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Abstract. Magnetohydrodynamic (MHD) waves in the solar

wind and magnetosphere are propagated in a medium whose

velocity is comparable to or greater than the wave velocity

and which varies in both space and time. In the approxima-

tion where the scales of the time and space variation are long

compared with the period and wavelength, the ray-tracing

equations can be generalized and then include an additional

first-order differential equation that determines the variation

of frequency. In such circumstances the wave can exchange

energy with the background: wave energy is not conserved.

In such processes the wave action theorem shows that the

wave action, defined as the ratio of the wave energy to the

frequency in the local rest frame, is conserved. In this paper

we discuss ray-tracing techniques and the energy exchange

relation for MHD waves. We then provide a unified account

of how to deal with energy transport by MHD waves in non-

uniform media. The wave action theorem is derived directly

from the basic MHD equations for sound waves, transverse

Alfvén waves, and the fast and slow magnetosonic waves.

The techniques described are applied to a number of illustra-

tive cases. These include a sound wave in a medium under-

going a uniform compression, an isotropic Alfvén wave in a

steady-state shear layer, and a transverse Alfvén wave in a

simple model of the magnetotail undergoing compression. In

each case the nature and magnitude of the energy exchange

between wave and background is found.

Keywords. Interplanetary physics (MHD waves and turbu-

lence) – magnetospheric physics (MHD waves and instabili-

ties)

1 Introduction

Magnetohydrodynamic (MHD) waves are an important agent

for energy transfer in the solar corona, solar wind, and mag-

netosphere. Unlike most electromagnetic waves, the medium

in which they are propagated is generally in motion with

a velocity whose magnitude is comparable with or greater

than the wave speed, and which varies in space and time. In

these circumstances it is possible for energy to be exchanged

between the wave and the moving background plasma. Dif-

ferent approaches have been taken to study such processes.

For example Goedbloed (2009a) and Andries (2010) have de-

veloped methods to construct the eigenfunction spectrum of

stationary magnetohydrodynamic flows. Goedbloed (2009b)

has applied his method in a plane geometry to study the

Kelvin–Helmholtz and Rayleigh–Taylor instabilities in the

presence of a gravitational field. At present such methods

have only been applied to simple geometries and stationary

flow.

Recently Walker (2008) has generalized the ray-tracing

method for magnetohydromagnetic waves propagated in a

medium that is varying slowly in both space and time. Slow

variation implies that the wavelength and period are small

compared with the scales of variation of space and time in

the medium. This ray-tracing method can be applied in ar-

bitrary three-dimensional geometries so long as the slowly

varying condition holds. It also can be used when the flow

is not stationary. In such circumstances wave energy is not

conserved and it is desirable to have a method of computing

the changes in energy density as the wave progresses. The

purpose of this paper is to develop a method to do this.

Whitham (1965) presented a Lagrangian approach to the

problem. He defined a wave action density variable which
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for a wide range of problems was U/ω0, where U was the

wave energy density and ω0 was the frequency found from

the dispersion relation in the local rest frame of the medium.

He showed that it behaved as an adiabatic invariant as the

wave was propagated through the moving medium. He illus-

trated the idea by considering Boussinesq surface waves on

a fluid. A rigorous investigation of the problem was carried

out by Bretherton and Garrett (1968), who showed that the

wave action was conserved along the ray path. The math-

ematical requirements for this to be true are discussed by

Bretherton (1968). He also made it clear that the ray-tracing

solution together with the conservation of wave action con-

stitutes a Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) so-

lution to the wave equation, being the first approximation in

an asymptotic expansion.

While Bretherton and Garrett (1968) mention that the tech-

nique is applicable to magnetohydrodynamic waves the mo-

tivation of all the authors cited is the better understanding of

atmospheric waves such as sound waves and internal gravity

waves, and it is in this field that the conservation of wave ac-

tion for propagation in slowly varying media has found most

attention (Lighthill, 1978, Chapter 4). The reason may be that

most applications in the magnetosphere have been focused

on problems involving boundaries rather than slowly varying

media.

While the Lagrangian technique is elegant and general,

its application to specific problems is algebraically compli-

cated, and the precise physics involved in the processes is

not always apparent. This paper seeks to derive the conser-

vation of action principle for magnetohydrodynamic waves

in a slowly varying medium from the reduced equations of

MHD, and to integrate its use with the MHD ray-tracing

equations of Walker (2008). In so doing, it makes explicit

the nature of MHD energy transfer between wave and back-

ground medium.

The nature of the problem requires the use of Cartesian

tensor notation with summation over a repeated suffix as-

sumed. The symbol for a vector quantity without a subscript

denotes the magnitude of that quantity.

2 Linearized MHD equations in a slowly

varying medium

The MHD equations (Walker, 2005, Sect. 2.4.6) for an MHD

medium with density D(xj , t), velocity Vi(xj , t), pressure

P(xj , t), and magnetic field Bi(xj , t) can be linearized, as-

suming that the medium, varying in space and time, suffers

a small disturbance. Let the unperturbed density be ρ0, the

magnetic field Bi , the pressure P , and the velocity Vi . The

medium is then perturbed such thatD = ρ0+ρ, Bi = Bi+bi ,
P = P +p, and Vi = Vi + vi .

The Lagrangian derivative giving the time rate of change

as we follow the motion of a fluid element is

D

Dt
≡
∂

∂t
+ vj

∂

∂xj
. (1)

The operator D/Dt follows the total motion of the plasma,

including the perturbation velocity vi so that

D

Dt
≡
∂

∂t
+ (Vi + vi)

∂

∂xi
≡

d

dt
+ vi

∂

∂xi
, (2)

and includes both time and space derivatives of the zero-

order quantities. The operator d/dt ≡ ∂/∂t+Vi ∂/∂xi is then

the Lagrangian operator following the zero-order motion of

the plasma.

The zero-order flow is then described by

ρ0

dVi

dt
=−

∂

∂xi

{
P +

B2

2µ0

}
+
Bj

µ0

∂Bi

∂xj
, (3)

dρ0

dt
=−ρ0

∂Vj

∂xj
, (4)

dBi

dt
= Bj

∂Vi

∂xj
−Bi

∂Vj

∂xj
, (5)

dP

dρ0

=
γP

ρ0

, (6)

while, to first order in the perturbation quantities, the pertur-

bations are given by

ρ0

dvi

dt
=−

∂

∂xi

{
p+

Bjbj

µ0

}
+
Bj

µ0

∂bi

∂xj

− ρ0vj
∂Vi

∂xj
− ρ

dVi

dt
+
bj

µ0

∂Bi

∂xj
, (7)

dρ

dt
=−ρ0

∂vj

∂xj
− ρ

∂Vj

∂xj
− vj

∂ρ0

∂xj
, (8)

dp

dt
=−γP

∂vj

∂xj
−p

∂Vj

∂xj
− vj

∂P

∂xj
, (9)

dbi

dt
= Bj

∂vi

∂xj
−Bi

∂vj

∂xj
+ bj

∂Vi

∂xj
− vj

∂Bi

∂xj
. (10)

Note that, if we compare Eq. (7) with the corresponding

expression given by Walker (2005, Eq. 21.54), there is an

additional term −ρdVi/dt on the right-hand side. This was

erroneously omitted (mea culpa) by Walker (2005).

3 Solutions in a slowly varying medium

3.1 Length scales and timescales

So far we have not made any assumption about the mag-

nitudes of the rates of change of the zero-order quantities.

