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Abstract. We examine how the growth of magneto-
spheric whistler-mode waves depends on the cold (back-
ground) electron number densityN0. The analysis is car-
ried out by varying the cold-plasma parametera = (electron
gyrofrequency)2/(electron plasma frequency)2 which is pro-
portional to 1/N0. For given values of the thermal anisotropy
AT and the ratioNh/N0, whereNh is the hot (energetic)
electron number density, we find that, asN0 decreases, the
maximum values of the linear and nonlinear growth rates
decrease and the threshold wave amplitude for nonlinear
growth increases. Generally, asN0 decreases, the region
of (Nh/N0,AT)-parameter space in which nonlinear wave
growth can occur becomes more limited; that is, asN0
decreases, the parameter region permitting nonlinear wave
growth shifts to the top right of(Nh/N0,AT) space charac-
terized by largerNh/N0 values and largerAT values. The
results have implications for choosing input parameters for
full-scale particle simulations and also in the analysis of
whistler-mode chorus data.

Keywords. Space plasma physics (wave–particle interac-
tions)

1 Introduction

Whistler-mode chorus waves are intense right-hand polar-
ized electromagnetic emissions in the magnetosphere com-
monly occurring in two frequency bands: a lower band 0.1–
0.5|�e| and an upper band 0.5–0.7|�e|, where|�e| is the
local electron gyrofrequency. Cyclotron resonant whistler-
mode-wave–electron interactions are an important control-
ling factor in radiation belt electron dynamics. Relativistic

(∼ MeV) electrons can be generated in the outer radiation
belt due to cyclotron resonance with chorus (Summers et
al., 1998, 2002, 2007a, b; Roth et al., 1999; Meredith et al.,
2003; Summers and Omura, 2007; Xiao et al., 2010; Su et
al., 2014). Chorus waves can pitch-angle scatter outer zone
electrons into the loss cone and induce particle loss to the
atmosphere (Lorentzen et al., 2001; O’Brien et al., 2004;
Thorne et al., 2005; Summers et al., 2007a, b; Ni et al., 2008;
Hikishima et al., 2010). Whistler-mode waves are instrumen-
tal in limiting stably trapped electron fluxes in planetary ra-
diation belts (Kennel and Petschek, 1966; Summers et al.,
2009, 2011; Mauk and Fox, 2010; Tang and Summers, 2012).

Chorus waves typically comprise discrete “rising-tone” el-
ements with a time-increasing frequency. The initial stage
of the generation process of magnetospheric whistler-mode
chorus is considered to be linear, that is, classical linear
wave growth produced by an injection at the magnetic equa-
tor of an anisotropic distribution of energetic (hot) elec-
trons. The generation of the rising-tone elements, however,
requires fully nonlinear theory. Considerable progress has
been made recently in developing a nonlinear cyclotron the-
ory of the generation of whistler-mode chorus byOmura
et al. (2008, 2009, 2012), with further extensions bySum-
mers et al.(2012a, 2013). Omura et al.(2008, 2009) describe
the detailed nonlinear dynamics of cyclotron-resonant elec-
trons and postulate the formation of electromagnetic electron
“holes” that result in resonant currents generating rising-tone
emissions. Various aspects of this nonlinear theory have been
verified by sophisticated full-scale simulations of the genera-
tion and growth of whistler-mode chorus elements byOmura
et al.(2008, 2009), Hikishima et al.(2009); Hikishima et al.
(2010) andKatoh and Omura(2011). Summers et al.(2012b)
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analyze the nonlinear spatiotemporal evolution of whistler-
mode chorus waves propagating along a magnetic field line
from their equatorial source. The wave profiles exhibit con-
vective growth, due to nonlinear wave trapping, followed by
saturation, due partly to a decreasing resonant current with
latitude.

The present study concentrates on the conditions required
for effective nonlinear growth of whistler-mode waves at the
magnetic equator, and in particular extends the work ofSum-
mers et al.(2012a, 2013). These authors treated the growth
of magnetospheric whistler-mode waves in terms of a linear
growth phase followed by a nonlinear growth phase. They
then constructed complete time profiles of the wave ampli-
tude by smoothly matching the solutions in the linear and
nonlinear regimes. It was found that this matching proce-
dure could only take place over a restricted “matching re-
gion” in (Nh/N0,AT) space whereAT is the electron thermal
anisotropy,Nh is the hot (energetic) electron number density,
andN0 is the cold (background) electron number density. In
a complementary analysis, using a condition based on the
maximum linear growth rate,Summers et al.(2013) deter-
mined a boundary in(Nh/N0,AT) space separating a region
in which only linear whistler-mode wave growth can occur
from a region in which whistler-mode waves can achieve
fully nonlinear growth. The whole analysis ofSummers et
al. (2012a, 2013) was carried out at a fixedL shell and a
fixed cold electron number densityN0. That is, in terms of
the cold-plasma parametera = |�e|

2/ω2
pe where|�e| is the

electron gyrofrequency andωpe is the electron plasma fre-
quency,Summers et al.(2012a, 2013) assumed thata is con-
stant (the valuea = 1/16 was assumed to characterize the
region outside the plasmasphere at or nearL = 4). The par-
ticular objective of the present paper is to investigate how the
conditions for nonlinear growth of whistler-mode waves in
the magnetosphere, as determined bySummers et al.(2012a,
2013), depend on the parametera. Thus, herein we adopt
a selection ofa values to represent the differing conditions
in the inner magnetosphere experienced during geomagnetic
disturbances including storms and substorms.

