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Abstract. Accurate prediction of wind speed is an impor-

tant aspect of various tasks related to wind energy manage-

ment such as wind turbine predictive control and wind power

scheduling. The most typical characteristic of wind speed

data is its persistent temporal variations. Most of the tech-

niques reported in the literature for prediction of wind speed

and power are based on statistical methods or probabilistic

distribution of wind speed data. In this paper we demonstrate

that deterministic forecasting methods can make accurate

short-term predictions of wind speed using past data, at lo-

cations where the wind dynamics exhibit chaotic behaviour.

The predictions are remarkably accurate up to 1 h with a nor-

malised RMSE (root mean square error) of less than 0.02

and reasonably accurate up to 3 h with an error of less than

0.06. Repeated application of these methods at 234 different

geographical locations for predicting wind speeds at 30-day

intervals for 3 years reveals that the accuracy of prediction is

more or less the same across all locations and time periods.

Comparison of the results with f-ARIMA model predictions

shows that the deterministic models with suitable parameters

are capable of returning improved prediction accuracy and

capturing the dynamical variations of the actual time series

more faithfully. These methods are simple and computation-

ally efficient and require only records of past data for making

short-term wind speed forecasts within practically tolerable

margin of errors.

Keywords. Meteorology and atmospheric dynamics (gen-

eral or miscellaneous)

1 Introduction

Wind is widely recognised as a clean, economically viable

and eco-friendly source of electric power. Unlike power pro-

duced from coal or nuclear energy, wind power production is

safe for the environment since it does not produce any green-

house gases or harmful by-products. Wind is produced by the

uneven heating of Earth’s surface by the Sun and is therefore

an inextinguishable source of energy. The generation of wind

power has increased steadily over the last few years all over

the world, and as of 2011 the worldwide installed capacity of

wind power stands at 237 GW. It is estimated that, by 2020,

more than 12 % of the total demand for electricity could be

met from wind energy resources (GWEC, 2012).

Nowadays in many countries, wind energy is being con-

nected to existing electric power grids along with traditional

sources. Wind-powered electricity must be used as soon as

it enters the grid, and to determine the additional amount of

power to order from traditional sources to meet the demand

at the grid, it is important to be able to predict wind power

to the order of several minutes to a few hours in advance

(Hering and Genton, 2010). Predictions of wind power, of

the order of a couple of hours to a day ahead, are also cru-

cial in liberalised electricity markets where expected power

production and market prices are used in devising best bid-

ding strategy with minimum possible risk (Gomes and Cas-

tro, 2012). Short-term predictions, ranging from seconds to a

few minutes, are useful in operation control of wind turbines

and improvement of the power quality of wind farms (Wang

and Hui, 2012).

It is clear from the above discussion that predicting wind

power, in the range of at least a few hours ahead, is important

both for optimising the performance of wind turbines and for

maintaining a cost-effective power distribution system. Wind
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power is a function of wind speed, so an accurate prediction

of wind speed leads to improved predictions of wind power in

a given wind farm. For a range of wind speeds, the amount of

wind energy produced from a wind turbine is proportional to

the cube of wind speed, so any small improvement in short-

term predictions of wind speed can significantly improve pre-

dictions of wind power (Hering and Genton, 2010). How-

ever, with its dependence on topography, climate, seasonal

changes, temperature, pressure and a host of other factors and

its highly variable and random nature, wind speed is one of

the most difficult meteorological parameters to predict. The

literature on the various methods of predicting wind speed

has grown extensively in recent years, especially in the wake

of large-scale deployment of wind farms across the globe.

The simplest among the prediction schemes for wind

speed is the method of persistence which is based on the as-

sumption that over very small time intervals wind speed does

not change appreciably. Its usage is very limited, but is still

used in the industry for making very short-term predictions

(Soman et al., 2010). The physical models, which utilise data

of various atmospheric parameters to build up complex math-

ematical models, furnish another classical way to forecast

wind speed. They are useful in identifying recurring pat-

terns and making long-term predictions when weather con-

ditions are stable, but the prohibitive computational volume

involved in solving such models renders them unreliable for

short-term predictions (Potter and Negnevitsky, 2006; Candy

et al., 2009). Models which use statistical methods for wind

speed predictions are also popular in the literature. They in-

clude moving average models such as ARMA, ARIMA and

its variants fitted to the time series of wind speed (Kamal

and Jafri, 1997; Cadenas and Rivera, 2007; Kavasseri and

Seetharaman, 2009) and models based on probability dis-

tribution of wind speed (Hennessey Jr., 1977; Celik, 2004;

Mathew et al., 2011; Jiang et al., 2013). These models are

fairly good in very short-term predictions, but do not improve

significantly on prediction error compared to the elementary

method of persistence. Models based on artificial neural net-

works, which emulate the parallel distributed processing of

human nervous system to adapt by learning from past data,

have also been developed by many researchers for making

short-term predictions of wind speed and power (Mohandes

et al., 1998; Cadenas and Rivera, 2007; Bilgili et al., 2007;

Monfared et al., 2009). In general, these models outperform

the time series models in short-term predictions, but their

performance edge is not maintained across all locations uni-

versally (Soman et al., 2010). Recently researchers have also

begun to use hybrid models, which combine different ap-

proaches for better forecasting results, such as mixing phys-

ical and statistical models or short-term and medium-term

models (Soman et al., 2010; Liu et al., 2014; Haque et al.,

2013). The central idea of physical approach is to incorpo-

rate the physical considerations of local topography into the

numerical weather prediction scheme by modelling the local

wind profile possibly considering the atmospheric stability.
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numerical weather prediction scheme by modelling the local
wind profile possibly considering the atmospheric stability.
For example, Cassola and Burlando (2012) use Kalman fil-
tering technique applied to the output of a numerical weather
prediction model to improve the accuracy of wind speed fore-120

casts and wind energy output predictions significantly.
As a matter of fact, since the occurrence of wind is highly

uncertain in time and space, no single technique can be used
universally across all locations and time scales for predict-
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Fig. 1. Time series of wind speed at location given by Latitude:
34.98420, Longitude: -104.03971 at 80 metres.

ing wind speed, and there is always scope for new methods.125

In a previous work (Sreelekshmi et al., 2012) we had carried
out a detailed analysis of the time series of daily mean wind
speed at Thiruvananthapuram, India, which revealed strong
evidences for the existence of an underlying system which is
deterministic, low-dimensional and chaotic. This means that130

the apparent random fluctuations found in wind speed data
could originate from the chaotic dynamics of the underlying
system, and not necessarily due to the system being stochas-
tic as assumed in most of the aforementioned prediction theo-
ries, and this could also explain why wind speed predictions135

becomes erroneous beyond a certain time limit. However,
provided wind speed dynamics is chaotic in a given loca-
tion, we can use existing non-linear prediction schemes de-
veloped for chaotic time series to make more accurate short
term predictions about wind speed. In this work we apply the140

methods of non-linear dynamics for forecasting wind speeds
at various locations to get fairly accurate predictions up to
3 hours. For the analysis we have used the wind speed data
of 10 minutes resolution of the period from January 2004 to
January 2007 for 234 locations available from National Re-145

newable Energy Laboratory (http://www.nrel.gov), USA.

2 Analysis of the data

Fig. 1 shows a plot of part of the wind speed data at loca-
tion given by Latitude: 34.98420, Longitude: -104.03971
at 80 metres. We start with a detailed analysis of the un-150

derlying dynamics of wind speed data from this particular
site and then move on to other locations. The irregular, ran-
dom character of the data evident in the figure is typical of
systems which are stochastic, but as we have shown pre-
viously (Sreelekshmi et al., 2012), these fluctuations could155

also arise out of an underlying system which is determinis-
tic, low-dimensional and chaotic. Since the stochastic versus
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For example, Cassola and Burlando (2012) use Kalman fil-

tering technique applied to the output of a numerical weather

prediction model to improve the accuracy of wind speed fore-

casts and wind energy output predictions significantly.