The linearized equations only require that the perturbation is

small. In principle, they describe the time evolution of a per-

turbation applied to a self-consistent MHD flow that obeys
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the zero-order equations. In practice, to obtain solutions, we

need to make further approximations. One such approxima-

tion is to assume that the medium varies only on time- and

length scales long compared with the characteristic period τ

and wavelength λ of the perturbation. The medium is now as-

sumed to change slowly in space and time. The slow variation

can be characterized by a small quantity ε such that the pa-

rameters of the medium change on a timescale of order τ/ε

and on a length scale of order λ/ε. There are two different

approximations to the MHD equations in this problem. One

is that the wave perturbation is small, allowing linearization

of the equations. The other is the slowly varying approxima-

tion which assumes that operators ∂/∂t and ∂/∂xi , operating

on zero-order quantities, are of order εω and εk respectively,

while when operating on first-order quantities they are of or-

der ω and k.

3.2 First approximation: the phase integral solution

The first approximation is found by ignoring terms of order

ε. Locally, on length scales and timescales of order λ and τ ,

the wave is approximately harmonic. The first stage in any

WKBJ approximation (Budden, 1961, Chapter 9) is to as-

sume a phase variation, insert it into the wave equation, get

a non-linear differential equation for the phase, and obtain a

first approximate solution in the form of a phase integral. We

short-circuit this by assuming a first approximation of phase

integral form in both space and time so that the field compo-

nents vary approximately as

exp i

{∫
ωdt −

∫
kidxi

}
(11)

so that ∂/∂t = iω, ∂/∂xi =−iki , and

d

dt
=
∂

∂t
+Vi

∂

∂xi
= i {ω− kiVi} = iω0, (12)

where ω0 is the angular frequency in the plasma rest frame.

It is Doppler-shifted relative to ω, the angular frequency in

the moving frame

The first-order equations to this level of accuracy become

(Walker, 2005, 21.13–21.15)

ω0ρ0vj = kj

{
p+

Bkbk

µ0

}
−
kkBk

µ0

bj , (13)

ω0

p

γP
= kkvk, (14)

ω0bj =−kkBkvj + kkvkBj (15)

so that

ω0 = ω− kiVi (16)

and the local dispersion relations are the same as for a uni-

form stationary medium with the frequency ω replaced by

the Doppler-shifted frequency ω0.

The dispersion relations for each type of wave are

ω2
0 −

(
kiVA,i

)2
= 0 (17)

for the transverse Alfvén wave and

ω4
0 − k

2
{
ω2

0

(
V 2
A+V

2
S

)
−
(
kiVA,i

)2
V 2
S

}
= 0 (18)

for the two magnetosonic waves, where

VA,i =
Bi
√
µ0ρ0

, (19)

VS =

√
γP

ρ0

. (20)

We can write any of these formally as

ω0 =$0 (xi, t) , (21)

where $0 represents the dispersion function in the local rest

frame and depends on xi and t through Bi , P , and ρ.

In the special case of a sound wave VA is 0, and this be-

comes

ω0 = kVS = k

√
γP

ρ0

. (22)

3.3 Ray-tracing equations

Walker (2008) has discussed ray tracing of MHD waves in a

medium that varies both in space and time. The ray defines

the path of a wave packet. The inclusion of time variation in-

troduces a new feature. When the motion of the background

plasma is steady state with ∂/∂t = 0, then the frequency is

constant. The ray-tracing equations then consist of a set of

three first-order differential equations for the rate of change

of position dxi/dt of the wave packet, and a set of three for

the rate of change dki/dt of the wave vector. This is no longer

true when the properties of the medium depend on time as

well as the spatial coordinates. There is an additional Doppler

shift associated with the time variation. This leads to the in-

troduction of another first-order equation giving the rate of

change of frequency.

The full set of ray-tracing equations is then

drxi

dt
=
∂$

∂ki
;

drki

dt
=−

∂$

∂xi
;

drω

dt
=
∂$

∂t
. (23)

The subscript r emphasizes that dr/dt represents the rate of

change of a quantity with time following the wave packet as it

travels along the ray. It may be convenient to express these in

terms of the dispersion relation in the local rest frame. Then,
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from Eq. (16),

drxi

dt
=
∂$0

∂ki
+Vi = V

(0)
G,i +Vi, (24)

drki

dt
=−

∂$0

∂xi
− kj

∂Vj

∂xi
, (25)

drω

dt
=
∂$0

∂t
+ kj

∂Vj

∂t
. (26)

Equation (24) shows how the wave packet progresses in

space as time advances, while Eq. (25) shows how the wave

vector changes in magnitude and direction as the wave packet

advances. They are analogous to Hamilton’s equations with

frequency corresponding to energy and wave vector to mo-

mentum. The equations for ki are conjugate to those for xi .

The equation for the frequency (Eq. 26) also has a trivial con-

jugate equation, dτ/dt = 1, where τ is the time elapsed since

the wave packet left its starting point. Then (xi,ω) and (ki,τ )

are the conjugate variables in a four-dimensional space–time.

This does not, however, imply that relativity has been taken

into account, although it would, in principle, be possible to

do so.

3.4 Second approximation: energy flux

The ray-tracing equations do not, of course, provide a solu-

tion to the wave equations. This would require expressions

for the field components. At this level of approximation the

solution is the phase integral, which is to be evaluated along

the ray. The rays are the characteristic curves in the problem.

A better solution would be one in which the variation of the

amplitude of each field component varied along the path. In

the WKBJ method for a stationary medium the next stage of

the process is to substitute the first approximation (the phase

integral) into the non-linear equation for the phase to get a

second approximation. This second approximation gives the

amplitude of each field component. These all vary in such a

manner as to conserve energy as the wave progresses. An-

other way of getting the same solution is to use energy con-

servation. In a stationary, slowly varying medium, the wave

energy density is an adiabatic invariant. We could find the re-

lationship between each component and the energy flux and

use that to determine behaviour of the amplitudes. This is

the route that we follow, although wave energy is no longer

conserved in this case and it turns out that the appropriate

adiabatic invariant is the wave action density.

Walker (2005, Sect. 21.5) has carried out this procedure

and has derived an expression for the energy balance between

a propagated wave and a non-uniform medium. The deriva-

tion is for a steady state where the Lagrangian operator fol-

lowing the plasma is

d

dt
≡ Vi

∂

∂xi
. (27)

The only difference for a time-varying medium is that

d

dt
≡
∂

∂t
+Vi

∂

∂xi
. (28)

The derivation does not use the explicit form of d/dt but sim-

ply uses Eqs. (3), (4), (5), and (6) to eliminate the time deriva-

tives of the zero-order quantities in the frame of the plasma.

The derivation including time variation of these quantities

gives the same result:

∂U

∂t
=−

∂5i

∂xi
− Tij

∂Vi

∂xj
, (29)

where

U =
1

2
ρ0v

2
+

1

2
b2/µ0+

1

2
p2/γP, (30)

5i =

{
p+

Bjbj

µ0

}
vi −

Bi

µ0

bjvj +UVi, (31)

Tij =

{
ρ0vivj +

1

2
δij
γ − 1

γ

p2

P

}
−

{
bibj −

1
2
δijb

2

µ0

}
, (32)

whereU is the energy density in the wave,5i the energy flux

vector, and Tij a stress tensor. There is a factor (γ − 1)/γ in

the second term of the expression for the stress tensor that

does not occur in Walker’s expression. This corrects the error

noted in the discussion of Eq. (7).

The energy flux vector can be shown to be the rate per unit

area per unit time at which the internal energy is transported

by the wave at the group velocity (Walker, 2005, Eq. 21.26).