The plan of our paper is as follows. In Sect. 2, for a cho-
sen loss cone distribution, we examine the (relativistic) linear
growth rate for whistler-mode waves and its dependence on
the cold-plasma parametera and the thermal anisotropyAT.
In Sect. 3 we give a brief account of the nonlinear cyclotron
resonance theory for whistler-mode waves required in the
present study. This involves introducing the “total” nonlin-
ear growth rate0N(t) and the local nonlinear growth rate
γN(t). As well, we describe the “chorus equations” (Eqs. 16
and 17) used to model the nonlinear growth of a chorus ele-
ment, and derive the threshold wave amplitudeB̃th required
for nonlinear growth. In Sect. 4, we show how to construct
the matching region in(Nh/N0,AT) space in which smooth
matching of linear and nonlinear solutions is possible, and
we also construct the (generally different) parameter region
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Fig. 1. Contours of constant phase space density f =constant, where f is given by (1), for β = 0.5, θ∥/(mec) =

0.2, θ⊥/(mec) = 0.2.
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Fig. 2. Relativistic linear whistler-mode wave growth rates ωi for the AAK Loss Cone distribution (1) for

thermal anisotropy AT = 1.5, θ∥/(mec) = 0.49, the indicated values of the electron number density ratio

Nh/N0 and the cold-plasma parameter a= |Ωe|2/ω2
pe.

13

Figure 1. Contours of constant phase space densityf = constant,
where f is given by Eq. (1), for β = 0.5, θ‖/(mec) = 0.2,
θ⊥/(mec) = 0.2.

(with boundary 31) in which fully nonlinear wave growth can
occur. Finally, in Sect. 5 we state our conclusions.

2 Relativistic linear growth rate

We assume that field-aligned electromagnetic R-mode waves
are generated by a hot anisotropic electron population in the
presence of a dominant cold electron population. We choose
the AAK (Ashour-Abdalla and Kennel, 1978) loss cone par-
ticle distribution as the hot electron distribution function, i.e.,

f (p‖,p⊥) =
Nh

π3/2θ‖θ
2
⊥

1

(1− β)

[
exp

(
−

p2
⊥

θ2
⊥

)
−

exp

(
−

p2
⊥

βθ2
⊥

)]
exp

(
−

p2
‖

θ2
‖

)
, (1)

wherep‖ = γmev‖ and p⊥ = γmev⊥ are the components
of relativistic momentump = γmev, me is the electron rest
mass,v is the electron velocity with componentsv‖ andv⊥,
parallel and perpendicular, respectively, to the ambient mag-
netic field, andγ = (1− v2/c2)−1/2

= (1+ p2/(mec)
2)1/2,

with v2
= v2

‖
+ v2

⊥
, p2

= p2
‖
+ p2

⊥
, and c is the speed of

light; θ‖ and θ⊥ are the thermal momenta of the energetic
electrons parallel and perpendicular to the background mag-
netic field; andNh is the hot electron number density. We
require that the distribution satisfies

∫
f (p‖,p⊥)d3p = Nh,

with d3p = 2πp⊥dp⊥dp‖. The parameterβ (where 0< β <

1) is a measure of the angular size of the loss cone. When
β → 1, distribution in Eq. (1) reduces to a particular form
of the Dory–Guest–Harris loss cone distribution (Dory et
al., 1965). Whenβ → 0, distribution in Eq. (1) reduces to a
bi-Maxwellian distribution. The thermal anisotropy, defined
by AT = T⊥/T‖ − 1, whereT‖ andT⊥ are the parallel and
perpendicular temperatures, is given byAT = (1+β)θ2

⊥
/θ2

‖
−

1 for distribution in Eq. (1).
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Fig. 1. Contours of constant phase space density f =constant, where f is given by (1), for β = 0.5, θ∥/(mec) =

0.2, θ⊥/(mec) = 0.2.
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Figure 2. Relativistic linear whistler-mode wave growth ratesωi for the AAK loss cone distribution in Eq. (1) for thermal anisotropy
AT = 1.5, θ‖/(mec) = 0.49, the indicated values of the electron number density ratioNh/N0 and the cold-plasma parametera = |�e|

2/ω2
pe.