As a matter of fact, since the occurrence of wind is highly

uncertain in time and space, no single technique can be used

universally across all locations and timescales for predicting

wind speed, and there is always scope for new methods. In

a previous work (Sreelekshmi et al., 2012) we had carried

out a detailed analysis of the time series of daily mean wind

speed at Thiruvananthapuram, India, which revealed strong

evidence for the existence of an underlying system which is

deterministic, low-dimensional and chaotic. This means that

the apparent random fluctuations found in wind speed data

could originate from the chaotic dynamics of the underlying

system, and not necessarily due to the system being stochas-

tic as assumed in most of the aforementioned prediction the-

ories, and this could also explain why wind speed predictions

become erroneous beyond a certain time limit. However, pro-

vided wind speed dynamics is chaotic in a given location, we

can use existing non-linear prediction schemes developed for

chaotic time series to make more accurate short-term predic-

tions about wind speed. In this work we apply the methods of

non-linear dynamics for forecasting wind speeds at various

locations to get fairly accurate predictions up to 3 h. For the

analysis we have used the wind speed data of 10 min resolu-

tion of the period from January 2004 to January 2007 for 234

locations available from National Renewable Energy Labora-

tory (http://www.nrel.gov), USA.

2 Analysis of the data

Figure 1 shows a plot of part of the wind speed data at lo-

cation given by latitude of 34.98420◦ N and longitude of

104.03971◦W at 80 m. We start with a detailed analysis of

the underlying dynamics of wind speed data from this partic-

ular site and then move on to other locations. The irregular,

random character of the data evident in the figure is typical
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of systems which are stochastic, but – as we have shown pre-

viously (Sreelekshmi et al., 2012) – these fluctuations could

also arise from an underlying system which is determinis-

tic, low-dimensional and chaotic. Since the stochastic versus

deterministic character of wind speed has to be ascertained

on a per location basis due to the highly uncertain nature

of wind from location to location, we will now carry out a

brief analysis of the data, referring the reader to Sreelekshmi

et al. (2012) for the finer details of the features of chaotic sys-

tems and of the methods applied. The wind speed prediction

schemes to be described later in coming sections are based

on the results of this analysis.

The first step in the analysis of time series by methods

of dynamical system theory is reconstructing the state space

dynamics of the original system using the given time series

data (Packard et al., 1980). This is done by constructing from

the time series x(t) a new vector time series x(t) given by

x(t)= (x(t),x(t − τ), . . .,x(t − (m− 1)τ ), (1)

where τ is a suitable multiple of the sampling time, called

delay. Takens’ embedding theorem and its extensions (Tak-

ens, 1981; Sauer et al., 1991; Sauer and James, 1993) assert

that the dynamics of y(t) in the reconstructed phase space

will be topologically identical to the dynamics of the orig-

inal system. In general, if the cloud of points generated by

y(t), called the attractor, fills out the m-dimensional phase

space for all values ofm, the time series may be considered to

be generated by a stationary stochastic process. On the other

hand, if the attractor occupies a region of small dimension,

for all sufficiently large values of m, it may be an indication

that the original system is deterministic and chaotic. On a

chaotic attractor, nearby trajectories diverge with time expo-

nentially fast, the rates of which are quantified by the Lya-

punov exponents in the principal directions. A positive Lya-

punov exponent is considered a signature of chaos. Due to

the exponential divergence of trajectories, a chaotic attractor

usually has a complex structure with a non-integral dimen-

sion. A chaotic time series exhibit broadband spectrum (cf.

Fig. 7) and other characteristics of random time series when

analysed using linear stochastic tools, so a very detailed anal-

ysis is often necessary to distinguish a chaotic time series

from a stochastic data. The space–time separation plot given

in Fig. 2 of the time series helps us identify the temporal cor-

relations within the time series and is useful in estimating a

reasonable delay. The diurnal variations are evident in this

figure. In order to reduce its modulation effects we removed

the average diurnal variation by carrying out an epoch analy-

sis as discussed by Kumar et al. (2004), and further analysis

was carried out on this detrended time series.

In practical applications of embedding theorem, an opti-

mal choice of the delay τ and the embedding dimension m

are important. We have used the method of autocorrelation

(Kantz and Schreiber, 2003) as well as the method of mu-

tual information (Fraser and Swinney, 1986) to arrive at a

proper choice of τ . In Fig. 3a and b, which respectively plot
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Fig. 2. The Space time separation plot for the time series form= 14
and τ = 85. Each point in the plot represents a pair of points on the
trajectory with their relative separation in time along the horizontal
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variations are evident in this figure.
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Fig. 3. (a) The autocorrelation function of wind speed data. (b) Mu-
tual information of the wind speed data as a function of delay (τ ).
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Figure 2. The space–time separation plot for the time series for

m= 14 and τ = 85. Each point in the plot represents a pair of points

on the trajectory with their relative separation in time along the hor-

izontal axis and separation in space along the vertical axis. The di-

urnal variations are evident in this figure.

the autocorrelation and mutual information of the wind speed

data as a function of τ , the first minimum of the autocorre-

lation curve is observed at around τ = 85 suggesting an op-

timal value τ = 85 and the mutual information almost level

off by τ = 75, suggesting the value of τ can optimally be

taken around this value. The value τ = 85 is taken for fur-

ther analysis. To determine the embedding dimension m, we

used the method of false neighbours (Kennel et al., 1992;

Kantz and Schreiber, 2003) which is based on the idea that,

in a large enough embedding dimension, the fraction of false

neighbours, which arise due to crossing of trajectories in a

lower than true dimension, would be negligibly small. The

fraction of false neighbours for the wind speed data is shown

in Fig. 4, which suggests that m= 14 would be an optimal

choice for the embedding dimension as the fraction attains

a minimum around m= 14. However precise knowledge of

m is desirable only to exploit the determinism in the dynam-

ics with minimal computational effort, and a large value of

m will add redundancy and thus degrade the performance of

many algorithms such as those for predictions (Kantz and

Schreiber, 2003). It may also be noted that the parameter val-

ues obtained here are consistent with those in our previous

analysis of wind speed data from a different geographical lo-

cation (Sreelekshmi et al., 2012).

The dimension of the attractor gives a quantitative mea-

sure of the self-similarity of the attractor and also gives an

idea of how large or small a region is occupied by the attrac-

tor within the embedding space. A standard dimension esti-

mate for time series data is the correlation dimension, intro-

duced by Grassberger and Procaccia (1983), which proceeds

by first computing the correlation sum defined by (Hegger

et al., 1999)

C(ε,m)=
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(ε−‖yi − yj‖), (2)

www.ann-geophys.net/32/1415/2014/ Ann. Geophys., 32, 1415–1425, 2014
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(b) Mutual information of the wind speed data as a function of delay

(τ ).

where 2(a)= 1 if a > 0, 2(a)= 0 if a ≤ 0, and then the

local slopes

D2(ε,m)=
dlnC(ε,m)

dlnε
, (3)

which are estimates of the correlation dimension. Figure 5

plotsD2(ε,m) versus ε for the wind speed data with the pre-

vious choice of delay and for embedding dimensions ranging

from 14 to 16. The curves exhibit convergence onto a plateau

for a range of values of ε, and the value corresponding to the

plateau,D2 = 1.656±0.008, is an estimate of the correlation

dimension for the given data. The low dimensionality of the

attractor is an indication of the deterministic character of the

underlying dynamics exhibiting chaotic behaviour.