5i = UVG,i = U
{
V
(0)
G,i +Vi

}
(33)

The first term in the stress tensor is the Reynolds stress.

It represents the momentum flux associated with the oscil-

lation of the wave. If we consider an element of area dAj ,

moving with the unperturbed velocity Vi , then ρ0vivjdAj is

the rate at which wave momentum ρ0vi is transported across

dAj at velocity vj . It thus represents the mechanical force

exerted by the wave field on dAj . The second term is simply

the normal stress exerted by the isotropic second-order pres-

sure of the wave (see Appendix A1). The third and fourth

terms represent the Maxwell stress (Walker, 2005, Sect. 1.8)

associated with the first-order magnetic perturbation bi . The

Maxwell stress, in the same way, can be regarded as the elec-

tromagnetic momentum flux tensor.

The last term in the equation for energy balance Eq. (29)

may be written

−Tij
∂Vi

∂xj
=−

∂(TijVi)

∂xj
+Vi

∂Tij

∂xj
. (34)
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The force per unit volume exerted by the wave on the un-

perturbed medium is −∂Tij/∂xj . Since the medium is mov-

ing with velocity Vj , the wave does work on the medium

−Vi∂Tij/∂xj and thus the last term in Eq. (34) represents

the gain of energy by the wave as a result of this process.

The first term on the right-hand side has the form of the di-

vergence of a flux vector. Explicitly we can write

TijVj =
(
ρ0vjVj

)
vi +

1

2

(γ − 1)p2

γP
Vi

+
1

2

b2

µ0

Vi −
bjVj

µ0

bi . (35)

Compare this expression with the expression for the flux vec-

tor in a uniform medium (Eq. 31). The first term is an addi-

tional second-order contribution to the transport of internal

energy U : the first-order contribution to the energy density
1
2
ρ0(Vj+vj )(Vj+vj ) is ρ0Vjvj , and there is a second-order

flux term as it is transported by the wave velocity vi . The

second term is the acoustic flux associated with the second-

order pressure (Eq. A6) when the zero-order velocity is non-

zero. Compare it with the term pv in Eq. (31). The remaining

terms represent the flux of magnetic energy and are of the

same form as the corresponding terms in Eq. (31).

When Vi is constant, the two terms on the right-hand side

of Eq. (34) cancel and energy is conserved. The term involv-

ing the stress tensor in Eq. (29) is the difference between the

work done per unit volume and the energy transported and

represents the net effect of the interaction between wave and

unperturbed medium.

4 Conservation of wave action

4.1 Rate of change of ω0 and U following a wave packet

The rest frame frequency ω0 is given by the dispersion rela-

tion (21) and is a function of xi , ki , and t . Its rate of change

following a wave packet is, therefore,

drω0

dt
=
∂ω0

∂t
+
∂ω0

∂xi

drxi

dt
+
∂ω0

∂ki

drki

dt
. (36)

We can substitute for drxi/dt from Eq. (24) and for drki/dt

from Eq. (25) to write this as

drω0

dt
=
∂ω0

∂t
+Vi

∂ω0

∂xi
− kjV

(0)
G,i

∂Vj

∂xi
(37)

=

(
dω0

dt

)
k

− kjV
(0)
G,i

∂Vj

∂xi
, (38)

where(
d

dt

)
k

≡
∂

∂t
+Vi

∂

∂xi
(39)

is an operator representing the rate of change with respect to

time of a quantity following the motion of the unperturbed

plasma. The subscript k emphasizes that this is done keeping

k constant.

We can also see how U varies following the wave packet

by noting that the equation for transport of energy can be

written in terms of the rate of change along a ray. If we use

Eq. (33), the divergence of the flux vector can be expanded

as

∂

∂xi

{
U
(
V
(0)
G,i +Vi

)}
=

(
V
(0)
G,i +Vi

) ∂U
∂xi

+U
∂

∂xi

(
V
(0)
G,i +Vi

)
. (40)

This can be substituted in (29) to yield

drU

dt
≡
∂U

∂t
+VG,i

∂U

∂xi
(41)

=−U
∂VG,i

∂xi
− Tij

∂Vi

∂xj
. (42)

In order to establish the principle of conservation of wave

action in any particular case, we compare Eqs. (38) and (42).

The right-hand side of Eq. (38) is evaluated from the appro-

priate dispersion relation, while in Eq. (42) we express Tij in

terms of U . We proceed to do this for a number of special

cases.

4.2 Sound waves

Lighthill (1978, Sect. 4.6) has discussed the conservation of

wave action for sound waves where the background motion

is a steady-state flow. His book draws attention to the im-

portance of the concept of conservation of wave action, but

he nowhere considers the case of non-stationary flow. As we

have seen for steady-state flow, the frequency remains con-

stant and this simplifies the analysis. Sound waves are a spe-

cial case of MHD waves when B→ 0, and they provide a

good introductory example.

For a sound wave, where the magnetic field is 0, the ex-

pressions for energy density (Eq. 30), flux vector (Eq. 31),

and stress tensor (Eq. 32) become

U =
1

2
ρ0v

2
+

1

2
p2/γP, (43)

5i = pvi, (44)

Tij = ρ0vivj +
1

2
δij
γ − 1

γ

p2

P
. (45)

If we use these expressions for the flux vector and stress

tensor in Eq. (42), we get the rate of change of U following
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a wave packet:

drU

dt
≡
∂U

∂t
+VG,i

∂U

∂xi
(46)

=−U
∂VG,i

∂xi
− ρ0vivj

∂Vj

∂xi
−

1

2

(γ − 1)p2

γP

∂Vj

∂xj
. (47)

If we multiply Eq. (13) by vi and use Eq. (33), we see that

ρ0vivj =
kiVG,jU

ω0

. (48)

Also if we use the equipartition relation (A11) in Eq. (43),

we get

1

2

(γ − 1)p2

γP
=

1

2
(γ − 1)U. (49)

If we substitute these in Eq. (47), we get

1

U

drU

dt
=−

∂V
(0)
G,i

∂xi
−
∂Vj

∂xj
−
kiVG,j

ω0

∂Vi

∂xj

−
1

2
(γ − 1)

∂Vj

∂xj
. (50)

Now compare this with Eq. (38), the rate of change of ω0

following the ray. On the right-hand side (dω0/dt)k repre-

sents the rate of change of the rest frame frequency following

the zero-order motion of the plasma and keeping k constant.

It is to be found from the sound dispersion relation (22). We

use Eqs. (6) and (4) for the derivatives of P and ρ0 following

the plasma. Then

(
dω0

dt

)
k

≡

(
d(kVS)

dt

)
k

≡ k
d

dt

√
γP

ρ0

(51)

=
1

2
kVs

1

P

dP

dt
−

1

2
kVs

1

ρ0

dρ0

dt
(52)

=−
1

2
kVsγ

∂Vj

∂xj
+

1

2
kVs

∂Vj

∂xj
(53)

so that (noting that kVs/ω0 = 1)

1

ω0

drω0

dt
=−

1

2
(γ − 1)

∂Vj

∂xj
−
kiV

(0)
G,j

ω0

∂Vi

∂xj
. (54)

Finally, subtract Eq. (38) from Eq. (50) to get

ω0

U

dr

dt

(
U

ω0

)
=−

∂V
(0)
G,j

∂xj
−
∂Vj

∂xj
. (55)

Then, noting that

dr

dt
=
∂

∂t
+

{
V
(0)
G,j +Vj

} ∂

∂xj
, (56)

we obtain, using Eq. (33), the result

∂

∂t

(
U

ω0

)
=−

∂

∂xj

{
U

ω0

(
V
(0)
G,j +Vj

)}
=−

∂

∂xj

(
5j

ω0

)
, (57)

which shows that the wave action, with densityU/ω0, is con-

served.

