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Abstract. Naturally enhanced ion-acoustic lines (NEIALs)
have been observed with the Poker Flat Incoherent Scatter
Radar (PFISR) ever since it began operating in 2006. The
nearly continuous operation of PFISR since then has led to
a large number of NEIAL observations from there, where
common-volume, high-resolution auroral imaging data are
available. We aim to systematically distinguish the differ-
ent types of auroral forms that are associated with different
NEIAL features, including spectral shape and altitude ex-
tent. We believe that NEIALs occur with a continuum of
morphological characteristics, although we find that most
NEIALs observed with PFISR fall into two general cate-
gories. The first group occurs at fairly low altitudes – F re-
gion or below – and have power at, and spread between, the
ion-acoustic peaks. The second group contains the type of
NEIALs that have previously been observed with the EIS-
CAT radars, those that extend to high altitudes (600 km or
more) and often have large asymmetries in the power en-
hancements between the two ion-acoustic shoulders. We find
that there is a correlation between the auroral structures and
the type of NEIALs observed, and that the auroral structures
present during NEIAL events are consistent with the likely
NEIAL generation mechanisms inferred in each case. The
first type of NEIAL – low altitude – is the most commonly
observed with PFISR and is most often associated with ac-
tive, structured auroral arcs, such as substorm growth phase,
and onset arcs and are likely generated by Langmuir turbu-
lence. The second type of NEIAL – high altitude – occurs
less frequently in the PFISR radar and is associated with au-
rora that contains large fluxes of low-energy electrons, as can

happen in poleward boundary intensifications as well as at
substorm onset and is likely the result of current-driven in-
stabilities and in some cases Langmuir turbulence as well. In
addition, a preliminary auroral photometry analysis revealed
that there is an anticorrelation between the altitude of the
NEIALs and the calculated energy of the electrons, which
is consistent with the hypotheses presented here regarding
generation mechanisms.

Keywords. Atmospheric composition and structure (air-
glow and aurora) – magnetospheric physics (plasma waves
and instabilities) – radio science (waves in plasma)

1 Introduction

Naturally enhanced ion-acoustic lines (NEIALs), having
been first observed with the Millstone Hill incoherent scat-
ter radar in the late 1980s (Foster et al., 1988), were initially
found to be associated with auroral structures (Collis et al.,
1991; Rietveld et al., 1991). These early correlations between
NEIALs and auroral observations were general and on a
large scale. Further combining of auroral imaging with radar
studies using the European Incoherent SCATter (EISCAT)
radars was done bySedgemore-Schulthess et al.(1999), Gry-
deland et al.(2003, 2004) andBlixt et al. (2005). These –
more recent – studies found correlations between the occur-
rence of smaller-scale auroral structures and the presence of
NEIALs in the radar returns. The work ofBlixt et al. (2005)
was the next step in making specific correlations between
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NEIALs and auroral features. They presented narrow-field-
of-view (FOV) television observations of the aurora dur-
ing four NEIAL events using the EISCAT Svalbard Radar
(ESR). These observations constituted the first high spatial
and temporal imaging observations of the aurora coincident
with NEIAL observations on the dayside. On the nightside,
Michell et al.(2008a) reported NEIAL observations with the
Poker Flat Incoherent Scatter Radar (PFISR) which were also
combined with common-volume auroral imaging at high spa-
tial and temporal resolution.

These studies all reveal that NEIALs are correlated with
auroral forms. The EISCAT observations found NEIALs to
be associated with “flaming” aurora and tall, rayed aurora,
indicative of large fluxes of low-energy electrons (Blixt et al.,
2005). The PFISR observations found NEIALs to occur with
dynamic small-scale auroral structures, particularly associ-
ated with substorm-onset aurora containing rayed arcs and
the edges of thin, dynamic auroral features (Michell et al.,
2009; Michell and Samara, 2010). Additionally using PFISR,
Michell et al.(2008a) found NEIALs to occur at the poleward
edge of a large-scale active auroral arc system that exhibited
� band features.

It has been clearly established that NEIALs occur inside
regions of auroral activity, but the specifics of the auroral
structures associated with NEIALs have only been exam-
ined for a few case studies. It is the purpose of this article
to present and discuss the specific auroral structures – large
and small scale – that are correlated with the characteristics
of NEIALs, specifically their spectral shape and altitude ex-
tent.

Determining the generation mechanisms of the enhanced
wave activity responsible for causing NEIALs is an active
area of research. There are theories that are consistent with
the observations, but it is still an open question as to which
theories are likely correct under which situations. The orig-
inal ion–electron two-stream instability suggested byFoster
et al. (1988) is consistent with the midlatitude observations
but has been shown byGrydeland et al.(2003, 2004) to be
inconsistent with some high-latitude NEIALs – where both
shoulders are simultaneously enhanced.

Recent modeling efforts of NEIAL generation mecha-
nisms include a range of possible theories, including en-
hanced ion-acoustic waves being driven by electrostatic ion
cyclotron waves (Bahcivan and Cosgrove, 2008), or cold
electron beams (Daldorff et al., 2007). However, the most
likely – and currently accepted – mechanism for generating
high-latitude NEIALs – originally proposed byForme(1993)
– is the electron-beam-driven Langmuir wave instability, by
which enhanced Langmuir waves decay into ion-acoustic
waves. This process has been termed Langmuir turbulence
(LT), which has been recently modeled in more detail (Guio
and Forme, 2006; Isham et al., 2012). There are two regimes
of LT. At lower electron beam energies, the decay mecha-
nism dominates (called “cascading” or “weak” LT), while
at higher electron beam energies the cavitation mechanism

Table 1. Summary of the characteristics for the main high-latitude
radars, specifically the operating frequency, the Bragg scattering
scale length (λ/2), the magnetic latitude and the beam width.

