solar ac-
tivity during the corresponding periods was different. The in-
terval covered by THEMIS corresponds to solar minimum.
In contrast, the interval covered by GEOTAIL starts at solar
minimum and continues to the end of solar maximum. This
may cause the differences between the present THEMIS and
previous GEOTAIL results.

The determination of the onset time is significant in
our superposed-epoch analysis. Substorm onsets were deter-
mined based on the THEMIS ASI data in the present study.
In contrast, global auroral imager data obtained with the PO-
LAR/Ultraviolet Imager (UVI) and IMAGE/Far-Ultraviolet
Imager (FUV) instruments were used in our previous study
(Machida et al., 2009). The onset time (t = 0) corresponds to
the start of the initial brightening in which a bead-like struc-
ture is formed in the auroral arc, characterized by a dramatic
luminosity enhancement. The spatial resolution and optical
sensitivity of the ground-based observations is higher than
that of the spacecraft data, so it is possible that the onset time
of the present study advances to that in our previous study.
However, it is within 1–2 min, judging from the results ob-
tained for various parameters in both cases. In addition, the
different thresholds (e.g. for the luminosity of the emission
or the spatial spread of the auroral breakup) used to select the
substorm onset events may cause the differences between the
present THEMIS and previous GEOTAIL results, in addition
to the difference in solar phase. With this in mind, we can
interpret the results from our THEMIS data as follows.

If a localized plasma is moving earthwards across the
magnetic field in the plasma sheet, a duskward electric
field will be present in that localized plasma. Electric
charges accumulated at the dawn and dusk boundaries tend
to be discharged by field-aligned currents and ionospheric
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conductivity between the feet of the magnetic-field lines
which connect the ionosphere to the boundaries of the
earthward-moving localized plasma. At the duskward bound-
ary, the field-aligned current flows away from the ionosphere;
the electrons move in the opposite direction, producing an
aurora. It is possible that the N–S auroral streamer reported
by Nishimura et al. (2010), as one of the key elements to
understanding the triggering of substorms, corresponds to
such an earthward-moving localized plasma and associated
current system. Recently, Nishimura et al. (2010) confirmed
that the flows associated with N–S streamers originate from
the DNL. Although we found corresponding earthward flows
until t = −4 min, these flows became weak just a few min-
utes before the onset. Att = −1 min, earthward flows with a
velocity peak in the region earthwards ofX ∼ −14RE devel-
oped. Localized tailward flows atX ∼ −20RE start att = 0.
Taking into account the locations of the earthward flows, we
conclude that these flows are associated with relaxation of the
catapult current sheet. However, they are shortly overtaken
by flows produced by magnetic reconnection. The results ob-
tained by Nishimura et al. (2010, 2013) for substorm trigger-
ing by new plasma intrusion originating from the DNL and
those presented in this paper are complementary, and their
relationship should be investigated in more detail.

Earthward flows in the CPS are thought to be convective
flows that carry the magnetic flux. An increase in the north-
ward magnetic field owing to this effect can be seen at around
X = −17RE before substorm onset. On the other hand, a sig-
nificant increase insideX = −11RE after the onset is caused
by conventional dipolarization. Therefore, an increase inBZ

in the catapult current-sheet region should be distinguished
from equivalent increases insideX = −11RE. Those vari-
ations inBZ may indicate local dipolarization in the cur-
rent sheet aroundX = −15 RE, although the current sheet
is stretched, on average.

The magnetic field associated with the earthward flows
exhibits large fluctuations, as reported by Angelopoulos et
al. (2002) throughout the period examined in this study. The
fast flows themselves may excite large-amplitude electro-
magnetic waves. Since we did not analyse their frequency
spectrum, we cannot determine the mode of these waves,
which we therefore leave for future study. Highly struc-
tured magnetic fields in the plasma sheet may be carried by
plasma flows, producing large variations at the probes’ loca-
tions. Again, the formation of such highly structured mag-
netic fields is thought to be caused by some plasma instabil-
ity.

Use of THEMIS probe data has added new information
to the original GEOTAIL data, extending the boundary far-
ther inside 10RE. We found earthward flows associated with
N–S auroral streamers, which carry the northward-directed
magnetic fieldBZ and also cause a reduction inBZ in the
lobe and the PSBL on the earthward-side, shown as Phase I
in Fig. 9. Phase II is characterized by a further reduction in
BZ at −10> X(RE) >−12 and, although the plasma sheet

is stretched on average, local dipolarization occurs around
X = –15RE. At the same time, the earthward and the dawn-
/duskward flows weaken; the latter continue to weaken dur-
ing the next phase. This phase can be regarded as an early
phase of catapult current-sheet relaxation. During Phase III,
from t = −1 min to t = 0, explosive catapult current-sheet
relaxation occurs and a force imbalance at the earthward
edge of the catapult current sheet causes a drastic structural
change. Plasma instabilities, such as tearing instabilities (e.g.
Sitnov and Schindler, 2010), ballooning/interchange instabil-
ities (e.g. Pritchett and Coroniti, 2010) or kink-type instabil-
ities (Erkaev et al., 2008) may be involved in this relaxation
process. The relaxation of the catapult current sheet produces
fast convective earthward flows, and this leads to consider-
able perturbations to the instability which already developed
in the inner region. The instability thus proceeds fully non-
linearly, causing the system to develop into Phase IV, where
CD and reconfiguration of the magnetic-field structure (i.e.
dipolarization) occur. Meanwhile, the tailward edge of the
catapult current sheet thins so much that the magnetic neutral
line is formed and magnetic reconnection commences. Cat-
apult current-sheet relaxation lasts for approximately 4 min.
The plasma in the region of interest is accelerated and evac-
uated from its earthward boundary, and the earthward flows
produced by magnetic reconnection take over from the pre-
cursory flows. Once magnetic reconnection starts, it plays an
important role in regulating mass and energy transport in the
magnetosphere. In the same manner, CD causes significant
variations and signatures in the inner magnetosphere and on
the ground through magnetosphere–ionosphere coupling.
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