A chaotic system must have at least one positive Lyapunov

exponent; to check for this, one usually computes the largest

Lyapunov exponent in the system which, if found positive,

is considered strong evidence for chaos. We have used the

Kantz algorithm (Kantz, 1994) to estimate the largest Lya-

punov exponent, which proceeds by computing the stretch-

ing factor S(1n), involving a reference point yn0
and its

neighbours yn in the embedding space over a neighbourhood

U(yn0
) of yn0

, defined by

S(1n)=
1

N

N∑
n0=1

ln

(
1

‖U(yn0
)‖

×

∑
yn∈U(yn0

)

‖yn0+1n
− yn+1n‖

)
. (4)

For the wind speed data, Fig. 6 plots variations of S(1n)with

1n for m= 14,15 and shows a linear growth in the range

of 0<1n < 20, the slope of which gives an estimate of the

maximum Lyapunov exponent, in this case 0.15±0.006. The

positive value of the largest Lyapunov exponent is another

piece of evidence for the chaotic dynamics of the underlying

system.
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Fig. 3. (a) The autocorrelation function of wind speed data. (b) Mu-
tual information of the wind speed data as a function of delay (τ ).

deterministic character of wind speed has to be ascertained
on a per location basis due to the highly uncertain nature
of wind from location to location, we will now carry out a160

brief analysis of the data, referring the reader to Sreelekshmi
et al. (2012) for the finer details of the features of chaotic sys-
tems and of the methods applied. The wind speed prediction
schemes to be described later in coming sections are based
on the results of this analysis.165

The first step in the analysis of time series by methods
of dynamical system theory is reconstructing the state space
dynamics of the original system using the given time series
data (Packard et al., 1980). This is done by constructing from
the time series x(t) a new vector time series x(t) given by170

x(t) = (x(t),x(t−τ), ... ,x(t−(m−1)τ), (1)
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Fig. 4. The fraction of false nearest neighbours as a function of
the embedding dimension m for the time series of wind speed with
τ = 85, showing that any m≥ 14 can be considered optimal.

where τ is a suitable multiple of the sampling time, called
delay. Taken’s embedding theorem and its extensions (Tak-
ens, 1981; Sauer et al., 1991; Sauer and James, 1993) assert
that the dynamics of y(t) in the reconstructed phase space175

will be topologically identical to the dynamics of the origi-
nal system. In general, if the cloud of points generated by
y(t), called the attractor, fills out the m-dimensional phase
space for all values of m, the time series may be considered
to be generated by a stationary stochastic process. On the180

other hand, if the attractor occupies a region of small dimen-
sion, for all sufficiently large values of m, it may be an in-
dication that the original system is deterministic and chaotic.
On a chaotic attractor, nearby trajectories diverge with time
exponentially fast, the rates of which are quantified by the185

Lyapunov exponents in the principal directions. A positive
Lyapunov exponent is considered a signature of chaos. Due
to the exponential divergence of trajectories, a chaotic attrac-
tor usually has a complex structure with a non-integral di-
mension. A chaotic time series exhibit broad-band spectrum190

(c. f. Fig. 7) and other characteristics of random time se-
ries when analysed using linear stochastic tools, so a very
detailed analysis is often necessary to distinguish a chaotic
time series from a stochastic data. The space time separa-
tion plot given in Fig.2 of the time series helps us identify195

the temporal correlations within the time series and is useful
in estimating a reasonable delay. The diurnal variations are
evident in this figure. In order to reduce its modulation ef-
fects we removed the average diurnal variation by carrying
out an epoch analysis as discussed by Kumar et al. (2004)200

and further analysis was carried out on this detrended time
series.

In practical applications of embedding theorem, an opti-
mal choice of the delay τ and the embedding dimension m
are important. We have used the method of autocorrelation205
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(Kantz and Schreiber, 2003) as well as the method of mu-
tual information (Fraser and Swinney, 1986) to arrive at a
proper choice of τ . In Fig. 3 (a) and (b), which respectively
plots the autocorrelation and mutual information of the wind
speed data as a function of τ , the first minimum of the au-210

tocorrelation curve is observed at around τ = 85 suggesting
an optimal value τ = 85 and the mutual information almost
level off by τ = 75, suggesting the value of τ can optimally
be taken around this value. The value τ = 85 is taken for
further analysis. To determine the embedding dimension m,215

we used the method of false neighbours (Kennel et al., 1992;
Kantz and Schreiber, 2003) which is based on the idea that
in a large enough embedding dimension the fraction of false
neighbours, which arise due to crossing of trajectories in a
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Fig. 7. The power spectrum of wind speed time series as a function
of frequency at location Latitude: 34.98420 Longitude: -104.03971.
Broadband and exponential decay of the power with frequency are
typical characteristics of chaotic signals.

lower than true dimension, would be negligibly small. The220

fraction of false neighbours for the wind speed data is shown
in Fig. 4, which suggests that m= 14 would be an optimal
choice for the embedding dimension as the fraction attains
a minimum around m= 14. However a precise knowledge
of m is desirable only to exploit the determinism in the dy-225

namics with minimal computational effort, and a large value
of m will add redundancy and thus degrade the performance
of many algorithms such as those for predictions (Kantz and
Schreiber, 2003). It may also be noted that the parameter
values obtained here are consistent with those in our previ-230

ous analysis of wind speed data from a different geographical
location (Sreelekshmi et al., 2012).

The dimension of the attractor gives a quantitative mea-
sure of the self-similarity of the attractor and also gives an
idea of how large or small a region is occupied by the attrac-235

tor within the embedding space. A standard dimension esti-
mate for time series data is the correlation dimension, intro-
duced by Grassberger and Procaccia (1983), which proceeds
by first computing the correlation sum defined by (Hegger
et al., 1999)240

C(ε,m) =
2

N(N−1)

N∑

i=1

N∑

j=i+1

Θ(ε−‖yi−yj‖), (2)

where Θ(a) = 1 if a> 0, Θ(a) = 0 if a≤ 0, and then the local
slopes

D2(ε,m) =
dlnC(ε,m)

dlnε
(3)

which are estimates of the correlation dimension. Fig. 5 plots245

D2(ε,m) versus ε for the wind speed data with the previous
choice of delay and for embedding dimensions ranging from
14 to 16. The curves exhibit convergence onto a plateau for
a range of values of ε, and the value corresponding to the

Figure 5. The local slopes D2(ε,m) for the wind speed time series

with τ = 85 and m ranging from 14 to 16 showing a plateau for

small values of ε and giving an estimate of D2 = 1.656± 0.008.

The frequency decomposition of the time series, the power

spectrum, is broadband and exhibits exponential decay as

shown in Fig. 7, and this is an indication of the chaotic be-

haviour of the time series. The first part of the spectrum de-

cays abruptly with an estimated value of −120.29 for the ex-

ponent while the second and third parts exhibit slow decay

with values −15.80 and −4.07 for the exponent. This could

possibly be caused by qualitatively different mechanisms at

work in the dynamics of the underlying system.

3 Predictions

Due to the random nature of wind speed data, most of the

wind speed predictions assume that the data are a realisa-

tion of a stochastic process. However, as we have shown in

the previous section, the cause of randomness in the wind

speed data can also be low-dimensional chaos, in which case

there is a fundamental limit on long-term predictions. How-

ever, accurate short-term predictions can still be made, taking

advantage of simple deterministic relationships which may

Ann. Geophys., 32, 1415–1425, 2014 www.ann-geophys.net/32/1415/2014/
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(Kantz and Schreiber, 2003) as well as the method of mu-
tual information (Fraser and Swinney, 1986) to arrive at a
proper choice of τ . In Fig. 3 (a) and (b), which respectively
plots the autocorrelation and mutual information of the wind
speed data as a function of τ , the first minimum of the au-210

tocorrelation curve is observed at around τ = 85 suggesting
an optimal value τ = 85 and the mutual information almost
level off by τ = 75, suggesting the value of τ can optimally
be taken around this value. The value τ = 85 is taken for
further analysis. To determine the embedding dimension m,215

we used the method of false neighbours (Kennel et al., 1992;
Kantz and Schreiber, 2003) which is based on the idea that
in a large enough embedding dimension the fraction of false
neighbours, which arise due to crossing of trajectories in a
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lower than true dimension, would be negligibly small. The220

fraction of false neighbours for the wind speed data is shown
in Fig. 4, which suggests that m= 14 would be an optimal
choice for the embedding dimension as the fraction attains
a minimum around m= 14. However a precise knowledge
of m is desirable only to exploit the determinism in the dy-225

namics with minimal computational effort, and a large value
of m will add redundancy and thus degrade the performance
of many algorithms such as those for predictions (Kantz and
Schreiber, 2003). It may also be noted that the parameter
values obtained here are consistent with those in our previ-230

ous analysis of wind speed data from a different geographical
location (Sreelekshmi et al., 2012).