Radar Freq. (MHz) λ/2 (cm) Mag. lat. Beamwidth

EISCAT VHF 224 67 66.2◦ 1.5◦

PFISR 449 33 66.1◦ 1◦

ESR 500 30 75.2◦ 0.6◦

EISCAT UHF 933 16 66.2◦ 0.5◦

Sondrestrom 1290 11 74.2◦ 0.5◦

dominates (called “cavitating” or “strong” LT). The possible
NEIAL generation mechanisms should therefore be made to
include processes that generate enhanced Langmuir waves.

Observations of simultaneously enhanced ion and plasma
lines were first reported byRietveld et al.(2002), and those
same observations have since been further analyzed and sim-
ulated byIsham et al.(2012). Using ESR data,Strømme
et al.(2005) found a correlation between enhanced Langmuir
waves, as evidenced by enhanced plasma line power in the
radar data, and NEIALs. In addition,Sullivan et al.(2008)
used a numerical technique to calculate energy inputs by
inverting optical auroral observations. The detailed auroral
structures – and inferred electron energies – that occur with
NEIALs can provide additional information for determining
the in situ electrodynamics related to the generation mecha-
nisms.

2 Instrumentaion

2.1 Radars

The NEIALs that were observed with PFISR and the accom-
panying high-resolution auroral imaging data are the main
observations that were focused on for this analysis. How-
ever, it is important to note the major differences between
the PFISR radar and the other high-latitude incoherent scat-
ter radars and their NEIAL observations. Table1 summarizes
the relevant parameters for the five main radars in the auro-
ral zone. The ESR radar, at the highest magnetic latitude,
lies under the cusp on the dayside and therefore typically
observes different types of auroral structures than the EIS-
CAT mainland (UHF and VHF) radars which are located at
the equatorward edge of the nightside auroral oval. PFISR is
also located at the equatorward edge of the nightside auroral
oval and thus is positioned to observe active, substorm-onset-
type aurora and the associated NEIALs (Michell et al., 2009;
Michell and Samara, 2010).

The two mainland EISCAT radars and the PFISR radar
should therefore observe comparable auroral structures, but
the operating frequencies of the radars are different; there-
fore it would not be relevant to compare the NEIAL ob-
servations between the radars for this study. NEIALs have
been observed with both EISCAT mainland radars at the
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different operating frequencies, both UHF (933 MHz) and
VHF (224 MHz) (Collis et al., 1991; Cabrit et al., 1996), as
well as with the ESR radar at high magnetic latitude (Blixt
et al., 2005), under the cusp/dayside auroral oval. The Son-
drestrom radar, which is at a similar latitude to ESR, operates
at a higher frequency of 1290 MHz, and no NEIALs have
been observed there yet (Strømme, 2004), despite the pres-
ence of active aurora containing tall, rayed auroral arcs at the
polar cap boundary.Michell and Samara(2013) conducted
a specific study at Sondrestrom, examining the radar data
at times when active and dynamic auroral structures were
present in the radar beam, and found no evidence of NEIALs
in the Sondrestrom radar data, suggesting a limiting scale
size over which the enhanced ion-acoustic wave activity can
occur.

The aim of this study is to examine the differences be-
tween NEIALs that were observed with different types of
auroral structures; therefore data from only one radar will
be used, so that the differences observed correspond only to
those associated with the different auroral conditions. Data
from the PFISR radar are chosen because the auroral sea-
son of 2011 and 2012 had a marked increase in auroral ac-
tivity with the onset of solar maximum where many active
auroral displays occurred over Poker Flat. In addition, the
Multi-spectral Observatory Of Sensitive EMCCD (MOOSE)
imagers were in operation nearly the whole winter, providing
high-resolution imaging of the auroral structures. The PFISR
data used are from the magnetic zenith where uncoded long
pulses (450 µs) were used in order to gain maximum spectral
information from the F region ionosphere. This pulse length
leads to altitude smearing of∼ 70 km. All the radar spectra
in this paper were formed by applying a Hanning window to
the estimated ACFs (auto correlation functions) before doing
the discrete Fourier transforms. This helps to reduce variance
and spectral leakage, which would otherwise dominate the
spectrum at the frequencies near sharp peaks.

2.2 Optical

The first several years of PFISR operation corresponded to
a long, geomagnetically quiet solar minimum. During this
time there were only a few NEIALs observed with PFISR
where simultaneous auroral imaging was possible. The re-
cent increases in solar activity have resulted in significantly
more active auroral structures over the PFISR radar. This has
resulted in a significant increase in the number of NEIALs
observed with PFISR. The addition of the MOOSE imagers
to Poker Flat in September 2011 have greatly increased the
auroral imaging capabilities available.

The MOOSE imagers used to make the auroral obser-
vations were Andor Ixon DU-888 EMCCD (Electron Mul-
tiplying Charge Coupled Device) imagers. These have a
1024× 1024 pixel chip, with internal binning capabilities
that allow tradeoffs between temporal and spatial resolution.
For the observations presented, the MOOSE imagers were
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Figure 1. Event 1: top: PFISR electron density profiles, covering
a time period of about 6 min around substorm onset. The strong
NEIAL returns can be seen to extend from 120 km up to 600 km
altitude. The times marked A–F are the times of the NEIAL spectra
shown in Fig.2. Bottom: same time period with intensity scale set
so the NEIALs are not oversaturated.

operating with both all-sky and narrow-field-of-view (15◦

FOV) lenses. Table2 shows the summary of imager configu-
rations used with filter, field of view, frame rate and emission
line characteristics. The CCDs were cooled to−70◦C to re-
duce thermal noise and the narrow-field imagers were set to
4× 4 binning (with a small degree of sub-framing), result-
ing in a 190×190 image at 40.7 frames per second (∼ 20 ms
exposure time). The all-sky imagers were set to 2× 2 bin-
ning, resulting in a 512×512 image at 3.3 frames per second
(∼ 300 ms exposure time). This configuration was chosen be-
cause it provides adequate temporal resolution at the large
scale (all sky) while still getting high temporal and spatial
resolution at the small scales with the narrow-field imagers.
This setup provides an angular resolution of 0.054◦ per pixel
or approximately 100 m per pixel for the narrow field and
600 to 800 m per pixel for the all-sky images in the vicin-
ity of the zenith, assuming an auroral emissions altitude of
100 km. The narrow-field imagers were pointed to the mag-
netic zenith, which is near the center of the all-sky images.
All of the auroral images presented here are oriented such
that north is at the bottom and east is to the right (i.e. a view
from below).