4.3 The transverse Alfvén wave

For the transverse Alfvén wave we follow the same proce-

dure as for a sound wave with the appropriate dispersion

relation (17) and relations between the field components. It

is an incompressible shear wave with p = 0, Bibi = 0, and

kivi = 0. The relations between the field components (13)

and (15) are then

ω0ρ0vj =−
kkBk

µ0

bj , (58)

ω0bi =−kkBkvi . (59)

Multiply Eq. (58) by bi/ω0 and Eq. (59) by bi/ω0µ0, and we

see that

ρ0vivj =
bibj

µ0

. (60)

From the energy equipartition relation (A11) the energy

density is

U =
1

2
ρ0v

2
+

1

2
b2/µ0 = b

2/µ0. (61)

As we have noted above, bi is normal to Bi so that the flux

vector from Eq. (31) is

5i =−Bi
bjvj

µ0

(62)

and the stress tensor from Eqs. (32), (61), and (60) is

Tij =
1

2
δij
b2

µ0

=
1

2
δijU. (63)

If these are substituted in Eq. (42), we get

1

U

drU

dt
=−

∂

∂xi

{
V
(0)
G,i +Vi

}
−

1

2

∂Vi

∂xi
. (64)

We now use the dispersion relation (17) to find (dω0/dt)k
in Eq. (38). The derivatives of ρ and Bi are found from

Eqs. (4) and (5) so that(
dω0

dt

)
k

= kiV
(0)
A,j

∂Vi

∂xj
−

1

2
kiV

(0)
A,i

∂Vj

∂xj
. (65)

Thus

1

ω0

drω0

dt
=−

1

2
kiV

(0)
A,i

∂Vj

∂xj
. (66)
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Finally subtract this from Eq. (64), and we get

dr

dt

(
U

ω0

)
=
U

ω0

∂V
(0)
G,i

∂xi
(67)

or, equivalently,

∂

∂t

(
U

ω0

)
=

∂

∂xj

(
U

ω0

)
V
(0)
G,j , (68)

which shows that, once again, the wave action is conserved

along the ray.

4.4 Magnetosonic waves

The magnetosonic waves are algebraically more compli-

cated, but we can follow the same process. The dispersion

relation (18) is in the form of a biquadratic as it describes

both waves. It would be possible to solve the quadratic equa-

tion for ω2
0, but the solution contains a square root and we

must choose which sign applies to which wave, and this is

not as convenient as finding a solution that applies to both

magnetosonic waves.

In a uniform medium we can use Eqs. (14) and (15) to

eliminate p and bi from Eq. (13). The result is a set of three

equations relating the three components of vi . We use a set

of local magnetic-field-aligned coordinates x‖, xn, and x⊥,

where x‖ is parallel to B, xn is normal to the plane containing

B and k, and x⊥ is normal to B in this plane. The three equa-

tions then separate into two sets (Walker, 2005, Sect. 7.5.1),

one involving vn representing the Alfvén wave, and the other

two involving only v‖ and v⊥ representing the magnetosonic

waves. The latter two equations may be written(
ω2

0 − k
2V 2
A− k

2
⊥
V 2
s −k⊥k‖V

2
S

−k⊥k‖V
2
S ω2

0 − k
2
‖
V 2
S

)(
v⊥
v‖

)
= 0. (69)

These are two homogeneous linear equations which are

only consistent if the determinant of the matrix is 0. This

determines the dispersion relation (18) which, in these coor-

dinates, can be written

ω4
0 −ω

2
0k

2
(
V 2
A+V

2
S

)
+ k2k2

‖
V 2
AV

2
S = 0 (70)

In Eq. (42), representing the rate of change of U following

a wave packet, we note that

Tij
∂Vi

∂xj
=

{
ρ0vivj −

bibj

µ0

}
∂Vi

∂xj

+

{
1

2

(γ − 1)p2

2γP
+
b2

2µ0

}
∂Vi

∂xi
. (71)

If we multiply Eq. (13) by vi , Eq. (15) by bi , subtract the

second from the first, and use Eq. (31), we get

ρ0vivj −
bibj

µ0

=

(
p+

Bkbk

µ0

)
kivj

ω0

−
kkvk

ω0

Bjbi

µ0

=
ki

ω0

5
(0)
j +

Bjvk

ω0µ0

(kibk − kkbi)

=
ki

ω0

V
(0)
G,jU +

Bjvk

ω0µ0

(kibk − kkbi) . (72)

The next objective is to express the products of the field

components on the right-hand side in terms of the wave en-

ergy density U . Then we will be able to divide Eq. (42)

by U to get an expression for (1/U)drU/dt that only de-

pends on the zero-order quantities and their derivatives. This

is best done by using the local field-aligned coordinates and

making use of the properties of the magnetosonic waves de-

scribed above. The details are shown in Appendix A2. From

Eqs. (A23) and (A23) we get

(γ − 1)p2

2γP
+
b2

2µ0

=

1

2

(γ − 1)
(
ω2

0 − k
2V 2
A

)
+
(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) U. (73)

Also from Eqs. (72) and ()

{
ρ0vivj −

bibj

µ0

}
∂Vi

∂xj
=
kiV

(0)
G,j

ω0

∂Vi

∂xj
U

+

 k‖k⊥k
2V 2
AV

2
S

ω0

(
ω2

0 − k
2
‖
V 2
S

) ∂V‖
∂x⊥

−
ω0

(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂V‖
∂x‖

}
U. (74)

These two results can be substituted in Eq. (42) with the re-

sult that

1

U

drU

dt
=−

∂V
(0)
G,i

∂xi
−
∂Vi

∂xi
−
kiV

(0)
G,j

ω0

∂Vi

∂xj

−
1

2

(γ − 1)
(
ω2

0 − k
2V 2
A

)
+
(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂Vi

∂xi

−
k‖k⊥k

2V 2
AV

2
S(

ω2
0 − k

2
‖
V 2
S

) ∂V‖
∂x⊥
+

(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂V‖
∂x‖

. (75)

The next step is to evaluate (dω0/dt)k in Eq. (38) by dif-

ferentiating the dispersion relation. For the magnetosonic

waves this is algebraically tedious and is carried out in Ap-
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pendix A2.5. The result is

1

ω0

drω0

dt
=−

kiV
(0)
G,j

ω0

∂Vi

∂xj

−
1

2

(γ − 1)
(
ω2

0 − k
2V 2
A

)
+
(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂Vi

∂xi

−
k‖k⊥k

2V 2
AV

2
S(

ω2
0 − k

2
‖
V 2
S

) ∂V‖
∂x⊥
−

(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂V‖
∂x‖

. (76)

If the second of these is subtracted from the first, we get

dr

dt

(
U

ω0

)
≡
∂

∂t

(
U

ω0

)
+VG

∂

∂xi

(
U

ω0

)
=−

U

ω0

∂V
(0)
G,i

∂xi
−
U

ω0

∂Vi

∂xi
=−

U

ω0

∂VG,i

∂xi
(77)

or

∂

∂t

(
U

ω0

)
=−

∂

∂xi

(
U

ω0

VG,i

)
, (78)

which expresses the conservation of the wave action for the

magnetosonic waves.