We write the cold-plasma dispersion relation for electro-
magnetic R-mode waves propagating parallel to an assumed
uniform magnetic field in the form

y2
= x2

+
x

a(1− x)
, (2)

where

x = ω/|�e|, y = ck/|�e|, (3)

anda is the cold-plasma parameter defined by

a = |�e|
2/ω2

pe, (4)

whereω is the (real) wave frequency,k is the (real) wave
number, |�e| = eB0/(mec) is the electron gyrofrequency,
ωpe = (4πN0e

2/me)
1/2 is the plasma frequency,−e is the

electron charge,N0 is the cold electron number density, and
B0 is the magnitude of the zeroth-order magnetic field.

In Fig. 1, we show typical contours of constant phase-
space density for the AAK loss cone distribution in Eq. (1)
for β = 0.5, θ‖/(mec) = 0.2, θ⊥/(mec) = 0.2.

In Fig. 2, we plot the relativistic linear growth rates for the
AAK loss cone distribution forθ‖/(mec) = 0.49, AT = 1.5,
the indicated values of the cold-plasma parametera, and the
various values of the electron number density ratioNh/N0.
We find that the maximum linear growth rate increases as
the number density ratioNh/N0 increases as expected, but

it decreases as the cold-plasma parametera increases. Asa
increases (orN0 decreases), the bandwidth for wave growth
(ωi > 0) slightly decreases, and the frequency at which the
maximum growth rate occurs increases. Thus, the variation
of a does not significantly change the frequency band for
wave growth, but does affect the frequency at which the wave
growth maximizes.

For the rest of the calculations and figures in this paper, we
have fixedθ‖/(mec) = 0.49 as used in previous work (e.g.,
Summers et al., 2013).

In Fig. 3, we present the contours of constant wave fre-
quencyω̃m = ωm/|�e| at which the relativistic linear growth
rate maximizes, as a function of the cold-plasma parametera

and the thermal anisotropyAT. For smaller values ofa, say
a < 0.1, ω̃m is only moderately dependent on the values of
a andAT.

In Fig. 4, we show two-dimensional plots of the maxi-
mum relativistic linear growth rate max(ω̃i) as a function
of the cold-plasma parametera and the thermal anisotropy
AT, for Nh/N0 = 10−2, 10−3, and 10−4. The white regions
are regions of parameter space in which max(ω̃i) values
are outside the typical practical range. The panels indicate
that, asNh/N0 decreases, useful (sufficiently large) values
of max(ω̃i) can only be obtained for larger values ofAT and
smaller values ofa. Figures 3 and 4 in combination are use-
ful as an aid for selecting input parameters in future computer
simulations.

www.ann-geophys.net/32/889/2014/ AnGeo Comm., 32, 889–898, 2014
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Figure 3. Contours of constant wave frequencyω̃m = ωm/|�e| at
which the relativistic linear growth rate maximizes, as a function of
the cold-plasma parametera = |�e|

2/ω2
pe and thermal anisotropy

AT.

3 Nonlinear wave growth

Omura et al.(2008, 2009, 2012) have developed a nonlin-
ear cyclotron resonance theory which describes the genera-
tion and growth of whistler-mode chorus waves.Summers
et al. (2012a, 2013) generalized the so-called “chorus equa-
tions” (Omura et al., 2009) to an arbitrary energetic electron
distribution and calculated conditions for sustained nonlin-
ear growth. Following their work, we express the nonlin-
ear growth rate0N for field-aligned whistler-mode (R-mode)
waves of frequencyω(t) and wave magnetic field amplitude
Bw(t) by the equation

dBw

dt
= 0NBw, (5)

with

0N

|�e|
=

√
2Qχ3/2

(
ξ

γ̃R

)1/2(
B0

Bw

)1/2

(
|�e|

ω

)1/2(Vg

c

)(
V⊥0

c

)5/2
(m2

ec
2G̃)

aN0
, (6)

and

ξ2
=

ω(|�e| −ω)

ω2
pe

, χ2
=

1

1+ ξ2
, (7)

Vg

c
=

ξ

χ

[
ξ2

+
�e

2(|�e| −ω)

]−1

, (8)

γ̃R =

[
1−

(
ṼR

c

)2

−

(
V⊥0

c

)2]−1/2

,

ṼR

c
= χξ(1−

|�e|

γ̃Rω
), (9)

whereVg(t) is the wave group speed,γ̃R(t) is the resonant
Lorentz factor,ṼR(t) is the resonant parallel particle veloc-
ity, V⊥0 (= constant) is the average perpendicular particle ve-
locity, a is the cold-plasma parameter defined by Eq. (4), and
Q is the dimensionless factor that represents the depth of the
electromagnetic electron hole within which nonlinear parti-
cle trapping takes place. The quantityG̃ is a measure of the
average value of the hot electron distributionFT trapped by
the wave. We express the trapped distributionFT as the elec-
tron ring distribution,

FT(p‖,p⊥) = 8(p‖)δ(p⊥ − p⊥0) (10)

with

p⊥0 = γ0meV⊥0, γ0 =

(
1−

V 2
⊥0

c2

)−1/2

, (11)

whereδ is the Dirac delta function, and8 is a function of
parallel particle momentump‖ only; G̃ is given by