The narrow-field images presented below were taken in
the 427.8 nm emission line – from N+2 – which is a prompt
emission, enabling a one-to-one correspondence between the
electron precipitation and the auroral luminosity. Event 1,
however, was only imaged with a BG3 filter – described
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Table 2.Summary of the auroral imager operations during the 2011–2012 auroral season, when these NEIAL observations were made.

Field of view (degrees) Frame rate (Hz) Filter (nm) Lifetime Avg. altitude (km)

All-sky (180◦) 3.3 557.7 Slow (0.7 s) 100–120
Narrow (15◦) 40.7 427.8 Prompt (∼ ns) 100–120
Narrow (15◦) 40.7 844.6 Prompt (∼ ns) 200–250
Narrow (15◦) 40.7 630.0 Slow (110 s) 200–250
Narrow (15◦) 40.7 BG3 Prompt (∼ ns) 100–120
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Figure 2. Event 1: NEIAL spectra from the times labeled A–F in Fig.1. There is a large variation in the spectral features between the
5 s integration periods during this event. Overall the downshifted shoulder was more enhanced than the upshifted shoulder. Note that the
intensity scale is not the same for each spectrum, due to the extreme variation in NEIAL intensity.

below – because that was the only narrow-field imaging
available for that event. A full analysis of the emission line
characteristics of the auroral coincident with the NEIALs is
beyond the scope of this paper, but a preliminary estimate
of the average precipitating electron energy can be made for
Events 2 through 5. For the auroral photometry and the ini-
tial electron energy estimates, the intensities of these other
emission lines are needed. The 844.6 nm emission line from
atomic oxygen is also a prompt emission that is primar-
ily excited in the F region. The other two emission from
atomic oxygen are 557.7 and 630.0 nm, which are both slow
emissions with lifetimes of 0.7 and 110 s, respectively. The
557.7 nm emission comes primarily from the E region from
around 100 to 120 km altitude, while the 630.0 nm emission
comes primarily from the F region at around 200 to 250 km
altitude. The differences in altitude do not affect the analy-
sis because the emissions are taken in the magnetic zenith
and are therefore measured as a column-integrated intensity
along the magnetic field.

There are several published methods for estimating the
average electron energy based on auroral emission line ra-
tios (Rees and Luckey, 1974; Hecht et al., 2006). One of the
methods discussed inHecht et al.(2006) uses the ratio of
the 844.6 to 427.8 nm emissions, which are both prompt, en-
abling accurate estimates to be made on the fast timescales
of the small-scale aurora. The preliminary electron energy
estimates presented here are based on the ratio of 844.6 to
427.8 nm.

3 Observations

An examination of many NEIAL events (∼ 20) that occurred
during the winter of 2011 and 2012 revealed that the mor-
phology of the NEIALs was consistently and predictably tied
to the auroral morphology present. We discuss five example
NEIALs observed along with the representative types of au-
roral structures present. These observations cover the broad
range of aurora/NEIALs that are typically observed at Poker

Ann. Geophys., 32, 1333–1347, 2014 www.ann-geophys.net/32/1333/2014/
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01March11 — 10:05:32 UT and 10:07:23 UT

1

2B

All-sky Narrowfield

NarrowfieldAll-skyFigure 3. Event 1: all-sky image (left) – taken with 557.7 nm filter
– and narrow-field image (right) – taken with a BG3 filter – show-
ing the dynamic structured aurora at the time of the NEIALs in the
PFISR data. The yellow circle near the center of the narrow-field
image represents the location of the PFISR radar beam in the mag-
netic zenith. North is down and east is to the right.

Flat. There are variations of NEIAL characteristics between
NEIALs observed at different times during the same night,
but there are larger and systematic differences observable be-
tween NEIALs observed during separate auroral events. It is
these large-scale systematic differences that we focus on in
this article. This section describes and presents the NEIALs
observed with five different types of auroral structures, sum-
marized in Table3, where each subsection will describe a
different auroral event with differing NEIAL characteristics.

3.1 Event 1: substorm onset with flaming aurora –
1 March 2011

A substorm onset occurred over Poker Flat on 1 March 2011
at approximately 10:05 UT (22:45 MLT), where dynamic,
highly structured aurora was observed in the magnetic zenith.
During this time, strongly enhanced NEIALs were observed
in the PFISR data. Figure1 shows the electron density from
PFISR – derived from scaled returned power – covering a pe-
riod of 6 min around the substorm onset time. These NEIAL
returns extend from∼ 120 km up to∼ 600 km altitude. The
altitude profiles of the NEIAL spectra – for the times labeled
A–F in Fig. 1 – are shown in Fig.2. The spectral shape of
the returns vary significantly between consecutive – 5 s – in-
tegration periods.

Figure3 shows the auroral images from this time, an all-
sky image (left) and a narrow-field image (right). The all-sky
image was taken in 557.7 nm; the narrow-field image was
taken with a Schott BG3 glass filter. The BG3 filter is used
to examine only the prompt emissions; it is a notch filter that
cuts out the region of the spectrum that contains the slow
557.7 and 630.0 nm emissions and lets in the prompt blue
and near-infrared emissions. A transmission curve for the
BG3 filter is reproduced inSemeter et al.(2008). The high
time resolution of the image data reveals flaming aurora, with
apparent motion of structures toward the magnetic zenith.
Flaming aurora is indicative of energy-dispersed electron
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Figure 4. Event 2: top: PFISR electron density profiles, covering
a time period of about 40 min with a thin, structured auroral arc in
zenith. The strong NEIAL returns can be seen in a limited altitude
range, mostly between 200 and 300 km. The times marked 2A–2F
are the times of the NEIAL spectra shown in Fig.5. Bottom: same
time period with intensity scale set so the NEIALs are not oversat-
urated.

precipitation (Dahlgren et al., 2013), with the highest energy
electrons (∼ 2 keV) reaching lower down (∼ 120 km) into
the ionosphere first and then the lower energies (∼ 0.8 keV)
arriving later (∼ 0.2 s) and reaching to higher altitudes
(∼ 150 km). This gives the appearance of upward propaga-
tion of the auroral light, which manifests – in the 2-D images
– as motion towards the magnetic zenith.

