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Abstract. We study three-wave resonant interactions among

kinetic-scale oblique sound waves in the low-frequency

range below the ion cyclotron frequency. The nonlinear

eigenmode equation is derived in the framework of a two-

fluid plasma model. Because of dispersive modifications at

small wavelengths perpendicular to the background magnetic

field, these waves become a decay-type mode. We found two

decay channels, one into co-propagating product waves (for-

ward decay), and another into counter-propagating product

waves (reverse decay). All wavenumbers in the forward de-

cay are similar and hence this decay is local in wavenumber

space. On the contrary, the reverse decay generates waves

with wavenumbers that are much larger than in the original

pump waves and is therefore intrinsically nonlocal. In gen-

eral, the reverse decay is significantly faster than the for-

ward one, suggesting a nonlocal spectral transport induced

by oblique sound waves. Even with low-amplitude sound

waves the nonlinear interaction rate is larger than the col-

lisionless dissipation rate. Possible applications regarding

acoustic waves observed in the solar corona, solar wind, and

topside ionosphere are briefly discussed.

Keywords. Space plasma physics (wave–wave interactions)

1 Introduction

Kinetic sound waves (KSWs) are an extension of plasma

sound waves (or ion-acoustic waves) in the range of short

(kinetic) perpendicular wavelengths λ⊥ comparable to the

ion gyroradius ρi = VT i/�i , λ⊥ ∼ ρi . The wavelength par-

allel to the background magnetic field, λz, may remain in the

magnetohydrodynamic (MHD) range. The finite gyroradius

effects make KSWs far more interesting than their classic

MHD counterparts. Because of the KSW dispersion mod-

ification at small perpendicular wavelengths, these waves

become a decay-type mode in the frequency range below

the ion cyclotron frequency (Hasegawa, 1976). Moreover,

new channels for the KSW nonlinear coupling with other

wave modes show up (Hasegawa and Chen, 1976; Brodin

et al., 2006; Zhao et al., 2014). The varying phase velocity

of KSWs opens more possibilities for Cherenkov-resonant

wave–particle interactions that are not available for classic

ion-sound waves. Also, similarly to low-frequency kinetic

Alfvén waves (Voitenko and Goossens, 2005), KSWs can ac-

celerate the ions nonadiabatically.

In situ and remote observations show that the sound waves

(SWs) are a widespread phenomenon in the solar corona,

solar wind, and Earth’s magnetospheric and ionospheric

plasma. For instance, the presence of significant levels of

electrostatic activity in the solar wind, identified as ion-

acoustic waves, has been confirmed by spacecraft observa-

tions (see review by Briand, 2009, and references therein).

Spacecraft-frame frequencies of these waves are strongly

Doppler-shifted by the solar wind, and their real plasma-

frame frequencies can be significantly lower. The energy

sources may be the electron heat flux or ion beams often ob-

served in the solar wind.

Identification of widespread slow (acoustic) modes in dif-

ferent regions of the solar corona have revived interest in

their application to coronal seismology (see recent papers by

Ofman et al., 2012; Krishna Prasad et al., 2014, and refer-

ences therein). Observed dissipation of these modes is dif-

ficult to explain by linear damping mechanisms (Krishna

Prasad et al., 2014) and nonlinear theory is required. In

the MHD low-frequency range, the slow-mode waves are
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almost electrostatic in low-β plasmas, like solar corona.

High-frequency electrostatic SWs have been also involved

in the modelling of type III radio bursts that trace the flare-

accelerated electron beams in the solar corona and solar wind

(see Thejappa et al., 2013, and references therein).

There has also been much interest in naturally occurring

(as opposed to artificially stimulated) enhanced ion-acoustic

spectra detected by incoherent scatter radars (ISRs) in the au-

roral zone and cusp/cleft region (see Sedgemore-Schulthess

and St.-Maurice, 2001, for a review). They are easily distin-

guishable from the usual thermal back-scattering because of

the strong enhancement of one or both ion-acoustic shoul-

ders of the reflected radio signal. These two shoulders corre-

spond to the ion-acoustic waves travelling away and towards

the radar. The theoretical explanation of these naturally en-

hanced ion-acoustic lines is still a matter of debate.

As most space plasmas are non-uniform, KSWs can be

created by the phase mixing of classic SWs, like in solar

coronal loops (Voitenko et al., 2005). KSWs can also be

generated linearly by shear plasma flows (Siversky et al.,

2005) and nonlinearly by Alfvén waves (Zhao et al., 2014).