G̃ =

[∫
FTdp⊥

]
p‖=p̃R

= 8(p̃R), (12)

wherep̃R = γ̃RmeṼR.
Following Omura et al.(2008, 2009) and Summers et

al. (2012a, 2013), we approximate the AAK distribution in
Eq. (1) by the ring distribution

FT(p‖,p⊥) =
Nh

π2θ‖θ⊥

(
1− β

1− β3/2

)
exp

(
−

p2
‖

θ2
‖

)
δ(p⊥ − p⊥0), (13)

where

p⊥0 =

√
π

2

(
1− β3/2

1− β

)
θ⊥. (14)

Hence from Eqs. (10)–(12) it follows that

G̃ =
Nh

π2θ‖θ⊥

(
1− β

1− β3/2

)
exp

(
−

p̃2
R

θ2
‖

)
. (15)

The normalized wave amplitudẽBw = Bw(t)/B0 and nor-
malized frequencyω̃ = ω(t)/|�e| are found to satisfy the
“chorus equations” (Omura et al., 2009; Summers et al.,
2012a, 2013) given by

∂B̃w

∂t̃
=

0N

|�e|
B̃w − 5

s2

s0

Vg

c

ã

ω̃
, (16)

∂ω̃

∂t̃
=

2s0

5s1
ω̃B̃w, (17)

with t̃ = |�e|t , and

s0 =
χ

ξ

V⊥0

c
, (18)
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s1 = γ̃R

(
1−

ṼR

Vg

)2

, (19)

s2 =
1

2ξχ

{
γ̃Rω̃

(
V⊥0

c

)2

−

[
2+ χ2 (1− γ̃Rω̃)

(1− ω̃)

]
ṼRVP

c2

}
, (20)

ã =
4.5

(LRE)2

(
c

�e

)2

,
VP

c
= χξ, (21)

whereVP is the wave phase speed.
Equations (16) and (17) hold at the magnetic equator of

an assumed dipole field, and in general for wave frequen-
cies in the range 0.1 ≤ ω̃ ≤ 0.5. The parameter̃a in Eq. (21)
arises from a Taylor expansion of the Earth’s dipole mag-
netic field about the equator;L denotes magnetic shell and
RE is the Earth’s radius. For self-sustaining emissions to ex-
ist, the wave amplitude must satisfy a threshold condition.
By setting∂B̃w/∂t̃ = 0 in Eq. (16) and then solving forBw,
we determine that the normalized threshold wave amplitude
(B̃th = Bth/B0) is given by

B̃th =50π3
(

1− β3/2

1− β

)2(
N0

Nh

)2(
ãs2

Q

)2

γ̃ 3
Rξ

ω̃χ5

(
c

V⊥0

)5(
θ‖

mec

)2

a2exp

(
2p̃2

R

θ2
‖

)
. (22)

In Fig. 5, we present two-dimensional plots of the nor-
malized threshold wave amplitudẽBth as a function of the
cold-plasma parametera and the thermal anisotropyAT, for
Nh/N0 = 10−2, 10−3, and 10−4. The white regions represent
regions of parameter space corresponding to unreasonably
large values ofB̃th. It is clear thatB̃th can be strongly de-
pendent ona, subject to the particular values ofNh/N0 and
AT considered. WhenNh/N0 decreases, reasonable values
of B̃th are obtained in the region typified by smallera values
and largerAT values.

In general, Eqs. (16) and (17) are solved as an initial-value
problem forB̃w(t̃) andω̃(t̃), subject to the initial condition
ω̃(0) = ω̃0 and B̃w(0) = Bw(0)/B0, whereω̃0 is the initial
wave frequency and̃Bw(0) is chosen to be greater than the
value ofB̃th calculated from Eq. (22) corresponding toω̃0.

The nonlinear growth rate0N specified by Eqs. (5) and (6)
can be regarded as a “total” growth rate since d/dt ≡ ∂/∂t +

Vg∂/∂h, whereh is the distance measured along the magnetic
field line from the magnetic equator. FollowingSummers et
al. (2012a, 2013), we define a “temporal” nonlinear growth
rateγN given by

∂Bw

∂t
= γNBw, (23)

where

γN = 0N − 5
|�e|

B̃w

s2

s0

Vg

c

ã

ω̃
. (24)

Since the temporal linear growth rateωi satisfies

∂Bw

∂t
= ωiBw, (25)

then Eqs. (25) and (23) are analogous and respectively de-
scribe wave growth during the linear and nonlinear phases.
We can construct complete time profiles forBw by a suitable
matching of the linear and nonlinear solutions at the interface
of the linear and nonlinear regimes. We describe this proce-
dure in the following section.