5 Examples of the use of action conservation

In this section we apply the principle of conservation of wave

action to some illustrative problems. These are of a tutorial

nature rather than applications of immediate relevance.

5.1 Sound wave in a medium undergoing compression

We start with the simplest possible example. Consider a

plane sound wave propagated in the z direction in a gas that

undergoes a slow adiabatic compression. The gas is assumed

to be in a long cylinder with axis in the z direction and a di-

ameter very large compared with the wavelength. The com-

pression is assumed to take place by reducing the diameter of

the cylinder. The zero-order velocity Vi of the gas resulting

from the compression is then at right angles to the direction

of propagation so that there is no Doppler shift and ω = ω0.

This velocity is a function of xi and t , but the uniform com-

pression means that its spatial derivatives are independent of

position being functions of time only. The sound speed VS
(Eq. 20) is also a function of t only. The ray-tracing (Eq. 23)

with the group velocity equal to the sound speed become

drx

dt
= Vx(t), (79)

dry

dt
= Vy(t), (80)

drz

dt
= VS(t)), (81)

Figure 1. Sound wave in a medium undergoing compression (see

text).

drkx

dt
=−kx

∂Vx

∂x
, (82)

drky

dt
=−ky

∂Vy

∂y
, (83)

drkz

dt
= 0, (84)

drω

dt
=
∂$

∂t
=
∂{kzVS(t)}

∂t
. (85)

The first three equations (Eqs. 79, 80, 81) give the path

of a wave packet while the compression takes place. They

show that the velocity of a wave packet during the compres-

sion has a component along the z axis equal to the sound

speed. In addition the wave packet is carried towards the axis

of the cylinder with the velocity of the medium. This is il-

lustrated in Fig. 1. Consider portions of rays AB and CD on

either side of the axisOP of the container, at time t0 just be-

fore the compression starts. During the compression a wave

packet such as that at A moves along a ray path AA′ and

reaches A′ at time t when the compression ends. Other wave

packets such as B move along parallel paths such as BB ′.

The behaviour is analogous to the behaviour of streak lines

in time-varying fluid dynamics. The net effect is that the ray

pencil AB moves inwards as it progresses until it reaches

A′B ′, and CD does the same to reach C′D′. Clearly, because

the ray pencils move with the gas, the cross-sectional area

of any ray tube changes proportionally to the cross-sectional

area of the container.

The equations for the transverse components of the wave

vector (Eqs. 82, 83) show that, if kx and ky are initially 0,

they will remain 0. Equation (84) shows that kz remains con-

stant. The wave thus remains a plane wave propagated in the

z direction with a constant wave length. Finally Eq. (85) can

be integrated directly to show that ω varies with time as

ω(t)= kzVS(t). (86)

We thus see that, as VS changes as a result of the compres-

sion, the frequency also changes. This is a kind of Doppler

shift that does not result from the motion of the medium, the

source, or the observer.

The cross section of the ray tubes changes in proportion

to the cross-sectional area A of the container. The density
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is inversely proportional to A through the adiabatic relation

P ∝ A−γ . Thus

VS ∝ A
−
(γ−1)

2 . (87)

During this change the wave action is conserved. If the wave

energy density is U , the quantity UA/ω remains constant.

The energy density thus varies as

U ∝ VS/A∝ A
−
(γ+1)

2 . (88)

In the sound wave the magnitude of the energy flux5 isUVS
so that

5∝ V 2
S /A∝ A

−γ . (89)

The total energy per unit length W of the wave train changes

as

W ∝ UA∝ A−
(1)
3 . (90)

For example in an ideal gas γ = 5/3 and

W ∝ A−
(γ−1)

2 . (91)

Since γ > 1 the total wave energy increases when the gas

is compressed. This means that the work done in the adia-

batic compression is greater than that needed to increase the

internal energy of the gas. For a simple solar wind model

with large plasma β so that the fast wave approximates a

sound wave, if there is a spectrum of waves in existence, we

can infer that temporal compression will increase not only

the temperature but also the wave energy. Explicit calcula-

tion for a more realistic fast wave would show the same be-

haviour.

5.2 Isotropic Alfvén wave propagated through

a shear layer

First we consider a steady-state situation in which the un-

perturbed medium does not change with time. Consider an

isotropic Alfvén wave in a shear layer. The simplest possi-

ble case is that for which the density is constant, the pressure

negligible, and the magnetic field is constant and normal to

the z axis. The velocity is in the x direction and is a func-

tion of z. The fast wave is then an isotropic Alfvén wave. We

consider the case where the wave vector lies in the x–z plane

and has the dispersion relation

ω0 = ω− kxV (z)= kVA. (92)

The ray-tracing equations (Eqs. 24, 25, 26) for this case

become

dx

dt
=
∂ω

∂kx
=
kx

k
VA+V (z), (93)

dz

dt
=
∂ω

∂kz
=
kz

k
VA, (94)

dkx

dt
= 0, (95)

dkz

dt
=−

∂ω

∂z
=−kx

dV

dz
, (96)

dω

dt
= 0. (97)

This immediately shows that ω is constant as expected in the

steady state, and that kx is constant, which is an expression

of Snell’s law. The right-hand sides of Eqs. (93) and (94) are

the x and z components of the group velocity.

Figure 2 shows the results of a ray tracing in a shear layer

by integrating these equations using a Runge–Kutta process.

The dependence of the velocity on z is given by

V =
1

2
V0 {1+ tanh(z/w)} . (98)

The dependence of V on z is shown in Fig. 2a, and the pa-

rameters for the shear layer used are shown in the figure. The

maximum shear occurs at z= 0. Each ray is started at the

point O below the shear layer where the medium has a very

small velocity and is essentially at rest. The initial direction

of the wave normal is spaced at equal angles so that a fan of

rays spreads out from O. In Fig. 2b the interruptions in the

rays occur at equal time intervals for a point on the ray mov-

ing at the ray velocity (which for these waves is the same

as the group velocity) (Budden, 1961, Sect. 13.19). This is

the velocity of the point of intersection of a plane wavefront

travelling with the phase velocity and the ray. In a stationary

MHD medium it is the same as the phase velocity (Walker,

2005, Sect. 9.2.5), but this is no longer true in a moving

medium. These interruptions therefore represent successive

positions of a wave crest.

There are several noteworthy features in this ray pattern.

Were it not for the shear, the medium would be uniform and

the rays would travel radially from O, producing spherical

wave fronts. This is the situation near O, where V is very

small. As the velocity increases, since the group velocity is

the sum of the group velocity in the rest frame of the medium

and the velocity of the medium itself, the rays are swept to

the right. Those rays with negative kx initially make a posi-

tive angle with the z axis and are rotated clockwise relative

to it. No matter how large the initial angle, when kx is nega-

tive, the right-hand side of Eq. (93) eventually becomes 0 and

the motion in the x direction is reversed. When kx is positive

and small, the initial x component of the ray velocity is pos-

itive, so there is no reversal of direction. The magnitude of

the x component of the ray velocity, however, increases sub-

stantially and the ray is still swept to the right. For positive
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Figure 2. Isotropic Alfvén waves originationg from a point source

O in a shear layer. (a) The layer profile. (b) The results of ray trac-

ing. The ray pattern is interrupted at equal time intervals for a fea-

ture on the wave packet travelling at the ray velocity. The interrup-

tions therefore trace out the pattern of the wave fronts.

values of kx the value of kz decreases along the ray, as can be

seen from Eq. (96). It eventually becomes zero and changes

sign, and hence from Eq. (94) the ray is reflected. Another

point of interest is the focusing of the reflected rays seen at

the bottom right-hand corner of the ray pattern.