The dimension of the attractor gives a quantitative mea-
sure of the self-similarity of the attractor and also gives an
idea of how large or small a region is occupied by the attrac-235

tor within the embedding space. A standard dimension esti-
mate for time series data is the correlation dimension, intro-
duced by Grassberger and Procaccia (1983), which proceeds
by first computing the correlation sum defined by (Hegger
et al., 1999)240

C(ε,m) =
2

N(N−1)

N∑

i=1

N∑

j=i+1

Θ(ε−‖yi−yj‖), (2)

where Θ(a) = 1 if a> 0, Θ(a) = 0 if a≤ 0, and then the local
slopes

D2(ε,m) =
dlnC(ε,m)

dlnε
(3)

which are estimates of the correlation dimension. Fig. 5 plots245

D2(ε,m) versus ε for the wind speed data with the previous
choice of delay and for embedding dimensions ranging from
14 to 16. The curves exhibit convergence onto a plateau for
a range of values of ε, and the value corresponding to the

Figure 6. The curve of S(1n) for embedding dimensions m=

14,15. The maximum Lyapunov exponent of the time series is the

slope of the dashed line 0.15± 0.006.

exist within the data, involving a few degrees of freedom.

The extent of predictability depends on the local factors af-

fecting wind speed, and in the data we considered accurate

predictions up to 3 h could be made using non-linear predic-

tion tools.

Given a time series x1,x2, . . .,xn, the forecasting methods

try to predict values a few time steps ahead, namely xn+k
for k = 1,2, . . .. Non-linear forecasting methods are based on

construction of delay vectors xn from the time series using

Eq. (1);

xn = (xn,xn−τ , . . .,xn−(m−1)τ ), (5)

for a suitable integral delay τ and embedding dimensionm. If

deterministic rules govern the system, we expect a functional

relation between xn+1 and xn;

xn+1 = F(xn) (6)

which in delay embedding reduces to

xn+1 = f (xn). (7)

If the dynamics is chaotic, F will be non-linear and we try

to approximate F or f in various ways to predict an esti-

mate x̂n+k for the actual value xn+k . In chaotic systems these

approximations are facilitated by an important property, that

a sufficiently long time series produces a sequence of vec-

tors that are dense on the attractor, so that new vectors will

be arbitrarily close to some of those already observed. The

approximation schemes used for predictions of chaotic time

series can be broadly classified into local methods and global

methods.

The local approximation schemes try to approximate f lo-

cally, probably by a different function in each time step, by

looking for vectors in the past which are close to xn in the

embedding space and using their future for prediction. The

simplest of these is the zeroth-order approximation, which

uses the average of the futures of the neighbours of xn in
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(Kantz and Schreiber, 2003) as well as the method of mu-
tual information (Fraser and Swinney, 1986) to arrive at a
proper choice of τ . In Fig. 3 (a) and (b), which respectively
plots the autocorrelation and mutual information of the wind
speed data as a function of τ , the first minimum of the au-210

tocorrelation curve is observed at around τ = 85 suggesting
an optimal value τ = 85 and the mutual information almost
level off by τ = 75, suggesting the value of τ can optimally
be taken around this value. The value τ = 85 is taken for
further analysis. To determine the embedding dimension m,215

we used the method of false neighbours (Kennel et al., 1992;
Kantz and Schreiber, 2003) which is based on the idea that
in a large enough embedding dimension the fraction of false
neighbours, which arise due to crossing of trajectories in a

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45

P
o
w

e
r

Frequency (0.0005)

Fig. 7. The power spectrum of wind speed time series as a function
of frequency at location Latitude: 34.98420 Longitude: -104.03971.
Broadband and exponential decay of the power with frequency are
typical characteristics of chaotic signals.

lower than true dimension, would be negligibly small. The220

fraction of false neighbours for the wind speed data is shown
in Fig. 4, which suggests that m= 14 would be an optimal
choice for the embedding dimension as the fraction attains
a minimum around m= 14. However a precise knowledge
of m is desirable only to exploit the determinism in the dy-225

namics with minimal computational effort, and a large value
of m will add redundancy and thus degrade the performance
of many algorithms such as those for predictions (Kantz and
Schreiber, 2003). It may also be noted that the parameter
values obtained here are consistent with those in our previ-230

ous analysis of wind speed data from a different geographical
location (Sreelekshmi et al., 2012).

The dimension of the attractor gives a quantitative mea-
sure of the self-similarity of the attractor and also gives an
idea of how large or small a region is occupied by the attrac-235

tor within the embedding space. A standard dimension esti-
mate for time series data is the correlation dimension, intro-
duced by Grassberger and Procaccia (1983), which proceeds
by first computing the correlation sum defined by (Hegger
et al., 1999)240

C(ε,m) =
2

N(N−1)

N∑

i=1

N∑

j=i+1

Θ(ε−‖yi−yj‖), (2)

where Θ(a) = 1 if a> 0, Θ(a) = 0 if a≤ 0, and then the local
slopes

D2(ε,m) =
dlnC(ε,m)

dlnε
(3)

which are estimates of the correlation dimension. Fig. 5 plots245

D2(ε,m) versus ε for the wind speed data with the previous
choice of delay and for embedding dimensions ranging from
14 to 16. The curves exhibit convergence onto a plateau for
a range of values of ε, and the value corresponding to the

Figure 7. The power spectrum of wind speed time series as a

function of frequency at location latitude: 34.98420◦ N longitude:

104.03971◦W. Broadband and exponential decay of the power with

frequency are typical characteristics of chaotic signals.

an ε neighbourhood Uε(xn). If there are N neighbours in

Uε(xn), the prediction is simply (Kantz and Schreiber, 2003)

x̂n+1 =
1

N

∑
xj∈Uε(xn)

xj+1. (8)

A better method is the local first-order (LFO) approxima-

tion, where – instead of taking the average of the neighbours

in Uε(xn) – a linear model is fitted to these neighbours,

so that the prediction takes the form (Kantz and Schreiber,

2003)

x̂n+1 = Anxn+ bn. (9)

These local linear models, one for each time step, together

generate a non-linear model globally.

The global models of prediction try to approximate F by

a single function on the whole attractor. One of the popular

global models used in predictions of chaotic time series is the

radial basis function (RBF) model introduced by Lowe and

Broomhead (1988). In this, the approximating function F is

taken as a linear superposition of a set of radial basis func-

tions8i(r), with r > 0, which are typically bell-shaped with

maximum at r = 0 and rapidly decaying towards zero with

increasing r . For a set of suitably chosen points yi , called

the centres, which are reasonably well distributed on the at-

tractor, the model assumes the form (Kantz and Schreiber,

2003)

F(x)= α0+

p∑
i=1

αi8(‖x− yi)‖). (10)

The basis functions 8 are modelled using Gaussians with

their number and width kept fixed throughout the model. This

makes the estimation of the constants αi a linear problem

which can be solved using least-squares method.

www.ann-geophys.net/32/1415/2014/ Ann. Geophys., 32, 1415–1425, 2014
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legibility. (a) Latitude: 42.31925 Longitude: -98.60197 m= 5,τ = 8 (b) Latitude: 43.51076 Longitude: -99.47652, m= 12,τ = 2,

plateau, D2 = 1.656±0.008, is an estimate of the correlation250

dimension for the given data. The low dimensionality of the
attractor is an indication of the deterministic character of the
underlying dynamics exhibiting chaotic behaviour.