4 Linear–nonlinear matching region

In order to construct a complete time profile ofBw, we as-
sume that linear wave growth smoothly merges into nonlin-
ear wave growth at a particular wave amplitudeB̃m = Bm/B0
which we call the matching wave amplitude. We assume that
the smooth matching occurs when

γN = (ωi)max , (26)
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whereγN is the local nonlinear growth rate given by Eq. (24)
and (ωi)max is the maximum value of the relativistic linear
growth rate. It then follows from Eqs. (6), (24) and (26) that
the matching wave amplitude is given by

A1
√

X − B1 − C1X = 0, (27)

whereX = B̃m, and

A1 = k1

(
Nh

N0

)
, B1 = k2, C1 = k3

(
Nh

N0

)
. (28)

The parametersk1 and k2 are evaluated at̃ω = ω̃m =

ωm/|�e| where ωm is the frequency at which the linear
growth rate maximizes;̃ωm, k1, k2 and k3 can each be re-
garded as a function ofAT, θ‖/(mec), and the cold-plasma
parametera. The detailed algebraic expressions fork1, k2
andk3 are given in Appendix A. From Eq. (27) we find

X = B̃m =

(A1 ±

√
A2

1 − 4B1C1

2C1

)2

, (29)

where we select the lower(−) root sign.
From Eq. (29) we see that the matching process is

only possible if A2
1 − 4B1C1 ≥ 0, which is equivalent to

Nh/N0 ≥ 4k2k3/k2
1. Construction of the “matching bound-

ary”, Nh/N0 = 4k2k3/k2
1, and hence the linear–nonlinear

matching region in the(Nh/N0,AT) plane is straightforward
since the parametersk1, k2 andk3 are functions ofAT only,
for fixed values ofa andθ‖/(mec).

In Fig 6, top panels, we show the matching boundary
Nh/N0 = 4k2k3/k2

1 (black curve) and the (blue) region over
which linear–nonlinear matching is possible, for the speci-
fied values ofa. Corresponding to each case in the top panel,
we show in the bottom panel the dependence on the ther-
mal anisotropyAT of the wave frequencỹωm = ωm/|�e| at
which the relativistic linear growth rate maximizes. When
a increases (orN0 decreases) the matching region is seen to

shift toward the top-right region of(Nh/N0,AT) space corre-
sponding to largerNh/N0 values and largerAT values. Thus
for a lower cold electron number density, more energetic
particles are needed to enable the linear–nonlinear matching
process.

Motivated by a series of electron hybrid simulations of
whistler-mode chorus byKatoh and Omura(2011), Summers
et al. (2013) proposed that the boundary separating linear
wave growth and nonlinear wave growth can be given by the
relation

max(ωi/|�e|) = M, (30)

where M is a fixed bound. The criterion in Eq. (30) im-
plies that linear wave growth only occurs when initial lin-
ear growth rates satisfy max(ωi/|�e|) < M, while nonlin-
ear wave growth occurs when linear growth rates satisfy
max(ωi/|�e|) > M.

Summers et al.(2013) showed that Eq. (30) can be written
as

Nh

N0
=

M

c1(AT − c2)
, (31)

where the parametersc1 and c2 are relatively weak func-
tions of the thermal anisotropyAT. For given values ofa
andθ‖/(mec), we can readily construct the boundary curve in
Eq. (31) in the(Nh/N0,AT) plane and hence determine the
regionNh/N0 > M/[c1(AT −c2)] in which nonlinear chorus
occurs.

In Fig. 7, for the indicated values ofa, we plot Eq. (31)
with M = 10−3 as a red curve, which acts as the boundary of
the pink region representing max(ωi/|�e|) > 10−3 in which
nonlinear wave growth takes place. In each panel we super-
impose on top of the pink region the relevant blue (linear–
nonlinear matching) region depicted in Fig. 6. Evidently the
linear–nonlinear matching procedure does not in general ap-
ply throughout the nonlinear chorus growth region. As in
Fig. 6, whena increases, the nonlinear chorus growth region
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Figure 7. Variation of the parameter space for nonlinear whistler-mode wave growth with respect to the cold-plasma parametera =

|�e|
2/ω2

pe. The red boundary corresponds to Eq. (31) withM = 10−3. In the pink region above the red boundary, nonlinear wave growth oc-
curs, while in the white region only linear growth occurs. Superimposed on the pink region of nonlinear growth are the blue linear–nonlinear
matching regions shown in Fig. 6.

in (Nh/N0,AT) space shifts to the top-right region of larger
Nh/N0 values and largerAT values.

In Fig. 8, we present four sets of three panels, for the
respective parameter valuesa = 0.04, 0.06, 0.08, and 0.1,
showing linear–nonlinear matching wave amplitude profiles.
Also shown are corresponding profiles of the wave frequency
ω(t) during the nonlinear phase and the local nonlinear wave
growth rateγN(t). Values of the electron number density ra-
tio Nh/N0 are selected in the range 7.5×10−4 to 2.5×10−3.