In the present paper we study nonlinear interactions and de-

cay instabilities of KSWs. One such instability has been

considered previously in the framework of kinetic theory

(Hasegawa, 1976). Here we use the electrostatic two-fluid

plasma model that provides a good approximation for low-

frequency KSWs. Our analytical results and conclusions dif-

fer in several respects from the results obtained by Hasegawa

(1976) (see the Sects. 6 and 7 for the details). We apply our

theoretical results to the conditions typical for the solar wind

and topside Earth’s ionosphere and conclude that the nonlin-

ear spectral transport induced by the KSWs three-wave in-

teractions can be faster than the wave damping in the solar

wind and in the ionospheric F region. These results improve

our understanding of nonlinear wave–wave interactions and

spectral transport in solar and space plasmas.

2 Model

We consider a homogeneous hydrogen plasma in the ambient

magnetic field directed along z axis in the Cartesian coordi-

nate system. We are interested in the three-wave nonlinear

interaction of electrostatic kinetic sound waves, particularly

in the parametric decay KSW→KSW+KSW. To study this

interaction, we use the nonlinear two-fluid magnetohydrody-

namics in the electrostatic limit for perturbations. Our low-

frequency KSWs are in fact the collisionless electrostatic

counterparts of oblique MHD slow-mode waves, and hence

our results are applicable only in low-β plasmas where the

magnetic field is perturbed only slightly by these modes. The

basic set of governing equations is

∇ ·E = 4πQ, (1)

∂V α

∂t
+ (V α∇)V α =

qα

mα

(
E+

1

c
V α ×B0

)
−

Tα

mαnα
∇nα, (2)

∂nα

∂t
=−∇ · (nαV α) , (3)

where Q=
∑
αqαnα is the charge density and subscript

α= e, i stands for the electron and ion species, respectively.

The total number density, velocity, electric field, and mag-

netic field are presented as

nα = n0+ np+ n1+ n2,

V α = V p+V 1+V 2,

E =Ep+E1+E2,

B = B0ez,

where n0 is the mean plasma density and B0ez is the am-

bient magnetic field. The subscript p indicates perturbations

in the original (pump) wave, whereas the subscripts 1 and 2

indicate perturbations in two product waves.

We would like to note that, strictly speaking, kinetic ion

sound waves and their nonlinear interaction can be rigor-

ously described in the framework of kinetic theory. Instead,

we use here the two-fluid MHD plasma model, as it gives a

far more simple description and is still sufficiently accurate

for the low-frequency waves we study.

3 Nonlinear dispersion relation for KSWs

In this section the nonlinear dispersion relation for kinetic

sound waves is derived. In the electrostatic approximation

the electric field of the sound wave can be presented as

E =−∇φ, where φ is the wave electric potential. For low-

frequency KSWs, the plasma approximation (quasineutrality

condition) holds:

ni = ne. (4)

This condition will be used in the derivations instead of the

Poisson equation. Eliminating velocities by means of Eq. (2)

we obtain from Eq. (3) the following ion density perturba-

tion:

ni

n0

=
e

mi

(
1−

V 2
T i

ω2
k2
z +

V 2
T i

�2
i

k2
⊥

)−1

×

[
k2
z

ω2

(
1−

ω2

k2
zV

2
s

V 2
s

�2
i

k2
⊥

)
φ−Ni

]
, (5)

with the nonlinear part
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Ni =−
1

ω�i
b0 [k⊥×F i⊥]+

i

�2
i

k⊥Fi⊥

−
i

ω2
kzFiz−

mi

en0

k

ω
(niV i)Nl,

where F α =−
mα
qα
(V α∇)V α and we assume harmonic plane

waves ∼ exp(−iωt + ik · r). The cross × and dot · between

vectors denote the vector and scalar products, respectively.

In the ion-sound waves the electron number density fol-

lows the Boltzmann distribution ne/n0 = eφ/Te. Then using

the quasineutrality conditions (Eq. 4) we obtain the nonlinear

dispersion relation for the amplitude 8 of the KSW electric

potential:(
ω2
−
k2
zV

2
T

1+µ

)
8=−

ω2

µ+ 1
V 2
s Ni . (6)

Here µ=
(
V 2
T k

2
⊥

)
/�2

i , V 2
T = (Te+ Ti)/mi and

V 2
s = Te/mi .