In order to study the conservation of action in this geome-

try, it is necessary to know how the cross-sectional area of a

ray tube changes along its length. This is not a trivial prob-

lem and we shall postpone it. Instead we shall consider a

plane wave situation. Consider one of the rays with negative

kx and suppose that it originates from a very distant source.

Then the wave fronts are approximately plane and the sepa-

ration of adjacent rays in the x direction remains constant.

Consider Fig. 3a. It shows a tube of rays passing through

the boundary of a rectangular area A where the group veloc-

ity is VG. The tube penetrates the shear layer and reaches a

level where the group velocity is V′G. The flux of wave action

into the tube is equal to the flux out. Thus

UVG,zA

ω0

=
U ′V ′G,zA

ω′0
. (99)

If the starting level is well below the shear layer, then ω0 = ω

and ω′0 = ω−kxV0. The ratio of the energy flowing out of the

tube to that flowing in is therefore

U ′V ′G,z

UVG,z
=
ω′0

ω0

=
ω− kxV0

ω
. (100)

We see then that for negative kx there is a gain in energy.

However those rays that start with positive kx lose energy.

It might be thought that if V0 were sufficiently large they

would acquire negative energy, but the reflection condition

ensures that this cannot occur. The situation is illustrated in

Fig. 3b. Thus the reflected waves do, in fact, lose energy as

they are propagated upwards, but this is regained after they

are reflected so that there is no net change.

So far this calculation has applied to the total energy in

the ray tube and would apply equally well to the diverging

ray tubes of Fig. 3a. If we want to calculate the flux vector,

and hence the energy density and the amplitudes of the field

components, we need to know the cross-sectional area of the

ray tube. For diverging ray tubes such as those of Fig. 3a the

calculation is not trivial and will not be pursued in this paper.

For non-diverging ray tubes such as those of Fig. 3b matters

are simpler. The cross-sectional area of the ray tube is simply

A0 = Acosθ , where θ is the angle between the ray tube and

the z axis. Equation (99) can just as well be written

UVGA0

ω0

=
U ′V ′GA

′

0

ω′0
(101)

so that

5′

5
=
A0ω

′

0

A′0ω0

=
ω′0 cosθ

ω0 cosθ ′
. (102)

For this example cosθ can be found as a function of z. The

only dependence on z is through V (z). Both ω0 and kz de-

pend on V through

ω0 = ω− kxV (z), (103)

kz =
ω0(z)

Va
, (104)

which leads to

cosθ =
k2
xV

2
A+ω0(ω−ω0)

ω0

√
k2
xV

2
A

{
2ω
ω0
− 1

}
+ (ω−ω0)2

, (105)

which allows the cross-sectional area and hence the flux vec-

tor and energy density along the ray to be found. The di-

rect calculation is only possible because the plane geometry

allows it. In general some means of calculating the cross-

sectional area of the flux tube as the integration progresses

must be used. Buckley (1982) has proposed a method of do-

ing this, but, surprisingly, it does not appear to have been ap-

plied in practice. Work is in progress in applying it to MHD

waves.

5.3 Transverse Alfvén wave in medium undergoing

compression

Next we consider another problem in which the plasma con-

ditions vary as a function of time. Walker (2008) traced rays

using Eqs. (24), (25), and (26). He considered a uniform re-

gion of plasma containing a sheet of current flowing in the

y direction, and situated on the plane z= 0. A uniform mag-

netic field was associated with the current sheet. For z > 0 it

flowed in the x direction and for z < 0 in the −x direction.

This can be regarded as a crude model of the magnetotail near
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Figure 3. Ray tubes for plane waves in a shear layer. (a) Wave trans-

mitted through layer. (b) Wave reflected from layer.

its axis. A transverse Alfvén wave was assumed to be prop-

agated along the x axis while the system changed slowly in

time. The surface current density in the current sheet was in-

creased slowly and quasistatically, by which was meant that

any acceleration was so small that the plasma remained in

quasi-equilibrium as conditions changed. The magnetic field

increased uniformly, and the electromotive force arising from

the changing magnetic flux provided an electric field associ-

ated with a plasma drift inwards to the current sheet, at a

velocity consistent with the frozen-in field line theorem. The

surface current density of the sheet changes with time in such

a manner that, over a period of time T , the magnetic field

magnitude changes smoothly from an initial value B0 to a

final value BF according to

B = B0

{
1+

1

2
f
[
1+ tanh(t/T )

]}
, (106)

where f is the fractional change in B. As this change takes

place, the frozen-in field lines move towards the current sheet

and the plasma is compressed.

Figure 4a shows the result of a ray tracing as the back-

ground parameters are changed. Initially, at t = 0 there is

a pencil of transverse Alfvén waves propagated to the left

along the line ABCD. As the current increases, the points

on the ray pencil ABCD move successively to A1B1C1D1,

A2B2C2D2, A3B3C3D3, and A4B4C4D4 respectively along

the separate ray paths shown. The net effect is that the pencil

of rays remains on the same field line as it is convected to-

wards the current sheet. At all times the wave normal remains

aligned with the magnetic field, but the ray follows a path that

keeps the wave packet on the same convecting field line. The

wavelength in the x direction remains unchanged so that kx is

constant. In the time-varying case, just as in the simple case

of a sound wave in a medium undergoing compression, suc-

cessive points along a pencil of rays do not follow the same

ray path.

Figure 4. Ray tracing of transverse Alfvén wave in the magnetic

field above a current sheet as the sheet current density is increased

(see text).

Figure 4b shows a ray tube of rectangular cross-sectional

area of width A= wh. As the wave packet follows the ray

path, the plasma is compressed in the z direction so that the

cross-sectional area becomes A1 = wh1. At t = 0 the degree

of compression is imperceptible and the ray is directed paral-

lel to the field; at t = t4 the compression is essentially com-

plete and the same is true. The medium is at rest in each

case, and the group velocity for the transverse Alfvén wave

is VA = B/
√
µ0ρ0 parallel to the magnetic field. The mag-

netic flux through A is constant so that

B ′

B
=
A

A′
=
h

h′
. (107)

The compression is in the z direction, so the density is in-

versely proportional to h. Thus

V ′A

VA
=

√
h

h′
. (108)

The action flux vector in Eq. (68) is

UVG

ω0

=
UVA

kxVA
=
U

kx
, (109)

where we have used the dispersion relation (17). The con-

servation of wave action implies that the flux of wave action

into the ray tube through A is equal to the flux out through

A′:

UVG

ω0

A=
U ′V ′G

ω′0
A′ (110)

or

Uh= U ′h′ (111)

since A∝ h. The energy density thus increases by a factor

h/h′ during the compression. The net gain of energy can be
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found from Eq. (110). The power delivered to the wave in the

ray tube at A is UVGA and that extracted at A′ is U ′V ′GA
′.

The ratio is

G=
U ′V ′GA

′

UVGA
=
ω′0

ω0

=
V ′A

VA
=

√
h

h′
. (112)

We see, therefore, that the energy of the wave is increased

in the compression. External work has been done on the un-

perturbed plasma by the compression, and some of this en-

ergy has been used to do work on the wave through the stress

term in Eq. (29).

This situation is more complicated than the steady-state

problem of the previous section. We have taken care to look

at the energy flux into the volume represented by the ray tube

in Fig. 4b at an initial time before the compression has started

and a final time when it is complete. At each of these times

the motion is steady state and we can calculate the flux of

energy into or out of the volume from the steady-state flow.