Construction of the matching profiles involves matching non-
linear solutions of the chorus Eqs. (16)–(17) to appropriate
linear solutions of Eq. (25). In the solution of Eqs. (16)–(17),
we apply the initial conditions̃ω(0) = ω̃0 = ω̃m, B̃w(0) =

B̃m, where ω̃m is the wave frequency at which the linear
growth rate maximizes and̃Bm is the matching wave ampli-
tude given by Eq. (29). We see from Fig. 8 that as the param-
etera increases, the matching wave amplitude increases and
the linear–nonlinear matching process is only possible for
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Figure 8. Panelsa-(1), b-(1), c-(1), andd-(1) show the time variation of the whistler-mode wave magnetic fieldBw comprising smoothly
matched linear and nonlinear profiles, for the specified values of the cold-plasma parametera = |�e|

2/ω2
pe and the electron number density

ratio Nh/N0. Panelsa-(2), b-(2), c-(2), andd-(2) show the corresponding time profiles of the wave frequencyω, and panelsa-(3), b-(3),
c-(3), andd-(3) show the local nonlinear growth rateγN.

sufficiently large values ofNh/N0. As well, asa increases,
the maximum values of the nonlinear growth rateγN decline,
and the profiles ofγN become flatter. The results in Fig. 8
reinforce the conclusion from Fig. 7 that the conditions for
nonlinear wave growth generally become less favorable as
the parametera increases.

5 Conclusions

We have considered the linear and nonlinear growth of
magnetospheric whistler-mode waves as the parametera =

|�e|
2/ω2

pe varies. Sincea ∝ B2
0/N0, whereN0 is the cold

electron number density andB0 is the background magnetic
field strength, then at a givenL shell or fixed magnetic field,
an increasing (decreasing) value ofa implies a decreasing
(increasing) value of the cold electron number density. Our
general conclusions are as follows:

1. As the parametera increases, the maximum linear
growth rate decreases, for given values of the thermal
anisotropyAT and the ratioNh/N0, whereNh is the hot
(energetic) electron number density.

2. As a increases, the threshold wave amplitudeB̃th (given
by Eq. 22) for nonlinear wave growth increases, for
given values ofAT andNh/N0.

3. As a increases, the matching wave amplitudeB̃m (given
by Eq. 29) occurring at the transition from linear to
nonlinear growth increases, for given values ofAT and
Nh/N0.

4. As a increases, the maximum value of the nonlinear
growth rateγN (given by Eq. 24) decreases, for given
values ofAT andNh/N0.

5. The region of (Nh/N0,AT) space that is favorable to
nonlinear whistler-mode wave growth becomes more
restricted as the parametera increases. Specifically, asa
increases, the region permitting nonlinear wave growth
shifts toward the top right of (Nh/N0,AT) space char-
acterized by largerNh/N0 values and largerAT values.

6. This study sharpens the realization that the nonlinear
growth of whistler-mode waves is only possible over
a relatively restricted region of the three-dimensional
(Nh/N0,AT,a)-parameter space. The results reported
here serve as an aid in choosing input parameters for
computationally intensive particle simulations, and also
as a practical tool to assist in the analysis of experimen-
tal whistler-mode wave data.
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Appendix A: Detailed form of the parametersk1, k2, and
k3 appearing in Eqs. (27) and (28)

The parametersk1, k2, k3 are given by

k1 =
√

2

(
1− β

1− β3/2

)
Qχ3/2

(
ξ

γ̃R

)1/2 1

ω̃1/2

(
Vg

c

)
(

V⊥0

c

)5/2 1

π2a

(
mec

θ‖

)(
mec

θ⊥

)
exp

(
−

p̃2
R

θ2
‖

)
, (A1)

k2 = 5
s2

s0

(
Vg

c

)(
ã

ω̃

)
, (A2)

k3 = 2
√

π

(
mec

θ‖

)
max

{
(1− x)2

[1+ 2ax(1− x)2]
[I2 −

x

y
I1]

}
, (A3)

whereI1 andI2 are the integrals defined by

I1(x,y) =
1

1− β

∞∫
0

z3dz

1R

[
e−z2

−
1

β
e−z2/β

]

exp

[
−

(
1− γRx

y

)2(
mec

θ‖

)2]
, (A4)

and

I2(x,y) =
1

1− β

∞∫
0

z3dz

1RγR

{(
AT − β

1+ β

)
e−z2

−

(
βAT − 1

β(1+ β)

)
e−z2/β

}(
1− γRx

y

)
exp

[
−

(
1− γRx

y

)2(
mec

θ‖

)2]
, (A5)

γR =

−x + y

[
(y2

− x2)

{
1+ z2

(
AT + 1

1+ β

)(
θ‖

mec

)2}
+ 1

]1/2

y2 − x2
(A6)

is the resonant value of the Lorentz factor, and

1R = 1−
x(γRx − 1)

γRy2
(A7)

is the resonant denominator.

Acknowledgements.This work was supported by the National
Science Foundation of China (NSFC) under grants 41331070,
41174147, the Specialized Research Fund for State Key Labo-
ratories under grant 201309FSK, the Specialized Research Fund
for the Doctoral Program of Higher Education under grant
20133601120005, and the Educational Foundation of Jiangxi
Province under grant GJJ13050. D. Summers was supported by a
Discovery Grant of the Natural Sciences and Engineering Research
Council of Canada. We thank Y. Omura for useful discussions.