The auroral imaging for this event was limited to one all-
sky camera (with 557.7 nm) and one narrow-field camera
(with BG3 filter). For all the following events discussed, the
imager configurations listed in Table2 were in operation.

3.2 Event 2: active E–W arc – 28 September 2011

An active auroral event was observed over Poker Flat on
28 September 2011. This event was composed of a large-
scale E–W-aligned auroral arc that contained significant sub-
structure, including small-scale folds and fast ray motions.
Figure4 shows the PFISR electron density profiles covering
a period of about 40 min, which contained strong NEIAL en-
hancements associated with the auroral activity. The NEIALs
can be seen between 200 and 300 km altitude, and several
representative times are labeled 2A–2F, where the spectra
and auroral structures will be examined. Figure5 shows
the spectra of the NEIALs labeled 2A–2F in Fig.4. This
event shows no distinct asymmetry between the ion-acoustic
peaks; in fact the returned power is distributed fairly evenly

www.ann-geophys.net/32/1333/2014/ Ann. Geophys., 32, 1333–1347, 2014
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Table 3.Summary of the auroral events examined and the distinguishing NEIAL characteristics.

Event Date Type of aurora MLT NEIAL altitude range (km)

1 1 Mar 2011 Substorm onset: dynamic and structured 22:50 120–600
2 28 Sep 2011 East–west, growth-phase arc 18:45 200–300
3 2 Oct 2011 Arc with folds – flickering 21:45 200–250 and 300–400
4 2 Oct 2011 Pulsating aurora boundaries 22:50 150–350
5 22 Jan 2012 Tall rays – polar cap boundary 23:30 100–700
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Figure 5. Event 2: NEIAL spectra from the times labeled 2A–2F in Fig.4. There is little variation in the spectral features – other than
intensity – between the 5-second integration periods during this event. There are no distinct spectral asymmetries and primarily enhanced
power in the whole spectral range between the up- and downshifted ion-acoustic lines.

between the ion-acoustic lines. In addition, the altitude of the
NEIALs is low, extending from 200 to 350 km altitude.

Figure6 shows the all-sky images of the 557.7 nm auroral
emission at the times labeled 2A–2F in Fig.4. These images
are taken using a 300 ms exposure, and they show the over-
all auroral context during the event. The general east–west
alignment of the arc structure is visible, along with the pres-
ence of several thin arcs in the north–south direction. The
NEIALs occurred when the active equatorward edge of the
thin auroral arc structure moved into the magnetic zenith.
The NEIALs with the largest returned power – 2A and 2B
– occurred when the aurora was brighter and more dynamic,
although there were some thin clouds obscuring the view of
the smallest-scale features. Figure7 shows the narrow-field
auroral images of the 427.8 nm emission at the times labeled
2A–2F in Fig.4. These narrow-field images reveal the small-
scale structure with the thin arc structures in the magnetic
zenith, except for 2A and 2B, where thin clouds partially
blocked the view.

1

2A 2B 2C

2D 2E 2F

Figure 6. Event 2: all-sky images – taken on 28 September 2011
with a 557.7 nm filter – showing the dynamic overall structure of
the aurora at the times of the NEIALs in the PFISR data (labeled
2A–2F). In this orientation, north is down and east is to the right.

Ann. Geophys., 32, 1333–1347, 2014 www.ann-geophys.net/32/1333/2014/



R. G. Michell et al.: NEIAL spectra and aurora 1339

1

2A 2B 2C

2D 2E 2F

Figure 7. Event 2: narrow-field images (15◦ FOV) – taken on
28 September 2011 with a 427.8 nm filter – showing the small-scale
structure of the aurora at the times of the NEIALs in the PFISR data
(labeled 2A–2F). The magnetic zenith – the location of the radar
beam (∼ 1◦ beamwidth) – is located near the center of each image.
Same orientation as Fig.6.

3.3 Event 3: active E–W arc with folds –
2 October 2011

The next auroral event examined was observed in the mag-
netic zenith at Poker Flat on 2 October 2011. This event is
similar to Event 2 – described above – in that the active equa-
torward edge of the auroral oval was near the magnetic zenith
and NEIALs were observed when the aurora moved into the
zenith. However, this event contained more structure within
the generally E–W-aligned auroral arc, with large-scale folds
that eventually turn into N–S-aligned structures.

Figure8 shows the PFISR electron density profiles cov-
ering a period of about 10 min, which contained the strong
NEIAL enhancements, labeled 3A–3F. The NEIALs occur in
two distinct altitude ranges, in the F region between 300 and
400 km altitude and between the E and F regions at 200 to
250 km altitude. The spectra of each of these NEIALs (3A–
3F) are shown in Fig.9. The intensity scale is set such that
the structure within the NEIALs is clearly visible, but at this
time the auroral E region was strongly enhanced due to the
electron precipitation, causing the E region to appear satu-
rated in the spectra. This event also shows that there is no
overall spectral asymmetry in the NEIALs, although in some
cases there is at certain altitudes, such as 3B at 250 km alti-
tude. Although the NEIALs appear to cover distinct ranges
in altitude, it should be noted that the pulse width of 450 µs
translates to an altitude range of 67.5 km, which is the alti-
tude range visible for the NEIALs on Fig.8. Therefore all
that can be determined about these NEIALs in terms of al-
titude extent was that they occurred somewhere within the
67.5 km altitude range, and it is possible that they could have
occurred over a very narrow altitude range within that win-
dow.
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Figure 8. Event 3: top: PFISR electron density profiles, covering
a time period of about 10 min with dynamic, highly structured and
flickering aurora in zenith. The strong NEIAL returns can be seen
in two limited altitude ranges, mostly between 200 and 250 km and
between 300 and 400 km. The times marked 3A–3F are the times of
the NEIAL spectra shown in Fig.9. Bottom: same time period with
intensity scale set so the NEIALs are not oversaturated.