4 Resonant conditions

In the nonlinear coupling of KSWs, the waves must satisfy

the resonant conditions ωp = ω1+ω2, kp = k1+ k2. These

conditions impose restrictions on the parameters of the inter-

acting waves. For the analysis of the resonance conditions it

is convenient to introduce the KSW dispersion function K ,

K =K (µ)=
1

√
1+µ

,

and to present the KSW dispersion relation as ω = kzVTK.

From the frequency matching condition and z compo-

nent of the wave-vector matching condition, we obtain

k1z

(
s1Kp−K1

)
= k2z

(
K2− s2Kp

)
, where s1,2 denote the

propagation directions of the product waves, such that s1 =

s2 = 1 correspond to the co-propagating product KSWs and

s1 =−s2 = 1 correspond to the counter-propagating product

KSWs. It is assumed that the pump wave propagates in the

direction of the background magnetic field.

The restricting condition directly follows from the above

equations:(
s1Kp−K1

)(
K2− s2Kp

)
> 0. (7)

This condition arranges perpendicular wavenumbers in the

following order: K2 >Kp >K1 (or K1 >Kp >K2) for the

forward decay, and Kp >K1 for the reverse decay. This or-

dering can be rewritten in terms of µ: µ1 > µp > µ2 (or

µ2 > µp > µ1) for the forward decay, and µ1 > µp for the

reverse decay.

5 Growth rate of the KSW decay

Using the linear responses due to the pump wave and the

secondary KSWs, and retaining the dominant terms in the

approximation ω��i , we obtain the nonlinearly coupled

equations for the amplitudes of product KSWs. Thus, for the

kinetic sound wave 1 we obtain the equation

ε181 =N18p8
∗

2, (8)

where coefficients ε1 and N1 are

ε1 = ω
2
1 − k

2
1zV

2
TK

2
1 ,

N1 = ω1�iK
2
1

(
e

Te

)
V 2
T

�2
i

ib0 · [k1⊥× k2⊥]

×

[
−
V 2
T

ω1ωp

[
ωp

ω2

(k1z · k2z)−
(
k1z · kpz

)]

+
V 2
T

�2
i

[
(k1⊥ · k2⊥)+

(
k1⊥ · kp⊥

)]
+
me

mi

(
K2

p −K
2
2

)]
.

The nonlinear equation for the second product KSW is the

same as Eq. (8) but with exchanged subscripts 1 and 2.

Splitting the frequency into real and imaginary parts, ω =

ω1,2+iγ , and combining Eq. (8) with the complex conjugate

equation for the second product KSW, we arrive to the fol-

lowing nonlinear dispersion equation for the coupled KSWs:

ε1ε
∗

2 =N1N
∗

2

∣∣8p

∣∣2.
For γ � ω1,ω2 we find the instability growth rate as

γ 2
NL =

1

4

∣∣∣∣ eTe8p

∣∣∣∣2K1K2

K2
p

�2
i

[
V 2
T

�2
i

b0 · (k1⊥× k2⊥)

]2

×

(
1

Kp

+
s1

K1

+
s2

K2

)2 (
K2− s2Kp

)(
s1Kp−K1

)
. (9)

In the above expression we retain the dominant terms that

occur in the parallel nonlinear force kz ·F iz and perpendic-

ular nonlinear force b0 · [k⊥×F i⊥] and use the resonance

conditions.

From the expression (9) we see that the growth rate γ is

always real for the resonant waves, for which the ordering

condition
(
s1Kp−K1

)(
K2− s2Kp

)
> 0 holds. It is also seen

that the growth rate is independent of kz, which suggests a

reduced rate of spectrum transport in the parallel direction.

6 Analysis of the forward and backward KSW decays

Here we analyse characteristics of KSW decays in more de-

tail. To this end, we present the general expression of the

normalized growth rate γNL as a function of the normalized
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Figure 1. The normalized growth rate γ /
(
�i
∣∣e8p/Te

∣∣) as a function of µ1 and θ for small perpendicular wavenumber of the pump wave

µp = 0.05. The left panel shows the forward decay and the right panel shows the reverse decay.

perpendicular wavenumber squared µ1 and angle θ between

k1⊥ and kp⊥:

γNL =
γ∣∣∣ eTe8p

∣∣∣�i =
1

2

√
µ1
√
µp |sinθ |

×

(
1

Kp

+
s1

K1

+
s2

K2

)
[(
K2− s2Kp

)(
s1Kp−K1

)K1K2

K2
p

]1/2

, (10)

where µ2 = µ1+µp− 2
√
µ1µp cosθ .