While the compression is in progress, the energy flux at an

intermediate time through a cross section of the ray tube will

not be constant. Before the compression takes place, it will be

0. As the pencil sweeps through the cross section, it will rise

to a maximum and then fall again, as will the action density.

We need to calculate the flux as we follow a wave packet in

time.

5.4 Interaction of the waves with the background

The results of our computations show that, when the velocity

of the medium is a function of both space and time, the wave

exchanges energy with the background. This means that the

zero-order flow that has been assumed is modified by the

wave. This happens on temporal and spatial timescales that

are large compared with the period and wavelength and does

not invalidate our assumptions. As outlined by Walker (2005,

Sect. 21.5.1) there are other second-order terms in the total

MHD energy conservation equation that represent the energy

change in the background. The neglect of these second-order

terms is equivalent to a quasi-linear approximation analogous

to that used in the study of unstable plasma distribution func-

tions close to quasi-equilibrium.

We expect, therefore, that a spectrum of MHD waves prop-

agated in a moving non-uniform plasma such as the solar

wind will be modified as they flow, consequently modifying

the flow of the wind. As described by Lighthill (1978, Chap-

ter 4) for internal atmospheric waves, the energy exchange is

most efficient at a critical layer where

ω0 ≡ ω− kiVi = 0. (113)

For the MHD waves that we are considering, such critical

layers are inaccessible in a slowly varying medium; they only

occur where the wave is evanescent. For the atmospheric

sound waves described by Lighthill (1978) they only occur

when the Earth’s gravitational field is significant when the

waves are described as internal waves. Similarly MHD waves

would only show accessible critical layers sufficiently near

the surface of the Sun, where the gravitational field is large.

The theory of this paper would have to be extended to include

this.

6 Discussion and conclusions

In this paper we have explicitly derived the principle of con-

servation of wave action in slowly varying magnetohydro-

dynamic media directly from the basic equations of magne-

tohydrodynamics and applied it to some idealized examples.

While the principle is well known from the work of Whitham

(1965) and Bretherton and Garrett (1968), it has not been ap-

plied to such problems before; the Lagrangian approach of

these authors is powerful and very general but does not pro-

vide as much physical insight into specific problems as this

more direct approach. The paper, therefore, is partly didactic

in nature.

The ray-tracing method, together with the equation de-

scribing energy flow and exchange along the rays, are equiva-

lent to a WKBJ solution of the problem. This is the first term

in an asymptotic series. At this level of approximation the

three modes – fast, slow, and transverse Alfvén wave – re-

main distinct, with no coupling or mode conversion studied,

for example, by Cally (2006) or Cally and Andries (2010).

Coupling processes take place near caustic surfaces when

rays approach each other and need a higher order of approx-

imation for proper treatment.

The most important result of the theory in this paper is

that it enables us to compute the energy exchange between an

MHD wave and its surroundings when the medium in which

it is propagated is changing slowly both in space and time. In

such cases we can study the propagation of the wave using

ray-tracing techniques.

We have only considered plane-stratified systems as exam-

ples in this paper. The technique allows for waves from ar-

bitrary sources with diverging or converging rays, provided

that we have a means of calculating the cross-sectional area

of the ray tube as conditions change. This can be done in

principle by the method developed by Buckley (1982). We

have found no applications of this method in the literature,

and it appears to have been largely overlooked. It deserves

attention, and work is in progress to apply it to the waves

described in this paper.
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Appendix A: Some mathematical results

A1 Contribution of second-order pressure

to energy density

The internal energy density E is related to the pressure by

E =
P

γ − 1
. (A1)

The wave field components are evaluated to first-order accu-

racy. Expressions for its energy and momentum density are

found from products of the first-order field components. The

adiabatic law

dP
dD
=
γP
D

(A2)

defines the pressure as a function of density. We can express

the pertubed pressure as an expansion in powers of ρ, the

density perturbation.

P = P +
(

dP
dD

)
0

ρ+
1

2

(
d2P
dD2

)
0

ρ2
+ . . . (A3)

From Eq. (A2)

(
dP
dD

)
0

=
γP

ρ0

(A4)(
d2P
dD2

)
0

=
γ (γ − 1)P

ρ2
0

. (A5)

The second-order term in the expansion, with the density per-

turbation replaced by the pressure perturbation, is then

p2 =
1

2

γ (γ − 1)P

ρ2
0

ρ2
0

γ 2P 2
p2
=

1

2
(γ − 1)

p2

γP
. (A6)

This quantity appears in the expression for the stress ten-

sor (32) and can thus be interpreted as the second-order pres-

sure contribution to the stress. Combining it with Eq. (A1)

gives the second-order internal energy density appearing in

Eq. (30).

A2 Mathematical relations for the magnetosonic waves

In this section we use the field-aligned coordinates of

Sect. 4.4.

A2.1 Identities

Three identities that we shall use follow from the dispersion

relation (70).

ω2
0 − k

2V 2
A− k

2
⊥
V 2
S = ω

2
0 − k

2
(
V 2
A+V

2
S

)
+ k2
‖
V 2
S

=−
k2k2
‖
V 2
AV

2
S

ω2
0

+ k2
‖
V 2
S

=
k2
‖
V 2
S

ω2
0

(
ω2

0 − k
2V 2
A

)
, (A7)

k2V 2
A

ω2
0

(
ω2

0 − k
2
‖
V 2
S

)
= k2V 2

A−
k2k2
‖
V 2
AV

2
S

ω2
0

= k2V 2
A+

{
ω2

0 − k
2
(
V 2
A+V

2
S

)}
= ω2

0 − k
2V 2
S , (A8)

k2V 2
S

ω2
0

(
ω2

0 − k
2
‖
V 2
A

)
= k2V 2

S −
k2k2
‖
V 2
AV

2
S

ω2
0

= k2V 2
S +

{
ω2

0 − k
2
(
V 2
A+V

2
S

)}
= ω2

0 − k
2V 2
A (A9)

A2.2 Equipartition of wave energy

If we multiply Eq. (13) by vj , Eq. (14) by p, and Eq. (15) by

bj/µ0, and add the latter two, we see that

ρv2
=
p2

γP
+
b2

µ0

. (A10)

The left-hand side is twice the kinetic energy density associ-

ated with the wave, and the right-hand side is twice the po-

tential energy density. This is an example of equipartition of

wave energy. It can be combined with Eq. (30) to show that

U = ρ0v
2
=
p2

γP
+
b2

µ0

. (A11)

A2.3 Partition of wave energy for the

magnetosonic waves

We can use Eq. (69) to relate the velocity components. The

two consistent relations show that

v⊥

v‖
=
ω2

0 − k
2
‖
V 2
S

k⊥k‖V
2
S

, (A12)

v⊥

v‖
=

k⊥k‖V
2
S

ω2
0 − k

2V 2
A− k

2
‖
V 2
S

, (A13)

and thus, multiplying the two equations,

v2
⊥

v2
‖

=
ω2

0 − k
2
‖
V 2
S

ω2
0 − k

2V 2
A− k

2
‖
V 2
S

. (A14)
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The equipartition relation (A11) shows that the total wave

energy can be related to the kinetic energy:

U = ρ0v
2
= ρ0

(
v2
⊥
+ v2
‖

)
(A15)

so that from Eq. (A14)

ρ0v
2
⊥
=

ω2
0 − k

2
‖
V 2
S

2ω2
0 − k

2
(
V 2
A+V

2
S

)U (A16)

and

ρ0v
2
‖
=
ω2

0 − k
2V 2
A− k

2
⊥
V 2
S

2ω2
0 − k

2
(
V 2
A+V

2
S

)U (A17)

=
k2
‖
V 2
S

(
ω2

0 − k
2V 2
A

)
ω2

0

{
2ω2

0 − k
2
(
V 2
A+V

2
S

)}U, (A18)

where the last line follows from Eq. (A7).