Figure 10 shows the all-sky images of the 557.7 nm au-
roral emission at the times labeled 3A–3F in Fig.8. These
images show that the overall arc structure is wider than in
Event 2 and contains more folds and distortions along the
arc. There are also some thin clouds which block some of the
aurora from view, but the overall structure is clearly visible
in the all-sky camera data. Figure11 shows the narrow-field
auroral images of the 427.8 nm emission at these same times,
showing that there are dynamic small scale features present.
The high time resolution of the image data reveals that there
was flickering aurora (Michell et al., 2012) present at these
times in addition to the fast motions of rays and folds along
the arcs.

3.4 Event 4: structured pulsating aurora –
2 October 2011

Later on the night of 2 October 2011 – although still before
magnetic midnight – the aurora had broken up into large-
scale irregularly shaped pulsating aurora. During a short pe-
riod within this pulsating aurora, several distinct NEIAL fea-
tures were observed in the PFISR returns. Figure12 shows
the PFISR electron density profiles covering a period of
about 5 min, which contained the NEIAL enhancements. The
layer of enhanced electron density at∼ 120 km altitude cor-
responds to the increased ionization resulting from the pre-
cipitating electrons causing the pulsating aurora. The first of
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Figure 9.Event 3: NEIAL spectra from the times labeled 3A–3F in Fig.8. There are no distinct spectral asymmetries and primarily enhanced
power in the whole spectral range between the up- and downshifted ion-acoustic lines for both the higher- and lower-altitude ranges. The
apparent saturation in the E region is caused by the strongly enhanced electron density due to the intense auroral precipitation present.

1

3A 3B 3C

3D 3E 3F

Figure 10.Event 3: all-sky images – taken on 2 October 2011 with a
557.7 nm filter – showing the dynamic overall structure of the aurora
at the times of the NEIALs in the PFISR data (labeled 3A–3F).
North is down and east is to the right.

the NEIAL returns occurred just above the E region, around
150 to 200 km altitude, labeled 4A and 4B. The third NEIAL,
labeled 4C, occurred within the F region between 250 and
350 km altitude.

The spectra of the NEIALs labeled 4A–4C in Fig.12
are shown in Fig.13. NEIAL 4A shows a strong enhance-
ment of the downshifted ion-acoustic line, although there is
some enhanced power extending into the zero-Doppler re-
gion. This is consistent with strong Langmuir turbulence as a

1

3A 3B 3C

3D 3E 3F

Figure 11. Event 3: narrow-field images (15◦ FOV) – taken on
2 October 2011 with a 427.8 nm filter – showing the small-scale
structure of the aurora at the times of the NEIALs in the PFISR data
(labeled 3A–3F). The magnetic zenith – the location of the radar
beam (∼ 1◦ beamwidth) – is located near the center of each image.
Same orientation as Fig.10.

possible generation mechanism, since such zero-Doppler en-
hancements have previously been modeled (Guio and Forme,
2006) and observed (Isham et al., 2012) to be caused by
strong Langmuir turbulence. NEIAL 4B shows very strongly
enhanced returns between 150 and 225 km altitude – so
strong that it appears to have saturated the receiver. An ex-
amination of the raw power returns at this time reveal that the
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R. G. Michell et al.: NEIAL spectra and aurora 1341

power is intermittent and at different altitudes within the in-
tegration time and range gate, which is consistent with these
being of geophysical origin and not a range-aliased satel-
lite return. It is not clear what is causing the low-altitude
(100 km) return around+14 kHz, but it is likely caused by a
meteor or some interference not related to the aurora. NEIAL
4C shows returns between 250 and 300 km that appear very
similar to those from Event 2, despite the presence of very
different auroral structures.

Figure 14 shows the all-sky auroral images – 557.7 nm
emission – at the times labeled 4A–4C in Fig.12. There are
a few thin clouds present, but the overall large-scale diffuse
and pulsating auroral structures are clearly visible. Near the
center of the image, there is a boundary between two regions,
and it is on this boundary that the NEIALs occurred. The
narrow-field auroral images for these same times (4A–4C)
are shown in Fig.15 (again, these are taken with a 427.8 nm
narrowband filter). The narrow-field images show less struc-
ture than all the previous examples, but they do show a dis-
tinct edge and dark region in the magnetic zenith at these
times.

3.5 Event 5: tall rays at the polar cap boundary (major
storm time) – 22 January 2012

A CME (coronal mass ejection) impacted Earth’s magneto-
sphere on 22 January 2012, causing a geomagnetic storm.
The auroral oval expanded during this storm such that the
poleward boundary of the oval was over Poker Flat around
magnetic midnight (11:20 UT). Figure16 shows the PFISR
electron density profiles covering a period of about 45 min,
which contained many strong NEIAL enhancements. The
times labeled 5A–5F are the example NEIALs where the
spectra and auroral structures will be examined. Figure17
shows the spectra of these NEIALs (labeled 5A–5F in
Fig. 16). The enhanced power extends up to high altitudes
– greater than 700 km in some cases – and contains signifi-
cant asymmetry between the up- and downshifted ion lines.

The auroral features present during this time contained
curtains of dynamic tall rays, consistent with polar cap
boundary type aurora. The all-sky auroral images (in
557.7 nm) from the times labeled 5A–5F in Fig.16are shown
in Fig. 18. The poleward edge of the auroral oval is in the
magnetic zenith at these times, and there is some degree of
twisting and folding of the poleward-most curtain of tall rays
in all of the examples. Figure19 shows the narrow-field au-
roral images of the 427.8 nm emission at the times labeled
5A–5F in Fig.16. These images show that the tall ray struc-
tures are visible, even in the 427.8 nm emission, indicating
large fluxes of precipitating electrons, including high-energy
(several keV) electrons. The converging appearance of the
rays towards the magnetic zenith results from the large alti-
tude extent.
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Figure 12.Event 4: PFISR electron density profiles, covering a time
period of about 5 min with structured pulsating aurora in zenith. The
strong NEIAL returns can be seen at two times and at different alti-
tude ranges. The times marked 4A–4C are the times of the NEIAL
spectra shown in Fig.13.