The dependence of the normalized decay rate γNL on the

wave parameters µ1 and θ is shown in Fig. 1. The left panel

shows the growth rate for the forward decay (s1 = s2 = 1)

and the right panel illustrates the reverse decay (s1 =−s2 =

1). In Fig. 1 we assume µp = 0.05 for the pump wave. We

see that for forward decay there are two unstable regions

in the µ1− θ plane with the corresponding maximums at

µ1 ≈ 0.6µp; θ ≈ 117◦, and at µ1 ≈ 2.3µp; θ ≈ 28◦. This be-

haviour can be understood from the restricting conditions

µ2 > µp > µ1 (or µ1 > µp > µ2) for the forward decay. In

the case of reverse decay we have only one unstable region

(µ1 > µp) extended towards a large µ1, where the growth

rate gradually increases. This increase is not bounded in the

two-fluid MHD model. But kinetic theory places an upper

limit for the ion-acoustic waves in a Maxwellian plasma at

µ1 equal to about 4, depending on the ion to electron tem-

perature ratio Te/Ti . The peak value of the growth rate is

distinctly larger for the reverse decay than for the forward

decay.

We considered as well the higher value of the perpendicu-

lar wavenumber of the pump wave, i.e. µp = 0.5 and put the

results in Fig. 2. Figure 2 shows that the peak values of the

growth rate are larger (approximately in one order of magni-

tude) than that for µp = 0.05. It is seen that for the reverse

decay the maximum of the growth rate shifts to the lower

values of the angle θ .

Importantly, from Figs. 1 and 2 we see that the forward de-

cay is local in k⊥-space because all perpendicular wavenum-

bers in this decay are similar,µ1 ∼ µ2 ∼ µp. On the contrary,

the reverse decay is nonlocal: product waves possess much

larger perpendicular wavenumbers than the original pump

wave, µ1 ∼ µ2� µp. As the reverse decay is in general sig-

nificantly faster than the forward decay, the spectral transport

induced by the three-wave KSW interactions is mostly non-

local.

7 Application and discussion

The spectral transport induced by the nonlinear interaction

among kinetic sound waves can be used for the explanation

of wave phenomena in many solar and space plasmas. We

consider here several possible examples.

First we analyse the nonlinear interaction of KSWs in the

solar wind. The presence of a significant level of electrostatic

activity identified as ion-acoustic waves has been recorded

in the solar wind since the 1970s by the Helios and Voyager

spacecrafts (Gurnett and Anderson, 1977; Gurnett and Frank,

1978; Gurnett et al., 1979). These waves were believed to

propagate in the ion-acoustic mode, which is Doppler-shifted

upward in frequency by the solar wind motion. The intensity

of the waves varies between 1 to 10 µV m−1 in quiet peri-

ods of solar activity, but may reach a few tens of µV m−1

during more active periods. Using obtained analytical ex-

pressions for the KSW collisionless damping (Zhao et al.,

2014) and nonlinear pumping rate, let us estimate the thresh-

old amplitude for the decay using the following parameters
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Figure 2. The same as in Fig. 1 but for µp = 0.5.

at 0.5 AU: Te = 1.5× 105 K; ne = 1.2 cm−3; B0 = 5.3 nT or

= 5.3× 10−5 G. With such plasma parameters Vs = 3.5×

106 cm s−1, ωpi/�i ∼ 3× 103.

The nonlinear growth of the product waves may be bal-

anced by their collisionless dissipation. Similarly to the

parallel-propagating SWs, dissipation of oblique KSWs in

weakly collisional plasmas is dominated by the Landau

damping. The Landau damping occurs on both electrons and

ions, with the relative importance depending on plasma pa-

rameters. As we consider plasmas with Te/Ti ∼ 2 the Landau

damping on ions should be taken into account. The collision-

less dissipation of kinetic ion-sound waves has been investi-

gated by Zhao et al. (2014):

γLα = ωαgα, (11)

where α = 1,2 stands for two product KSWs, and coefficient

gα (µi)= 0.14− 0.61

[(
1+

Ti

Te

)
0.42+ 0.58µi

0.42+ 0.038µi
− 1

]1/2

+ 0.05

[(
1+

Ti

Te

)
0.42+ 0.58µi

0.42+ 0.038µi
− 1

]
.

depends only on the normalized perpendicular wavenumber

µi = ρik⊥. Note the difference in our definition of µi (µi =

ρ2
i k

2
⊥

) with that in Zhao et al. (2014).