Topical Editor E. Roussos thanks one anonymous referee for
his/her help in evaluating this paper.

References

Ashour-Abdalla, M. and Kennel, C. F.: Nonconvective and convec-
tive electron cyclotron harmonic instabilities, J. Geophys. Res.,
83, 1531, doi:10.1029/JA083iA04p01531, 1978.

Dory, R. A., Guest, G. E., and Harris, E. G.: Unstable electro-
static plasma waves propagating perpendicular to a magnetic
field, Phys. Rev. Lett., 14, 131, doi:10.1103/PhysRevLett.14.131,
1965.

Hikishima, M., Yagitani, S., Omura, Y., and Nagano I.: Full
particle simulation of whistler-mode rising chorus emis-
sions in the magnetosphere, J. Geophys. Res., 114, A01203,
doi:10.1029/2008JA013625, 2009.

Hikishima, M., Omura, Y., and Summers, D.: Microburst
precipitation of energetic electrons associated with cho-
rus wave generation, Geophys. Res. Lett., 37, L07103,
doi:10.1029/2010GL042678, 2010.

Katoh, Y. and Omura Y.: Amplitude dependence of frequency
sweep rates of whistler mode chorus emissions, J. Geophys. Res.,
116, A07201, doi:10.1029/2011JA016496, 2011.

Kennel, C. F. and Petschek, H. E.: Limit on stably
trapped particle fluxes, J. Geophys. Res., 71, 1–28,
doi:10.1029/JZ071i001p00001, 1966.

Lorentzen, K. R., Blake, J. B., Inan, U. S., and Bortnik,
J.: Observations of relativistic electron microbursts in as-
sociation with VLF chorus, J. Geophys. Res., 106, 6017,
doi:10.1029/2000JA003018, 2001.

Mauk, B. H. and Fox, N. J.: Electron radiation belts
of the solar system, J. Geophys. Res., 115, A12220,
doi:10.1029/2010JA015660, 2010.

Meredith, N. P., Cain, M., Horne, R. B., Thorne, R. M., Sum-
mers, D., and Anderson, R. R.: Evidence for chorus-driven elec-
tron acceleration to relativistic energies from a survey of ge-
omagnetically disturbed periods, J. Geophys. Res., 108, 1248,
doi:10.1029/2002JA009764, 2003.

Ni, B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J.: Resonant scat-
tering of plasma sheet electrons by whistler-mode chorus: Con-
tribution to diffuse auroral precipitation, Geophys. Res. Lett., 35,
L11106, doi:10.1029/2008GL034032, 2008.

O’Brien, T. P., Looper, M. D., and Blake, J. B.: Quantification of
relativistic electron microburst losses during the GEM storms,
Geophys. Res. Lett., 31, L04802, doi:10.1029/2003GL018621,
2004.

Omura, Y., Katoh, Y., and Summers, D.: Theory and simulation of
the generation of whistler-mode chorus, J. Geophys. Res., 113,
A04223, doi:10.1029/2007JA012622, 2008.

www.ann-geophys.net/32/889/2014/ AnGeo Comm., 32, 889–898, 2014

http://dx.doi.org/10.1029/JA083iA04p01531
http://dx.doi.org/10.1103/PhysRevLett.14.131
http://dx.doi.org/10.1029/2008JA013625
http://dx.doi.org/10.1029/2010GL042678
http://dx.doi.org/10.1029/2011JA016496
http://dx.doi.org/10.1029/JZ071i001p00001
http://dx.doi.org/10.1029/2000JA003018
http://dx.doi.org/10.1029/2010JA015660
http://dx.doi.org/10.1029/2002JA009764
http://dx.doi.org/10.1029/2008GL034032
http://dx.doi.org/10.1029/2003GL018621
http://dx.doi.org/10.1029/2007JA012622


898 R. Tang et al.: Effects of cold electron number density variation on whistler-mode wave growth

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., and Yagitani,
S.: Nonlinear mechanisms of lower-band and upper-band VLF
chorus emissions in the magnetosphere, J. Geophys. Res., 114,
A07217, doi:10.1029/2009JA014206, 2009.

Omura, Y., Nunn, D., and Summers, D.: Generation processes of
whistler mode chorus emissions: Current status of nonlinear
wave growth theory, in: Dynamics of the Earth’s Radiation Belts
and Inner Magnetosphere, Geophys. Monogr. Ser., 199, edited
by: Summers D., Mann I. R., Baker D. N., and Schulz M., AGU,
Washington, DC, 243–254, doi:10.1029/2012GM001347, 2012.

Roth, I., Temerin, M., and Hudson, M. K.: Resonant enhancement
of relativistic electron fluxes during geomagnetically active pe-
riods, Ann. Geophys., 17, 631–638, doi:10.1007/s00585-999-
0631-2, 1999.