4 Discussion

The generation mechanisms for NEIALs remain largely un-
known although there are many different candidate pro-
cesses. Since NEIALs occur with a wide variety of different
power and spectral characteristics, it is likely that there are
many different mechanisms at work under different circum-
stances. One key element in generating the – NEIAL-causing
– instabilities is the electron distribution. The type of aurora
present during NEIAL events can be used to give an indica-
tion of the precipitating electron distribution, which can then
be related to the instabilities causing the NEIALs. This com-
parison of different auroral forms concurrent with different
types of NEIALs indicates that there are several consisten-
cies between the shape of the NEIAL spectra and the type of
auroral features present.

4.1 Aurora–NEIALs comparison

Poker Flat is located near the equatorward edge of the sta-
tistical auroral oval, and thus PFISR can commonly observe
active growth phase auroral arcs and substorm-onset aurora.
During active conditions – storm time – it is possible for the
poleward edge of the auroral oval to extend south enough
to be over Poker Flat, but this occurs less frequently. There-
fore, the most common types of auroral features observed
over Poker Flat – with associated NEIALs in the PFISR data
– are the intense growth phase auroral arcs, such as those
shown in Event 2 and Event 3 (Figs.6 and10). Also in the
PFISR data, NEIALs are observed to occur with substorm-
onset aurora that contain bright features, fast motions and
small scales, such as those shown here in Event 1 (Fig.3)
and those reported inMichell et al. (2009) andMichell and
Samara(2010).

The NEIALs that occurred during Event 2 and Event 3
showed significant similarity in the altitude ranges and spec-
tral characteristics (Figs.5 and9). The NEIALs during these
events both were constrained to low altitudes (between 200

www.ann-geophys.net/32/1333/2014/ Ann. Geophys., 32, 1333–1347, 2014
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Figure 13.Event 4: NEIAL spectra from the times labeled 4A–4C in Fig.12. The lower-altitude NEIAL has a highly asymmetric spectrum,
while the higher-altitude NEIAL has no specific asymmetry and contains power throughout the region between the ion-acoustic peaks.

1

4A 4B 4C

Figure 14.Event 4: all-sky images – taken on 2 October 2011 with a
557.7 nm filter – showing the dynamic overall structure of the aurora
at the times of the NEIALs in the PFISR data (labeled 4A–4C).
North is down and east is to the right.

and 400 km), and they both contained power spread fairly
evenly between the ion lines. These types of NEIALs are the
most commonly observed with PFISR (Michell et al., 2008a,
2009; Michell and Samara, 2010). One thing to note about
the altitude ranges of the NEIALs for Events 2 and 3 is that
the “gap” region in Event 3 – the altitude range between the
NEIALs at the same time – occurs between 250 and 350 km
altitude. In Event 2, the NEIALs extend all the way through
this altitude range, indicating either a difference in the lo-
cal ionospheric conditions at that altitude or different driv-
ing mechanisms. The ionospheric conditions are very similar
between these two events and the auroral structures showed
many large-scale similarities, but there was one significant
difference, specifically the presence of flickering aurora dur-
ing Event 3. Flickering aurora has been observed many times
from Poker Flat (Michell et al., 2012), but this is the first case
where NEIALs have been observed to occur with flickering
aurora.

Event 4 is different from previous NEIAL observations
with PFISR in that the NEIALs occurred inside a broad re-
gion of pulsating aurora and not with active auroral struc-
tures (Fig.14). The spectral shape of NEIALs 4A and 4B
indicates that the downshifted ion line is much more strongly
enhanced than the upshifted ion line (Fig.13). This indicates
enhanced ion-acoustic waves that are traveling upward. The
spectral shape of NEIAL 4C is very similar to the shape of
the NEIALs in Event 2, with power broadly spread between

1

4A 4B 4C

Figure 15. Event 4: narrow-field images (15◦ FOV) – taken on
2 October 2011 with a 427.8 nm filter – showing the small-scale
structure of the aurora at the times of the NEIALs in the PFISR data
(labeled 4A–4C). The magnetic zenith – the location of the radar
beam (∼ 1◦ beamwidth) – is located near the center of each image.
Same orientation as Fig.14.

the ion lines with an altitude of around 300 km. The auro-
ral structures visible in the narrow-field images (Fig.15)
at NEIALs 4A and 4B indicate that there was a dark re-
gion, where the NEIALs occurred. This is consistent with
a downward current region (Michell et al., 2008b), where
large fluxes of thermal electrons would be flowing upward.
The strong enhancement observed in the downshifted shoul-
der is consistent with both the current-driven instability as
well as the beam-driven Langmuir turbulence instability. An
upward-moving electron beam – downward current – would
produce upward-traveling (downshifted) ion-acoustic waves
as well as downshifted Langmuir waves which can then de-
cay into downshifted ion-acoustic waves and upshifted Lang-
muir waves.

The all-sky auroral images (Fig.14) show the distinct dark
region extending into the magnetic zenith for NEIALs 4A
and 4B; however the overall auroral configuration is differ-
ent for NEIAL 4C, where there is a thin, bright arc that is
near zenith. This thin, bright arc is the aurora associated with
NEIAL 4C, which is similar to the NEIALs in Event 2, where
they are associated with a thin, bright, large-scale auroral arc.

The NEIALs presented in Event 5 show “classic” NEIAL
features (Grydeland et al., 2003, 2004; Blixt et al., 2005;
Strømme et al., 2005), namely, asymmetric power enhance-
ments, extending up to high altitudes (Fig.16 and Fig.17).
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Figure 16. Event 5: top: PFISR electron density profiles, covering
a time period of about 45 min with tall auroral rays in the magnetic
zenith. The strong NEIAL returns can be seen to extend up to high
altitudes (> 600 km) in some cases. The times marked 5A–5F are
the times of the NEIAL spectra shown in Fig.17. Bottom: same time
period with intensity scale set so the NEIALs are not oversaturated.