A chaotic system must have at least one positive Lya-
punov exponent and to check for this one usually computes255

the largest Lyapunov exponent in the system which, if found
positive, is considered a strong evidence for chaos. We
have used the Kantz algorithm (Kantz, 1994) to estimate the
largest Lyapunov exponent, which proceeds by computing
the stretching factor S(∆n), involving a reference point yn0

260

and its neighbours yn in the embedding space over a neigh-
bourhood U(yn0

) of yn0
, defined by

S(∆n) =
1
N

N∑

n0=1

ln
(

1
‖U(yn0

)‖ ×

∑

yn∈U(yn0 )

∥∥∥yn0+∆n−yn+∆n

∥∥∥
)

(4)

For the wind speed data, Fig. 6 plots variations of S(∆n)265

with ∆n for m= 14,15 and shows a linear growth in the
range of 0<∆n< 20, the slope of which gives an estimate of
the maximum Lyapunov exponent, in this case 0.15±0.006.
The positive value of the largest Lyapunov exponent is an-
other evidence for the chaotic dynamics of the underlying270

system.
The frequency decomposition of the time series, the power

spectrum, is broadband and exhibits exponential decay as
shown in Figure 7, and this is an indication of the chaotic
behaviour of the time series. The first part of the spectrum275

decays abruptly with an estimated value of -120.29 for the
exponent while the second and third parts exhibit slow decay
with values -15.80 and -4.07 for the exponent. This could

possibly be caused by qualitatively different mechanisms at
work in the dynamics of the underlying system.280

3 Predictions

Due to the random nature of wind speed data, most of the
wind speed predictions assume that the data is a realisation
of a stochastic process. However, as we have shown in the
previous section, the cause of randomness in the wind speed285

data can also be low-dimensional chaos, in which case there
is a fundamental limit on long term predictions. However,
accurate short term predictions can still be made, taking ad-
vantage of simple deterministic relationships which may ex-
ist within the data, involving a few degrees of freedom. The290

extent of predictability depends on the local factors affecting
wind speed, and in the data we considered accurate predic-
tions up to 3 hours could be made using non-linear prediction
tools.

Given a time series x1,x2,...,xn, the forecasting methods295

try to predict values a few time steps ahead, namely xn+k

for k = 1,2,.... Non-linear forecasting methods are based
construction of delay vectors xn form the time series using
eq. (1);

xn = (xn,xn−τ , ... ,xn−(m−1)τ ), (5)300

for a suitable integral delay τ and embedding dimension m.
If deterministic rules govern the system, we expect a func-
tional relation between xn+1 and xn;

xn+1 = F (xn) (6)

which in delay embedding reduces to305

xn+1 = f(xn). (7)

If the dynamics is chaotic, F will be non-linear and we try
to approximate F or f in various ways to predict an estimate

Figure 8. Comparison of predicted values with the actual values for LFO and RBF. The symbols are plotted only at every 30 min for legibility.

(a) Latitude: 42.31925◦ N, longitude: 98.60197◦W m= 5, τ = 8; (b) latitude: 43.51076◦ N, longitude: 99.47652◦W, m= 12, τ = 2.
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Fig. 9. (a)The exponential decay of the correlation coefficient between the predicted and actual for every 3 prediction time steps (b) The
exponential growth RMS error prediction for every 3 prediction time steps. The arrows show axes for the respective symbols of data points.
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Fig. 10. The geographic locations, denoted by filled circles, where
wind speed data was analysed for performance of deterministic
model prediction.

x̂n+k for the actual value xn+k. In chaotic systems these
approximations are facilitated by an important property, that310

a sufficiently long time series produces a sequence of vec-
tors that are dense on the attractor, so that new vectors will
be arbitrarily close to some of those already observed. The
approximation schemes used for predictions of chaotic time
series can be broadly classified into local methods and global315

methods.
The local approximation schemes try to approximate f lo-

cally, probably by a different function in each time step, by
looking for vectors in the past which are close to xn in the
embedding space and using their future for prediction. The320

simplest of these is the zeroth-order approximation, which
uses the average of the futures of the neighbours of xn in
an ε neighbourhood Uε(xn). If there are N neighbours in

Uε(xn), the prediction is simply (Kantz and Schreiber, 2003)

x̂n+1 =
1
N

∑

xj∈Uε(xn)

xj+1 (8)325

A better method is the local first order (LFO) approxima-
tion, where instead of taking the average of the neighbours in
Uε(xn), a linear model is fitted to these neighbours, so that
the prediction takes the form (Kantz and Schreiber, 2003)

x̂n+1 = Anxn +bn. (9)330

These local linear models, one for each time step, together
generate a non-linear model globally.

The global models of prediction try to approximate F by
a single function on the whole attractor. One of the popular
global models used in predictions of chaotic time series is the335

radial basis function (RBF) model introduced by Lowe and
Broomhead (1988). In this, the approximating function F is
taken as a linear superposition of a set of radial basis func-
tions Φi(r), with r > 0, which are typically bell-shaped with
maximum at r= 0 and rapidly decaying towards zero with340

increasing r. For a set of suitably chosen points yi, called
the centres , which are reasonably well distributed on the at-
tractor, the model assumes the form (Kantz and Schreiber,
2003)

F (x) =α0 +
p∑

i=1

αiΦ(‖x−yi)‖). (10)345

The basis functions Φ are modelled using Gaussians with
their number and width kept fixed throughout the model.
This makes the estimation of the constants αi a linear prob-
lem which can be solved using least square method.

The advantage of LFO method is its flexibility, but it may350

not yield desirable performance on parts of the phase space
where the points do not span the available space dimensions.

Figure 9. (a) The exponential decay of the correlation coefficient between the predicted and actual for every three prediction time steps.

(b) The exponential growth RMSE prediction for every three prediction time steps. The arrows show axes for the respective symbols of data

points.

The advantage of LFO method is its flexibility, but it may

not yield desirable performance on parts of the phase space

where the points do not span the available space dimensions.

On the other hand, global models have the advantage of pro-

viding the structure and properties of the underlying system

as it can yield closed expressions for the full dynamics. These

models can effectively describe the observed process in re-

gions of the space which have been visited by the data, but

outside this area the shape of the model depends heavily on

the chosen function (Hegger et al., 1999).

Figure 8a and b show typical results of wind speed predic-

tion using the above methods, made at a couple of locations

for suitable choices of the embedding parameters, and their

comparison with actual data. Each prediction uses the avail-

able wind speed data for the location up to a specific point of

time for modelling, and then employs the model for predict-

ing future values. It is seen from these figures that, provided

we use appropriate embedding parameters, the deterministic

methods can predict wind speed with remarkable accuracy

up to 3 h, with the RBF method giving fairly accurate predic-

tions for another 15 h in both the cases. A method for deter-

mining the optimal embedding parameters for prediction is

discussed in the next section.