Su, Z., Xiao, F., Zheng, H., He, Z., Zhu, H., Zhang, M., Shen, C.,
Wang, Y., Wang, S., Kletzing, C. A., Kurth, W. S., Hospodarsky,
G. B., Spence, H. E., Reeves, G. D., Funsten, H. O., Blake, J. B.,
and Baker, D. N.: Nonstorm time dynamics of electron radiation
belts observed by the Van Allen Probes, Geophys. Res. Lett., 41,
229, doi:10.1002/2013GL058912, 2014.

Summers, D. and Omura, Y.: Ultra-relativistic acceleration of elec-
trons in planetary magnetospheres, Geophys. Res. Lett., 34,
L24205, doi:10.1029/2007GL032226, 2007.

Summers, D., Thorne, R. M., and Xiao, F.: Relativistic theory of
wave-particle resonant diffusion with application to electron ac-
celeration in the magnetosphere, J. Geophys. Res., 103, 20487,
doi:10.1029/98JA01740, 1998.

Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M.,
Heynderickx, D., and Anderson, R. R.: Model of the energization
of outer-zone electrons by whistler-mode chorus during the Oc-
tober 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29, 2174,
doi:10.1029/2002GL016039, 2002.

Summers, D., Ni, B., and Meredith, N. P.: Timescales for radia-
tion belt electron acceleration and loss due to resonant wave-
particle interactions: 1. Theory, J. Geophys. Res., 112, A04206,
doi:10.1029/2006JA011801, 2007a.

Summers, D., Ni, B., and Meredith, N. P.: Timescales for radiation
belt electron acceleration and loss due to resonant wave-particle
interactions: 2. Evaluation for VLF chorus, ELF hiss, and elec-
tromagnetic ion cyclotron waves, J. Geophys. Res., 112, A04207,
doi:10.1029/2006JA011993, 2007b.

Summers, D., Tang, R., and Thorne, R. M.: Limit on stably trapped
particle fluxes in planetary magnetospheres, J. Geophys. Res.,
114, A10210, doi:10.1029/2009JA014428, 2009.

Summers, D., Tang, R., and Omura, Y.: Effects of nonlinear wave
growth on extreme radiation belt electron fluxes, J. Geophys.
Res., 116, A10226, doi:10.1029/2011JA016602, 2011.

Summers, D., Tang, R., and Omura, Y.: Linear and nonlinear
growth of magnetospheric whistler mode waves, in: Dynamics
of the Earth’s Radiation Belts and Inner Magnetosphere, Geo-
phys. Monogr. Ser., 199, edited by: Summers D., Mann I. R.,
Baker D. N., and Schulz M., AGU, Washington, DC, 265–279,
doi:10.1029/2012GM001298, 2012a.

Summers, D., Omura, Y., Miyashita, Y., and Lee, D.-H.: Nonlin-
ear spatiotemporal evolution of whistler mode chorus waves in
Earth’s inner magnetosphere, J. Geophys. Res., 117, A09206,
doi:10.1029/2012JA017842, 2012b.

Summers, D., Tang, R., Omura, Y., and Lee, D.-H.: Parameter
spaces for linear and nonlinear whistler-mode waves, Phys. Plas-
mas, 20, 072110, doi:10.1063/1.4816022, 2013.

Tang, R. and Summers, D.: Energetic electron fluxes at Saturn
from Cassini observations, J. Geophys. Res., 117, A06211,
doi:10.1029/2011JA017394, 2012.

Thorne, R. M., O’Brien, T. P., Shprits, Y. Y., Summers, D., and
Horne, R. B.: Timescale for MeV electron microburst loss
during geomagnetic storms, J. Geophys. Res., 110, A09202,
doi:10.1029/2004JA010882, 2005.

Xiao, F., Su, Z., Zheng, H., and Wang, S.: Three-dimensional
simulations of outer radiation belt electron dynamics includ-
ing cross-diffusion terms, J. Geophys. Res., 115, A05216,
doi:10.1029/2009JA014541, 2010.

AnGeo Comm., 32, 889–898, 2014 www.ann-geophys.net/32/889/2014/

http://dx.doi.org/10.1029/2009JA014206
http://dx.doi.org/10.1029/2012GM001347
http://dx.doi.org/10.1007/s00585-999-0631-2
http://dx.doi.org/10.1007/s00585-999-0631-2
http://dx.doi.org/10.1002/2013GL058912
http://dx.doi.org/10.1029/2007GL032226
http://dx.doi.org/10.1029/98JA01740
http://dx.doi.org/10.1029/2002GL016039
http://dx.doi.org/10.1029/2006JA011801
http://dx.doi.org/10.1029/2006JA011993
http://dx.doi.org/10.1029/2009JA014428
http://dx.doi.org/10.1029/2011JA016602
http://dx.doi.org/10.1029/2012GM001298
http://dx.doi.org/10.1029/2012JA017842
http://dx.doi.org/10.1063/1.4816022
http://dx.doi.org/10.1029/2011JA017394
http://dx.doi.org/10.1029/2004JA010882
http://dx.doi.org/10.1029/2009JA014541