These type of NEIALs are believed to be associated with
large fluxes of low-energy electrons (Collis et al., 1991;
Rietveld et al., 1991; Blixt et al., 2005), which are consis-
tent with the type of auroral features that were present dur-
ing this event. The all-sky auroral images show that the main
auroral emissions were primarily to the south of Poker Flat
(top half of the image), and that the magnetic zenith was at
the poleward edge of the aurora during these times (Fig.18).
The aurora consisted of curtains of active tall rays that ap-
pear to converge toward the magnetic zenith when viewed
in the narrow-field images, indicating a large altitude extent
(Fig. 19).

Electron energy

The average electron energy can be estimated using optical
photometry from the multi-spectral auroral imaging data. Us-
ing one of the auroral emission line ratios discussed inHecht
et al. (2006) – namely the ratio of 427.8 to 844.6 nm – it is
possible to estimate the average energy of the precipitating
electrons. Using this ratio, we have made preliminary esti-
mates of the average electron energy at the times of NEIALs
2 through 5. Table4 shows a summary of the electron en-
ergy estimates for these NEIALs along with their altitudes,
arranged in order of increasing altitude (the altitudes of the
centers of the NEIALs are used). An anticorrelation is seen

Table 4. Summary of the NEIAL altitudes and the corresponding
average electron energy calculated from the auroral photometry.

Avg. e−

energy
Event Date Time (UT) NEIAL alt. (km) (keV)

4a 02 Oct 2011 10:10:30 200 7.9
3a 02 Oct 2011 09:07 225 and 300 7.9
2a 28 Sep 2011 06:07 250 7.2
4b 02 Oct 2011 10:12 300 6.6
2b 28 Sep 2011 06:25 300 5.7
3b 02 Oct 2011 09:12 350 3.9
5 22 Jan 2012 11:00 450 2.0

between the calculated electron energy and the altitude of the
NEIAL, where the lowest-altitude NEIALs correspond to the
highest electron energies and the highest-altitude NEIALs
correspond to the lowest energy electrons. This is consis-
tent with the hypothesis that the high-altitude NEIALs are
caused by large fluxes of low-energy electrons. These data
indicate that there is a correlation between electron energy
and NEIAL altitude and that further work should be done to
quantify this relation with more statistics once the method of
calculating electron energies from the optical photometry is
refined further and calibration is fully worked out. It should
be noted that these electron energy estimates are preliminary
and that there could be systematic errors of up to a factor of 2
in the calculated energies. However the electron energies cal-
culated are consistent with the precipitating electron energies
that are typically measured in situ by electron spectrometers,
for example on the FAST (Fast Auroral Snapshot Explorer)
satellite (Carlson et al., 1998; McFadden et al., 1999) and on
the Reimei satellite (Asamura et al., 2003, 2009), which adds
a level of confidence to these estimates.

4.2 Generation mechanisms

The relationships between the different auroral forms and the
characteristics of the NEIALs reveal consistencies between
the auroral structures and the NEIAL-generating instabilities
that are caused by the precipitating electrons.

The aurora present during Event 1 and Event 5 (Figs.3
and18) showed characteristics indicative of large fluxes of
low-energy electrons, and the NEIALs for these two events
showed similar features, with large asymmetries between the
two shoulders as well as the enhanced returns extending to
high altitudes. Event 1 contained flaming aurora, consistent
with the prior observations ofBlixt et al. (2005), where large
fluxes of energy dispersed electrons deposit their energy at
different altitudes, causing an apparent motion upwards as
the lowest energies deposit their energy last, at the highest
altitudes. The aurora in Event 5 showed tall rays (Fig.19),
which are indicative of localized regions of large fluxes of
electrons with very broad energy spectra, with both high-
and low-energy electrons at the same time. The fluxes of the
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Figure 17.Event 5: NEIAL spectra from the times labeled 5A–5F in Fig.16. The NEIAL spectra are all asymmetric, with the downshifted
shoulder more enhanced than the upshifted shoulder. Note that the intensity scale is not the same for each spectra, for example, NEIAL 5E
is orders of magnitude more intense than the others.

1

5A 5B 5C

5D 5E 5F

Figure 18. Event 5: all-sky images – taken on 22 January 2012
with a 557.7 nm filter – showing the dynamic overall structure of
the aurora at the times of the NEIALs in the PFISR data (labeled
5A–5F). North is down and east is to the right.

lower-energy electrons are indeed fairly large, such that they
can produce visible aurora at high altitudes. Tall auroral rays
are often observed to occur at the poleward edge of the au-
roral oval, as is often observed at the Sondrestrom radar, for
example (Michell and Samara, 2013). These two events sug-
gest that the high-altitude, large-asymmetry NEIALs – such
as those previously observed with the ESR radar (Grydeland
et al., 2003, 2004; Blixt et al., 2005) – are the result of an

1

5A 5B 5C

5D 5E 5F

Figure 19. Event 5: narrow-field images (15◦ FOV) – taken on
22 January 2012 with a 427.8 nm filter – showing the small-scale
structure of the aurora at the times of the NEIALs in the PFISR data
(labeled 5A–5CF). The magnetic zenith – the location of the radar
beam (∼ 1◦ beamwidth) – is located near the center of each image.
Same orientation as Fig.18.

instability driven by significant fluxes of low energy (∼ few
hundred eV) electrons. The electron energy estimates made
here are also consistent with this because the average energy
found was fairly low (2 keV), indicating that there were sig-
nificant electron fluxes below 1 keV.