Figure 9a quantifies the similarity of predicted values with

the measured data for a typical case, by plotting the statistical
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Fig. 10. The geographic locations, denoted by filled circles, where
wind speed data was analysed for performance of deterministic
model prediction.

x̂n+k for the actual value xn+k. In chaotic systems these
approximations are facilitated by an important property, that310

a sufficiently long time series produces a sequence of vec-
tors that are dense on the attractor, so that new vectors will
be arbitrarily close to some of those already observed. The
approximation schemes used for predictions of chaotic time
series can be broadly classified into local methods and global315

methods.
The local approximation schemes try to approximate f lo-

cally, probably by a different function in each time step, by
looking for vectors in the past which are close to xn in the
embedding space and using their future for prediction. The320

simplest of these is the zeroth-order approximation, which
uses the average of the futures of the neighbours of xn in
an ε neighbourhood Uε(xn). If there are N neighbours in

Uε(xn), the prediction is simply (Kantz and Schreiber, 2003)

x̂n+1 =
1
N

∑

xj∈Uε(xn)

xj+1 (8)325

A better method is the local first order (LFO) approxima-
tion, where instead of taking the average of the neighbours in
Uε(xn), a linear model is fitted to these neighbours, so that
the prediction takes the form (Kantz and Schreiber, 2003)

x̂n+1 = Anxn +bn. (9)330

These local linear models, one for each time step, together
generate a non-linear model globally.

The global models of prediction try to approximate F by
a single function on the whole attractor. One of the popular
global models used in predictions of chaotic time series is the335

radial basis function (RBF) model introduced by Lowe and
Broomhead (1988). In this, the approximating function F is
taken as a linear superposition of a set of radial basis func-
tions Φi(r), with r > 0, which are typically bell-shaped with
maximum at r= 0 and rapidly decaying towards zero with340

increasing r. For a set of suitably chosen points yi, called
the centres , which are reasonably well distributed on the at-
tractor, the model assumes the form (Kantz and Schreiber,
2003)

F (x) =α0 +
p∑

i=1

αiΦ(‖x−yi)‖). (10)345

The basis functions Φ are modelled using Gaussians with
their number and width kept fixed throughout the model.
This makes the estimation of the constants αi a linear prob-
lem which can be solved using least square method.

The advantage of LFO method is its flexibility, but it may350

not yield desirable performance on parts of the phase space
where the points do not span the available space dimensions.

Figure 10. The geographic locations, denoted by filled circles,

where wind speed data were analysed for performance of determin-

istic model prediction.

coefficient of correlation between the predicted and actual

values as a function of the number of time steps into the

future. The correlation coefficients were calculated cumula-

tively, at the end of every three prediction time steps, using

all the predicted values available up to that time and the cor-

responding measured values. The exponential deterioration

of the correlation with increasing prediction time is a char-

acteristic feature of deterministic chaos (Sugihara and May,

1990) and provides further evidence of the fact that the erratic
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Fig. 11. (a) NRMSE of 1 hour predictions using LFO, for the period from 2004 to 2006 at an interval of 30 days, averaged over 234 locations.
(b) NRMSE of 1 hour predictions using LFO for the 234 locations, calculated at an interval 30 days and averaged over the period from 2004
to 2006. (c) & (e) are location averaged NRMSE for 2 and 3 hour predictions respectively. (d) & (f) are time averaged NRMSE for 2 and 3
hour predictions respectively. The error bars in the figures are with respect to the standard error of the mean. The horizontal dotted lines in
(b), (d) and (f) represent the mean of the respective time averaged NRMSE values over the entire set of locations.

On the other hand, global models have the advantage of pro-
viding the structure and properties of the underlying sys-
tem as it can yield closed expressions for the full dynamics.355

These models can effectively describe the observed process
in regions of the space which have been visited by the data,

but outside this area, the shape of the model depends heavily
on the chosen function (Hegger et al., 1999).

Figs. 8(a) and (b) shows typical results of wind speed pre-360

diction using the above methods, made at a couple of loca-
tions for suitable choices of the embedding parameters, and

Figure 11. (a) NRMSE of 1 h predictions using LFO, for the period from 2004 to 2006 at an interval of 30 days, averaged over 234 locations.

(b) NRMSE of 1 h predictions using LFO for the 234 locations, calculated at an interval 30 days and averaged over the period from 2004 to

2006. (c) and (e) are location-averaged NRMSE for 2 and 3 h predictions respectively. (d) and (f) are time-averaged NRMSE for 2 and 3 h

predictions respectively. The error bars in the figures are with respect to the standard error of the mean. The horizontal dotted lines in (b),

(d) and (f) represent the mean of the respective time-averaged NRMSE values over the entire set of locations.

fluctuations in wind speed data are caused by the chaotic dy-

namics of the underlying system and are not an artefact of

uncorrelated additive noise. Figure 9b shows how the root

mean square error (RMSE) between the predicted and mea-

sured values, again calculated cumulatively every three time

steps, propagates as we predict further into the future. The

exponential growth of the prediction error further substanti-

ates the chaotic nature of the data.

4 Statistical analysis of prediction errors

To demonstrate the wider applicability of the deterministic

methods for making short-term wind speed forecasts, we

now carry out a statistical analysis of the prediction errors

for forecasts made at a total of 234 geographical locations.

For the analysis we have considered 10 min interval wind

speed data for 3 years from 2004, available from National
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Fig. 12. NRMSE, with standard error, of 1 hour prediction for the
period of 3 years from 2004 over 234 locations using LFO and RBF.
The lines connecting the symbols are to guide the eye.

their comparison with actual data. Each prediction uses the
available wind speed data for the location up to a specific
point of time for modelling, and then employs the model for365

predicting future values. It is seen from these figures that,
provided we use appropriate embedding parameters, the de-
terministic methods can predict wind speed with remarkable
accuracy up to 3 hours, with the RBF method giving fairly
accurate predictions for another 15 hours in both the cases.370

A method for determining the optimal embedding parameters
for prediction is discussed in the next section.

Fig 9(a) quantifies the similarity of predicted values with
the measured data for a typical case, by plotting the statisti-
cal coefficient of correlation between the predicted and ac-375

tual values as a function of the number of time steps into the
future. The correlation coefficients were calculated cumula-
tively, at the end of every 3 prediction time steps, using all the
predicted values available up to that time and the correspond-
ing measured values. The exponential deterioration of the380

correlation with increasing prediction time is a characteristic
feature of deterministic chaos (Sugihara and May, 1990) and
provides further evidence of the fact that the erratic fluctua-
tions in wind speed data are caused by the chaotic dynamics
of the underlying system and are not an artefact of uncor-385

related additive noise. Fig 9(b) shows how the root mean
square (RMS) error between the predicted and measured val-
ues, again calculated cumulatively every 3 time steps, prop-
agates as we predict further into the future. The exponen-
tial growth of the prediction error further substantiates the390

chaotic nature of the data.

4 Statistical analysis of prediction errors

To demonstrate the wider applicability of the deterministic
methods for making short term wind speed forecasts we now

carry out a statistical analysis of the prediction errors for395

forecasts made at a total of 234 geographical locations. For
the analysis we have considered 10 minutes interval wind
speed data for 3 years from 2004, available from National
Renewable Energy Laboratory , USA for the 234 locations
depicted in Fig. 10.400

The optimal choice of the embedding parameters m and d
is a major factor affecting the accuracy of prediction. Since
the dynamics of wind speed varies over locations, these pa-
rameters have to be determined for each location separately.
However, the embedding parameters suggested by the auto-405

correlation function or the fraction of false neighbours need
not always give the most accurate predictions (Domenico
et al., 2013) and a systematic procedure for determining the
most suitable parameters for predictions using a model data
is still elusive. For the present analysis, to fix the optimal pa-410

rameters at each location, we have used a test run procedure
as described below. Given a time series of n points x1,...,xn,
we want to predict the next k values xn+1,...,xn+k. From
the given data set, we take the first n−3 data points to form
a model for making a test prediction of the next three data415

points for various values of m and d using one of the deter-
ministic algorithms described earlier. These predicted val-
ues xpn−2,x

p
n−1,x

p
n are then compared with the actual data

points xn−2,xn−1,xn to find the RMS error. The values
of m and d which yield the minimum RMS error for these420

three predicted values are selected as the parameter values
for the given data set and used for the prediction of values of
xn+1,...,xn+k.