The threshold amplitude for the pump wave to excite

waves 1 and 2 can be obtained from the condition, γ 2
NL =

γL1γL2, where γNL is the nonlinear pumping rate and γL1,2

are the damping rates of product KSWs. Using above expres-

sions for γL1 and γL2, we obtain the threshold energy of the

pump wave:

W s (k)

neTe

∣∣∣∣
thr

=
g1 (µ1)g2 (µ2)

γ 2
NL

ω1ω2

�2
i

(
kpzλDe

)2
. (12)

In Fig. 3a we plot the threshold amplitude of the pump

wave as function of the pump wave frequency. For the for-

ward decay the maximum γNL ' 0.0009 is attained at µ1 '

0.1 and θ ' 28◦ (we have chosen here µ1 > µp > µ2). For

the reverse case γNL ' 0.056 is attained at µ1 ' 1 and θ '

77◦. In this figure µp = 0.05 and Te/Ti = 2. It is seen that

the threshold amplitude of the decay instability is very low

for both decays. Note that for higher values of µp (say for

µp = 0.5) we get even lower threshold amplitudes.

Here we consider decay instabilities of low-frequency ki-

netic sound waves with ω��i , which seems to lie below

frequencies of the ion-sound turbulence observed by Gurnett

and others. However, because of the limited resolution and

other issues, the available solar wind observations (Voyager,

Ulysses, Wind) cannot measure intensity of the ion-acoustic

waves in the whole frequency/wavenumber domain (Mel-

rose, 1982; Lacombe et al., 2002). Therefore the spectrum of

non-thermal ion-sound waves may extend to lower frequen-

cies, where our results are valid and indicate a strong de-

cay instability. In future, we are going to consider the KSWs

decays at higher frequencies, ω&�i and ω��i . In most

space plasmas, in particular in the solar wind, where the elec-

trostatic turbulence has been observed, the ion plasma fre-

quency is larger than the ion cyclotron frequency, ωpi >�i ,

in which case the frequency domains ω&�i and ω��i
seem to be relevant.

On the other hand, the low-frequency approximation that

we used is directly applicable to the slow-mode waves ob-

served in the solar corona (Krishna Prasad et al., 2014,

and references therein) and solar wind (Howes et al., 2012,

and references therein). The short dissipation distance of

the coronal slow modes (Krishna Prasad et al., 2014) may

result from their nonlinear decay into small-scale waves.

The actual dissipation of the wave energy occurs at small

scales and is of collisional nature in the solar coronal condi-
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Figure 3. The dependence of threshold amplitude of pump wave

on the frequency of pump wave for the maximum value of growth

rate γNL ' 0.0009 for forward decay as well as for γNL ' 0.056

for reverse decay. Here we consider the parameters of solar wind

plasma (a) as well as the plasma parameters of F region of Earth’s

ionosphere (b). The solid line denotes the forward decay, and the

dashed line denotes the reverse decay.

tions (Voitenko et al., 2005). In the solar wind turbulence the

oblique slow-mode waves define the observed spectrum of

compressible fluctuations (Howes et al., 2012). The possible

contribution of nonlinear interactions among KSWs, studied

in this paper, as compared to the interactions between KSWs

and kinetic Alfvén waves (Zhao et al., 2014), is subject for

future investigations.

The nonlinear interactions studied in our paper can also

play a role in the topside Earth’s ionosphere. The Natu-

rally Enhanced Ion Acoustic Lines (NEIALs) are often ob-

served at high latitudes in the incoherent scatter radar data.

NEIALs appear as ion-acoustic fluctuations enhanced by

two or three orders above the thermal level. The strength

of one or both of the up- and down-shifted ion lines is in-

creased (see Sedgemore-Schulthess and St.-Maurice, 2001,

and references therein). Several theories have emerged in

order to explain the source of NEIALs, namely the elec-

tron–ion and ion–ion two-stream instabilities as well as non-

linear wave–wave interactions (via Langmuir decay). The

enhanced ion-acoustic fluctuations due to parametric decay

of Langmuir waves remains the most promising, at least for

explaining some observed features (see Kontar and Pécseli,

2005, and references therein).