The equipartition relation (A11) states that the energy is

equally divided between kinetic and potential energy. These

identities allow us to determine how potential energy is

shared between magnetic field energy and internal energy in

the magnetosonic waves. The wave pressure p depends on

kivi , and in these coordinates

kivi = k⊥v⊥+ k‖v‖ ={
ω2

0 − k
2
‖
V 2
S

k‖V
2
S

+ k‖

}
v‖ =

ω2
0

k‖V
2
S

v‖, (A19)

so we can square Eq. (14) and use Eqs. (A18) and (A7) to

show that the internal energy density is

1

2

p2

γP
=
ρ0V

2
S

2ω2
0

ω4
0

k2
‖
V 4
S

v2
‖

=
1

2

ω2
0

k2
zV

2
S

ω2
0 − k

2V 2
A− k

2
‖
v2
s

2ω2
0 − k

2
(
V 2
A+V

2
S

)U
=

1

2

ω2
0 − k

2V 2
A

2ω2
0 − k

2
(
V 2
A+V

2
S

)U. (A20)

We can also find an expression for the wave potential en-

ergy associated with the magnetic field perturbation. For the

magnetosonic waves b is co-planar with ki and bi , so Eq. (13)

may be written

b⊥ =−
k‖B

ω0

v⊥; b‖ =
k⊥B

ω0

v⊥ (A21)

so that

b2

µ0

=
b2
⊥
+ b2
‖

µ0

=
k2V 2

A

ω0

ρ0v
2
⊥
. (A22)

From Eqs. (A8) and (A16) it follows that

b2

µ0

=
ω2

0 − k
2V 2
S

2ω2
0 − k

2
(
V 2
A+V

2
S

)U. (A23)

Note that, although we have used a particular local coordi-

nate system to obtain these expressions for the wave internal

energy and magnetic potential energy, the final expressions

for these quantities are independent of the system of coordi-

nates used.

A2.4 Power supplied to the magnetosonic waves by the

unperturbed plasma

Part of the power supplied to the magnetosonic waves comes

from the product of the term

Bjvk

ω0µ0

(kibk − kkbi)

in Eq. (72) and the tensor ∂Vi/∂xj . We express the prod-

ucts of first-order field components in terms of the wave en-

ergy densityU by using the local field-aligned coordinates of

Sect. 4.4. Note that Bj∂/∂xj = B∂/∂x‖ and that vi , bi , and

ki have no component perpendicular to the plane of Bi and

ki . Then

Bjvk

ω0µ0

(kibk − kkbi)
∂Vi

∂xj

=
B

ω0µ0

∂V⊥

∂x‖

{
k⊥
(
b⊥v⊥+ b‖v‖

)
− b⊥

(
k⊥v⊥+ k‖v‖

)}
+

B

ω0µ0

∂V‖

∂x‖

{
k‖
(
b⊥v⊥+ b‖v‖

)
− b‖

(
k⊥v⊥+ k‖v‖

)}
=

B

ω0µ0

(
k‖b⊥− k⊥b‖

){
−v‖

∂V‖

∂x‖
+ v⊥

∂V⊥

∂x‖

}
. (A24)

Now use Eqs. (A21) and (A12) to express v‖, b⊥, and b‖ in

terms of v⊥. Then v2
⊥

can be related to U through Eq. (A16),

and we get

Bjvk

ω0µ0

(kibk − kkbi)
∂Vi

∂xj
=

 k‖k⊥k
2V 2
AV

2
S

ω0

(
ω2

0 − k
2
‖
V 2
S

) ∂V⊥
∂x‖

−
ω0

(
ω2

0 − k
2V 2
S

)
2ω2

0 − k
2
(
V 2
A+V

2
S

) ∂V‖
∂x‖

}
U.

A2.5 Rate of change of ω0 with respect to t

The dispersion relation (18) for magnetosonic waves can be

formally written

D
(
ω0,ki,VA,i,VS

)
= 0. (A25)
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D is a function of xi and t through the dependence of VA,i
and VS on these quantities. Then(

dω0

dt

)
k

=

−

(
∂D/∂VA,i

)
dVA,i/dt + (∂D/∂VS)dVS/dt

∂D/∂ω0

. (A26)

We need the derivatives of VA,i and VS with respect to t .

From Eq. (19) and using Eqs. (3) and (4) we get

dVA,i

dt
=

1
√
µ0ρ0

dBi

dt
−

1

2

Bi
√
µ0ρ0

1

ρ0

dρ0

dt

= VA,j
∂Vi

∂xj
−

1

2
VA,i

∂Vj

∂xj
, (A27)

and from Eq. (20) and using Eqs. (6) and (4) we get

d
(
V 2
S

)
dt
=−(γ − 1)V 2

S

∂Vi

∂xi
. (A28)

Also, from Eq. (18),

∂D

∂ω0

= 2ω0

{
2ω2

0 − k
2
(
V 2
A+V

2
S

)}
, (A29)

∂D

∂VA,i
=−2k2

{
ω2

0VA,i − kikjVA,jV
2
S

}
, (A30)

∂D

∂V 2
S

=−k2
{
ω2

0 −
(
kjVA,j

)2}
. (A31)

We now evaluate the two terms in the numerator of the

right-hand side of Eq. (A26) in the field-aligned coordinates

of Sect. 4.4.

−
∂D

∂VA,i

dVA,i

dt
= 2k2

{
ω2

0VA,i − kikjVA,jV
2
S

}
{
VA,j

∂Vi

∂xj
−

1

2
VA,i

∂Vj

∂xj

}
= k2V 2

A

{(
ω2

0 − k
2
‖
V 2
S

)(
2
∂V‖

∂x‖
−
∂Vi

∂xi

)}
− 2k2k⊥k‖V

2
AV

2
S

∂V⊥

∂x‖

= ω2
0

{(
ω2

0 − k
2V 2
S

)(
2
∂V‖

∂x‖
−
∂Vi

∂xi

)}
− 2k2k⊥k‖V

2
AV

2
S

∂V⊥

∂x‖
, (A32)

where the last line follows from Eq. (A8), and

−
∂D

∂V 2
S

dV 2
S

dt
=−(γ − 1)k2V 2

S

(
ω2

0 − k
2
‖
V 2
A

) ∂Vi
∂xi

=−(γ − 1)ω2
0

(
ω2

0 − k
2V 2
A

) ∂Vi
∂xi

, (A33)

where the second line follows from Eq. (A9). Now if we sub-

stitute these results in Eq. (A26), we get

1

ω0

(
dω0

dt

)
k

=−
(γ − 1)

(
ω2

0 − k
2V 2
A

)
+
(
ω2

0 − k
2V 2
S

)
2
{
2ω2

0 − k
2
(
V 2
A+V

2
S

)} ∂Vi

∂xi

+
ω2

0 − k
2V 2
S

2ω2
0 − k

2
(
V 2
A+V

2
S

) ∂V‖
∂x‖

−
2k2k⊥k‖V

2
AV

2
S

ω2
0

∂V⊥

∂x‖
. (A34)
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