We use spatial averages of prediction errors over various
locations as well as time averages at each location to assess425

the performance of these methods. Since the range of val-
ues of wind speed vary over locations, we have chosen as a
measure of the prediction error the root mean squared error
normalized over the range of the observed data (NRMSE)
given by430

NRMSE =

√∑n+k
n+1(xi−xpj )2

k

/
(xmax−xmin) (11)

where xpi are the predicted values. For each location we have
calculated NRMSE for 1 hour, 2 hour and 3 hour predic-
tions at intervals of 30 days for a 3 year period from 2004 to
2006. Fig. 11(a) depicts NRMSE with error bar for 1 hour435

predictions averaged over the locations (location averaged
NRMSE), computed at 30 days intervals and plotted for 3
year period. Fig. 11(b) shows NRMSE for 1 hour prediction
for each location averaged over a 3 year time period (time
averaged NRMSE) where the horizontal dotted line shows440

the mean 0.0136 of these values over the locations. Similar
estimates of location and time averaged errors for 2 hour pre-
dictions are given in Figs.11(c) and (d) and for 3 hour predic-
tions in (e) and (f). The mean of the time averaged NRMSE
over the locations, indicated in each figure by a dotted line, is445

Figure 12. NRMSE, with standard error, of 1 h prediction for the

period of 3 years from 2004 over 234 locations using LFO and RBF.

The lines connecting the symbols are to guide the eye.
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Fig. 13. Comparison of predicted values with the actual values for LFO and f-ARIMA. The symbols are plotted only at every 30 minutes for
legibility. Latitude: 34.98420, Longitude: -104.03971, (a) m= 13,τ = 3 and (b) m= 8,τ = 7.

0.0299 for 2 hour predictions and 0.0415 for 3 hour predic-
tions. This shows that the prediction accuracy observed in the
typical forecasts shown in Fig. 8 are more or less maintained
across all locations and various time periods consistently.

Between the deterministic methods, the RBF maintains a450

consistently slight performance edge over LFO for short term
predictions up to one hour, as is clear from Fig. 12, which
compares the location averaged prediction errors for 1 hour
predictions by the two methods.

5 Comparison with f-ARIMA455

Among the various statistical methods used in wind speed
prediction ARIMA is a popular model which gives reason-
ably accurate predictions of wind speed at many locations
(Kamal and Jafri, 1997; Cadenas and Rivera, 2007; Kavasseri
and Seetharaman, 2009). An ARIMA(p,d,q) model com-460

bines an autoregressive(AR) process of order p, a moving
average(MA) process of order q and a differencing operator
of order d into a single model. It has the general form (Box
et al., 2013)

Φ(B)∆dxt = c+Θ(B)εt (12)465

where εt is a white noise process and Φ(B) and Θ(B) are
respectively the autoregressive and moving average operators
defined by

Φ(B) = 1−φ1B−φ2B
2−···−φpBp

Θ(B) = 1+θ1B+θ2B
2 + ···+θqB

q (13)470

for suitably chosen constants θi and φi and non-negative in-
tegers p and q. B is the backward-shift operator so that
Bxt = xt−1 and ∆ = 1−B is the differencing operator and
in the general ARIMA model d is an integer.475

f-ARIMA is a generalisation of ARIMA where the param-
eter d is allowed to have a fractional value with the operator

(1−B)d interpreted to have the binomial expansion (Hosk-
ing, 1981)

(1−B)d = 1−dB+
d(d−1)

2!
B2 + ··· (14)480

The possibility of wide range of choices for the parameters
p, q, d and the constants φi and θi give the model great flex-
ibility and wider applicability.

One of the features that distinguishes a f-ARIMA process
from an ARIMA process is that the former is characterised485

by a slow decay in its autocorrelation function compared to
the latter. This feature makes f-ARIMA model an attractive
choice for data sets that exhibit long range correlations such
as the wind speed data (Kavasseri and Seetharaman, 2009).

General characteristics of the predictions by f-ARIMA and490

how they compare with the predictions by LFO can be seen
from fig.13(a) and (b).The performance of f-ARIMA is com-
parable to LFO initially but its predictions deviate from ac-
tual values and level off to a steady value after a brief period.
In contrast, while the accuracy of prediction of LFO also falls495

off gradually after 3 hours, it nevertheless captures the essen-
tial dynamics of the original time series even further.

For comparing the performance of LFO versus f-ARIMA,
we have elected to generate the best possible predictions by
both the methods, by experimenting with various values of500

the parameters which determine the accuracy of prediction.
Thus, for a model data set x1,...,xn, we would generate sev-
eral trial predictions for the next k data points using vari-
ous parameter values, compare each of them with the actual
observed data xn+1,...,xn+k, and choose the one that gives505

the least prediction error. For the LFO method this might
yield better predictions than would be obtained with the em-
bedding parameters selected by the procedure described in
the last section. While the latter procedure would be use-
ful in real world applications where there are no future data510

to compare the predictions with, it need not always give the

Figure 13. Comparison of predicted values with the actual values for LFO and f-ARIMA. The symbols are plotted only at every 30 min for

legibility. Latitude: 34.98420◦ N, longitude: 104.03971◦W, (a) m= 13, τ = 3 and (b) m= 8, τ = 7.

Renewable Energy Laboratory, USA, for the 234 locations

depicted in Fig. 10.

The optimal choice of the embedding parameters m and d

is a major factor affecting the accuracy of prediction. Since

the dynamics of wind speed varies over locations, these pa-

rameters have to be determined for each location separately.

However, the embedding parameters suggested by the auto-

correlation function or the fraction of false neighbours need

not always give the most accurate predictions (Domenico

et al., 2013), and a systematic procedure for determining the

most suitable parameters for predictions using model data is

still elusive. For the present analysis, to fix the optimal pa-

rameters at each location, we have used a test run procedure

as described below. Given a time series of n points x1, . . .,xn,

we want to predict the next k values xn+1, . . .,xn+k . From

the given data set, we take the first n− 3 data points to form

a model for making a test prediction of the next three data

points for various values of m and d using one of the de-

terministic algorithms described earlier. These predicted val-

ues x
p

n−2,x
p

n−1,x
p
n are then compared with the actual data

points xn−2,xn−1,xn to find the RMSE. The values of m and

d which yield the minimum RMSE for these three predicted

values are selected as the parameter values for the given data

set and used for the prediction of values of xn+1, . . .,xn+k.

We use spatial averages of prediction errors over various

locations as well as time averages at each location to assess

the performance of these methods. Since the range of val-

ues of wind speed varies over locations, we have chosen as

a measure of the prediction error the root mean squared er-

ror normalised over the range of the observed data (NRMSE)

given by

NRMSE=

√√√√√n+k∑
n+1

(xi − x
p
j )

2

k

/
(xmax− xmin) , (11)

where x
p
i are the predicted values. For each location we have

calculated NRMSE for 1, 2 and 3 h predictions at intervals of

30 days for a 3-year period from 2004 to 2006. Figure 11a de-

picts NRMSE with an error bar for 1 h predictions averaged

over the locations (location-averaged NRMSE), computed at

30-day intervals and plotted for a 3-year period. Figure 11b

shows NRMSE for 1 h prediction for each location averaged

over a 3-year time period (time-averaged NRMSE) where

the horizontal dotted line shows the mean 0.0136 of these

values over the locations. Similar estimates of location and

time-averaged errors for 2 h predictions are given in Fig. 11c

and d and for 3 h predictions in panels e and f. The mean of

the time-averaged NRMSE over the locations, indicated in

each figure by a dotted line, is 0.0299 for 2 h predictions and

0.0415 for 3 h predictions. This shows that the prediction ac-

curacy observed in the typical forecasts shown in Fig. 8 is

more or less maintained across all locations and various time

periods consistently.