A feasible explanation for two simultaneously observed

spectral lines is provided by the nonlinear KSW interactions.

If the plasma instabilities generate the ion-sound waves prop-

agating in one direction, the reverse decay of these waves will

generate the waves propagating in the opposite direction. As

it is seen from Fig. 3b, the threshold amplitude for this de-

cay is very low in the F region of Earth’s ionosphere, where

Te = 3100 K; Ti = 1400 K; ne = 2× 105 cm−3; B0 = 0.5 G

(ωpi/�i = 490, Te/Ti = 2). Here we would like to note the

following. If the perpendicular wavenumbers of the waves

is larger than their parallel wavenumbers, then the wave-

lengths of the reflected radio emission cannot be linked to

the frequencies of ion-sound waves (parallel wavenumbers).

In this case the KSW frequencies can be still in the low-

frequency range and the low-frequency approximation used

in our derivation can be still applicable. Otherwise higher

KSW frequencies have to be accounted for (this work is in

progress).

The nonlinear interaction of low-frequency kinetic ion-

sound waves, with ω��i, has been considered by

Hasegawa (1976) in the framework of kinetic theory. We

would like to stress several differences between our result

and results by Hasegawa (1976). According to Hasegawa

(1976), the growth rate is determined by the parallel non-

linear force kz ·F iz and only the reverse decay occurs. In

the present paper we demonstrate that (i) the nonlinear terms

∼ kz ·F iz lead to the forward decay, not to the reverse one;

(ii) the nonlinear terms due to the perpendicular nonlin-

ear force b0 · [k⊥×F i⊥] are as important as kz ·F iz terms

and must be taken into account. These terms make the for-

ward decay 2–3 times faster and, most importantly, lead to a

stronger reverse decay.

8 Conclusions

We studied the three-wave resonant interaction among ki-

netic sound waves. The nonlinear coupling equation describ-

ing both linear and nonlinear properties of KSWs is de-

rived in the framework of a two-fluid plasma model. Be-

cause of the dispersive modification at small perpendicu-

lar wavelengths approaching the ion gyroradius, KSW be-

come a decay-type mode. We derived the nonlinear decay

rate of low-frequency KSWs with ω��i . The KSW Lan-

dau damping in the Maxwellian plasma is accounted for the

range of temperature ratio 1/3.Te/Ti.3. Properties of the

KSW decays can be summarized as follows:

1. There are two possible decay channels for KSWs: the

forward decay into two co-propagating product KSWs

(k1z > 0, k2z > 0) and the reverse decay into counter-

propagating product KSWs (k1z > 0, k2z < 0).

2. Contrary to Hasegawa (1976), we found that the nonlin-

ear terms ∼ kz ·F iz lead to the forward decay.

3. By accounting for the nonlinear terms ∼

b0 · [k⊥×F i⊥], overlooked by Hasegawa (1976),

we found a much stronger reverse decay.

4. Both decay channels depend on the perpendicular

wavenumber of the pump wave. The reverse decay rate

for µp = 0.5 is approximately one order of magnitude

larger than for µp = 0.05. The reverse decay is stronger

than the forward decay for all µp.

Ann. Geophys., 32, 1407–1413, 2014 www.ann-geophys.net/32/1407/2014/



O. Lyubchyk and Y. Voitenko: Nonlinear coupling of kinetic sound waves 1413

5. In the forward decay the perpendicular wavenumbers

of product KSWs are similar to the pump wavenum-

ber, µ1 ∼ µ2 ∼ µp, which indicates the decay locality

in k⊥-space. On the contrary, the reverse-decay product

KSWs have much larger perpendicular wavenumbers,

µ1 ∼ µ2� µp, which makes this decay nonlocal. Since

the reverse decay is stronger than the forward one, the

spectral transport induced by three-wave KSW interac-

tions is nonlocal.

6. The estimated thresholds of the KSW decays are very

low in the solar wind and in the topside ionospheric

conditions, which suggests their importance in these re-

gions. The same may concern KSWs and their nonlinear

dynamics in the solar corona and in laboratory plasmas.

7. The nonlinear interaction rate does not depend on the

parallel wavenumbers, which reflects the dominant role

of the perpendicular nonlinear dynamics where the par-

allel scales evolve kinematically.

These properties make KSW’s nonlinear dynamics inter-

esting in the context of acoustic-like wave activity observed

in the solar corona, solar wind, and terrestrial magneto-

sphere.
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