The only way that the NEIALs observed in Event 1
and Event 5 could result from the electron–ion two-stream
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instability (Foster et al., 1988; Collis et al., 1991; Rietveld
et al., 1991; Sedgemore-Schulthess et al., 1999) is if oppo-
sitely directed narrow (< 100 m) filaments of current occur
within the radar beam. As shown byGrydeland et al.(2004),
the usual scenario is instead that both shoulders are simul-
taneously enhanced within the same volume. Alternate gen-
eration mechanisms – where both shoulders can be simul-
taneously enhanced – include the ion–ion two-stream insta-
bility (Wahlund et al., 1992) and the Langmuir turbulence
theory (Forme, 1999). These two events have no real power
enhancements in the zero-Doppler region, although there are
some noise signals which are artifacts of the FFT process-
ing and do not represent real backscattered power in that fre-
quency range.

The other three events show similarity in that the enhanced
power is spread between the ion-acoustic peaks. Event 2 and
Event 3 are similar, except the altitude ranges are slightly dif-
ferent (Figs.5 and9). These two events (2 and 3) are likely
caused by the same mechanism, and the most likely candi-
date in these cases is the Langmuir turbulence theory, which
is consistent with the recent work byAkbari et al. (2012,
2013) and Isham et al.(2012) and can account for the en-
hancements of power between the ion-acoustic peaks. The
aurora during these times is consistent with Langmuir turbu-
lence in that it was strong and localized, with a large por-
tion of high-energy electrons, capable of penetrating down
into the lower ionosphere (below the F region and into the
E region). The electron energy estimates made for these
NEIALs are consistent with this in that the average energy
was found to be rather high (∼ 6–8 keV). The two distinct al-
titude ranges of NEIALs present in Event 3 (Fig.8) could
be the result of the presence of flickering aurora. In the
flickering auroral event, there are two separate precipitat-
ing electrons populations present, a background one and the
modulated (flickering) one. Therefore the two separate alti-
tude ranges are caused by the two separate electrons popu-
lations, with the higher-energy one – likely the background
population – penetrating to lower altitude, causing instabil-
ities lower down, and the modulating electron population is
slightly lower in energy and does not penetrate as low in al-
titude.

Event 4 (Fig.13) shows some distinct differences as well
as similarities with the other NEIAL events presented, the
main differences being the type of auroral structures present
– large-scale pulsating aurora – and the asymmetric, low-
altitude (150 to 200 km) strong returns in NEIALs 4A and
4B. NEIAL 4C is similar to those in Event 2 and Event 3
in that it contains power throughout the region between the
ion-acoustic peaks and is near the F region peak. It is possi-
ble that NEIALs 4A and 4B, were caused by a current-driven
instability if there was a strong localized downward current
(upward-moving electrons) that caused the strong upward
propagating ion-acoustic waves, leading to the non-thermal
spectra observed. The auroral structures present at this time
show a distinct dark stripe, consistent with downward current

regions (Michell et al., 2008b). The all-sky images at the
time of NEIAL 4C are slightly different and do not show the
same dark stripe but instead show a thin bright stripe near
zenith. This indicates a particular type of electron precipita-
tion, which is most likely driving Langmuir turbulence that
then causes NEIAL 4C.

The structure of the aurora and the characteristics of the
NEIALs can be used to determine the most likely gener-
ation mechanisms for the NEIALs. In some instances it is
more likely that the current-driven instability is causing the
NEIALs, while at other times it is most likely the Langmuir
turbulence, either strong or weak. It is also possible – and
likely – that at times there are multiple generation mecha-
nisms occurring, especially given the dynamic and rapidly
changing nature of the auroral features.

5 Conclusions

Combining auroral imaging with NEIAL observations helps
improve our understanding of the mechanisms responsible
for generating different types of NEIALs. The spectral char-
acteristics of the NEIALs combined with their accompanying
auroral features are consistent with multiple NEIAL genera-
tion mechanisms existing in the ionosphere under different
circumstances.

The most common NEIALs observed in the PFISR data
are the ones at fairly low altitudes – F region or below – that
have power at, and spread between, the ion-acoustic peaks.
These NEIALs are most often associated with active, struc-
tured auroral arcs, such as substorm growth phase and onset
arcs, where the average precipitating electron energy tends to
be higher. This type of NEIAL has also been observed with
the EISCAT radars (Isham et al., 2012; Rietveld et al., 2002),
although less frequently there than at PFISR due to the loca-
tion of the radars in relation to the auroral oval. The second
category of NEIALs described contains those that have been
reported on more frequently with the EISCAT radars. These
NEIALs extend to high altitudes (600 km or more) and of-
ten have large asymmetries in the power enhancements be-
tween the two ion-acoustic shoulders. These NEIALs are as-
sociated with aurora that contains large fluxes of low-energy
electrons, as can happen in poleward boundary intensifica-
tions as well as at substorm onset. The dynamic processes
that occur during substorm onsets can generate both types of
NEIALs, and it is therefore likely that multiple NEIAL gen-
eration mechanisms can occur within substorm-onset aurora.
There are other types of NEIALs observed with PFISR, such
as that in Event 4, that do not fit neatly into either of these two
categories, although NEIALs 4A and 4B are likely caused by
upward fluxes of low-energy electrons.

Preliminary auroral photometry analyses revealed that
there is an anticorrelation between the altitude of the
NEIALs and the energy of the electrons. This is consis-
tent with the hypotheses presented here regarding generation
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mechanisms, namely that the Langmuir turbulence causes
the lower-altitude NEIALs (higher-energy electrons) and that
large fluxes of low-energy electrons cause the high-altitude
NEIALs.

These observations show that there is a correlation be-
tween the auroral structures and the type of NEIALs ob-
served, and that the auroral structures present during NEIAL
events are consistent with the inferred NEIAL generation
mechanisms. In addition, the auroral features can be used
to determine which of the possible generation mechanisms
is the most likely one in each case, including the distinction
between strong (high electron energy) and weak (low elec-
tron energy) Langmuir turbulence. These observations lead
into several future studies to be done. These include quan-
tifying the electron precipitation using emission line ratios
at the times of NEIALs and to do this over a large sample
size of NEIAL–aurora events as well as repeating these high-
resolution auroral observations at the EISCAT radar facilities
to compare with the NEIALs observed there to put the PFISR
work in better context with previous observations.
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