Between the deterministic methods, the RBF consistently

maintains a slight performance edge over LFO for short-term

predictions up to 1 h, as is clear from Fig. 12, which com-

pares the location-averaged prediction errors for 1 h predic-

tions by the two methods.

5 Comparison with f-ARIMA

Among the various statistical methods used in wind speed

prediction, ARIMA is a popular model which gives reason-

ably accurate predictions of wind speed at many locations

(Kamal and Jafri, 1997; Cadenas and Rivera, 2007; Kavasseri

and Seetharaman, 2009). An ARIMA (p,d,q) model com-

bines an autoregressive(AR) process of order p, a moving

average (MA) process of order q and a differencing operator

of order d into a single model. It has the general form (Box

et al., 2013)

8(B)1dxt = c+2(B)εt , (12)

where εt is a white noise process and 8(B) and 2(B) are

respectively the autoregressive and moving average operators

defined by

8(B)= 1−φ1B −φ2B
2
− . . .−φpB

p

2(B)= 1+ θ1B + θ2B
2
+ . . .+ θqB

q , (13)

for suitably chosen constants θi and φi and non-negative

integers p and q. B is the backward-shift operator so that
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Bxt = xt−1 and 1= 1−B is the differencing operator and

in the general ARIMA model d is an integer.

f-ARIMA is a generalisation of ARIMA where the param-

eter d is allowed to have a fractional value with the operator

(1−B)d interpreted to have the binomial expansion (Hosk-

ing, 1981)

(1−B)d = 1− dB +
d(d − 1)

2
B2
+ . . .. (14)

The possibility of wide range of choices for the parameters

p, q, and d and the constants φi and θi gives the model great

flexibility and wider applicability.

One of the features that distinguishes a f-ARIMA process

from an ARIMA process is that the former is characterised

by a slow decay in its autocorrelation function compared to

the latter. This feature makes f-ARIMA model an attractive

choice for data sets that exhibit long-range correlations such

as the wind speed data (Kavasseri and Seetharaman, 2009).

General characteristics of the predictions by f-ARIMA and

how they compare with the predictions by LFO can be seen

from Fig. 13a and b. The performance of f-ARIMA is compa-

rable to LFO initially, but its predictions deviate from actual

values and level off to a steady value after a brief period. In

contrast, while the accuracy of prediction of LFO also falls

off gradually after 3 h, it nevertheless captures the essential

dynamics of the original time series even further.

For comparing the performance of LFO versus f-ARIMA,

we have elected to generate the best possible predictions by

both the methods, by experimenting with various values of

the parameters which determine the accuracy of prediction.

Thus, for a model data set x1, . . .,xn, we would generate sev-

eral trial predictions for the next k data points using vari-

ous parameter values, compare each of them with the actual

observed data xn+1, . . .,xn+k , and choose the one that gives

the least prediction error. For the LFO method this might

yield better predictions than would be obtained with the em-

bedding parameters selected by the procedure described in

the last section. While the latter procedure would be use-

ful in real-world applications where there are no future data

to compare the predictions with, it need not always give the

optimum parameter values giving the most accurate predic-

tions. In fact, we have observed that the LFO predictions ob-

tained here (Fig. 14a, b) are marginally better than those in

Fig. 11a and b, with the location-averaged NRMSEs being

smaller by 0.8 % and 1.8 % on the average for 1 and 3 h pre-

dictions respectively.

Figure 14 shows the results of a statistical analysis of the

performance of LFO and f-ARIMA,with optimum parameter

values, over all the 234 locations described earlier. The pan-

els a, b and c compare NRMSE for 1, 3 and 6 h predictions

averaged over all locations computed in intervals of 30 days

for a 3-year period. The prediction accuracy of LFO is no-

ticeably better than that of f-ARIMA across all locations and

all time periods. For low-resolution wind speed data of the

kind considered in this work, the accuracy and the longevity
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Fig. 14. Location averaged NRMSE, with standard error, of (a) 1
hour, (b) 3 hour and (c) 6 hour predictions for the period of 3 years
from 2004 over 234 locations using LFO and f-ARIMA.

optimum parameter values giving the most accurate predic-
tions. In fact, we have observed that the LFO predictions ob-
tained here (Fig. 14(a), (b)) are marginally better than those
in Fig. 11(a) and (b), with the location averaged NRMSEs515

being smaller by 0.8% and 1.8% on the average for 1 and 3
hour predictions respectively.

Fig. 14 shows the results of a statistical analysis of the

performance of LFO and f-ARIMA,with optimum parameter
values, over all the 234 locations described earlier. The fig-520

ures (a), (b) and (c) compare NRMSE for 1, 3 and 6 hour
predictions averaged over all locations computed in intervals
of 30 days for a 3 year period. The prediction accuracy of
LFO is noticeably better than that of f-ARIMA across all lo-
cations and all time periods. For low resolution wind speed525

data of the kind considered in this work, the accuracy and
the longevity of the predictions obtained by the deterministic
methods are therefore a significant improvement over exist-
ing methods.

6 Conclusions530

In this work we demonstrate the suitability of determinis-
tic methods in making short term forecasts of wind speed
based on past data. These methods are applicable in situa-
tions where the underlying dynamics of wind speed is chaotic
leading to random like fluctuations in the time series of wind535

speed. We have applied a couple of chaotic time series pre-
diction tools (one local method and one global method) on
records of wind speed data of 10 minute resolution from a
total of 234 different geographical locations, at each location
making 1 hour, 2 hour and 3 hour predictions at intervals of540

30 days for a period of 3 years. The predictions are very ac-
curate for up to 1 hour and fairly accurate for up to 3 hours.
A statistical analysis of the prediction errors from these loca-
tions reveal that the average prediction error is 1.36% of the
range of wind speed for 1 hour predictions, 2.99% for 2 hour545

predictions and 4.15% for 3 hour predictions.
We have also compared the efficiency of the deterministic

methods with predictions by f-ARIMA at each of the above
234 locations on the basis of 6 hour predictions at intervals of
30 days for a period of 3 years. It is seen that, compared to550

f-ARIMA, the deterministic methods give better prediction
accuracy for longer periods of time and capture the dynamics
of the fluctuations in the original data more faithfully. These
prediction methods are simple and computationally efficient
alternatives for short term wind speed forecasts.555
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Figure 14. Location-averaged NRMSE, with standard error, of

(a) 1 h, (b) 3 h and (c) 6 h predictions for the period of 3 years from

2004 over 234 locations using LFO and f-ARIMA.

of the predictions obtained by the deterministic methods are

therefore a significant improvement over existing methods.

6 Conclusions

In this work we demonstrate the suitability of determinis-

tic methods in making short-term forecasts of wind speed

based on past data. These methods are applicable in situa-

tions where the underlying dynamics of wind speed is chaotic

leading to random-like fluctuations in the time series of wind

speed. We have applied a couple of chaotic time series pre-

diction tools (one local method and one global method) on

records of wind speed data of 10 min resolution from a total
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of 234 different geographical locations, at each location mak-

ing 1, 2 and 3 h predictions at intervals of 30 days for a pe-

riod of 3 years. The predictions are very accurate for up to

1 h and fairly accurate for up to 3 h. A statistical analysis of

the prediction errors from these locations reveals that the av-

erage prediction error is 1.36 % of the range of wind speed

for 1 h predictions, 2.99 % for 2 h predictions and 4.15 % for

3 h predictions.

We have also compared the efficiency of the deterministic

methods with predictions by f-ARIMA at each of the above

234 locations on the basis of 6 h predictions at intervals of

30 days for a period of 3 years. It is seen that, compared to

f-ARIMA, the deterministic methods give better prediction

accuracy for longer periods of time and capture the dynamics

of the fluctuations in the original data more faithfully. These

prediction methods are simple and computationally efficient

alternatives for short-term wind speed forecasts.
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