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Abstract. This research focuses on the inversion of geomag-
netic variation field measurement to obtain source currents in
the ionosphere. During a geomagnetic disturbance, the iono-
spheric currents create magnetic field variations that induce
geoelectric fields, which drive geomagnetically induced cur-
rents (GIC) in power systems. These GIC may disturb the
operation of power systems and cause damage to grounded
power transformers. The geoelectric fields at any location of
interest can be determined from the source currents in the
ionosphere through a solution of the forward problem. Line
currents running east–west along given surface position are
postulated to exist at a certain height above the Earth’s sur-
face. This physical arrangement results in the fields on the
ground having the magnetic north and down components,
and the electric east component. Ionospheric currents are
modelled by inverting Fourier integrals (over the wavenum-
ber) of elementary geomagnetic fields using the Levenberg–
Marquardt technique. The output parameters of the inversion
model are the current strength, height and surface position
of the ionospheric current system. A ground conductivity
structure with five layers from Quebec, Canada, based on
the Layered-Earth model is used to obtain the complex skin
depth at a given angular frequency. This paper presents pre-
liminary and inversion results based on these structures and
simulated geomagnetic fields. The results show some inter-
esting features in the frequency domain. Model parameters
obtained through inversion are within 2 % of simulated val-
ues. This technique has applications for modelling the cur-
rents of electrojets at the equator and auroral regions, as well
as currents in the magnetosphere.

Keywords. Geomagnetism and paleomagnetism (geomag-
netic induction) – ionosphere (electric fields and currents;
modeling and forecasting)

1 Introduction

Solar events, such as coronal mass ejections that become
geo-effective, create disturbances within the Earth’s magne-
tosphere giving rise to geomagnetic storms and substorms.
During geomagnetic storms, the compression of the magne-
tosphere by the solar wind and the interaction of the solar
wind with the Earth’s magnetic field enhance the currents
in both the magnetosphere and ionosphere. These currents
cause fluctuations in the electric and magnetic fields on the
ground. The equatorial electrojet is at 100 km in the iono-
sphere. The ionosphere extends up to∼ 1000 km and has cur-
rent systems that lie at a height of∼ 100 km. Rapid changes
in the geomagnetic field generate geoelectric fields that drive
geomagnetically induced currents (GIC) in power lines. The
GIC have the potential of causing transformers to fail, with
subsequent consequences of a power blackout to the general
public, who are increasingly reliant on electrical power for
their everyday operations and living (Albertson et al., 1993;
Shea and Smart, 1996; Wilkinson, 2007; Withbroe, 2001).

Therefore, it is of interest to power utility operators that
a warning system be developed that can predict GIC, which
may occur after an eruptive event occurs on the sun. Because
of the complexities involved in such a solar–terrestrial inter-
action and the tremendous challenges facing such a project,
we consider as a first step the inversion of the geomag-
netic field observations to obtain ionospheric source currents.
From these source currents, we estimate the induced geoelec-
tric fields as measured at any location of interest, particularly
the electric fields responsible for GIC in power grids on the
ground.

The geoelectric fields can be determined from geo-
magnetic data and the surface impedance (Dearholt and
McSpadden, 1973, p. 397), but this calculation is valid only
at the location of the known surface impedance. Measured
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geomagnetic data are readily available for many locations on
Earth (Kerridge, 2001; INTERMAGNET, 2014) where there
are magnetometers, but conductivity structures for the calcu-
lation of surface impedances are scarcer. Therefore, geoelec-
tric data obtained by the direct method are valid locally only
(see Fig. 1).

The inversion method allows us to compute geomagnetic
fields, via Fourier integrals, at any location of interest. For
this to work, a 1-D planar conductivity structure obtained for
one location is assumed to be valid everywhere over the rel-
evant region (see Fig. 1 again). From the conductivity struc-
ture, a surface impedance or skin depth is computed.

The motivation for using the field inversion method de-
scribed in this paper is that the geomagnetic measurement
for calculating the geoelectric field that drives GIC in power
systems is generally not available at the location of interest.
Once the parameters of the current system are determined
by the inversion from geomagnetic data, one can return to
the forward problem Fourier integral and use these parameter
values to calculate the geomagnetic field anywhere (the curve
in Fig. 1). Inversion provides an alternative way in which to
estimate the geomagnetic fields where it is not possible by
other means.

Either the electric field can be obtained through a direct
multiplication of the spectrum of the magnetic field with the
relevant components of the surface impedance at the loca-
tion of interest, or via the Fourier integral, using a reflection
coefficient derived from a model of the ground conductivity.
It can be shown that the electric fields are the same when
the exact expression for the reflection coefficient is used in
the Fourier integrals. But, when the reflection coefficient is
replaced with an exponential approximation to facilitate the
analytic solution of the integrals, the electric fields obtained
are actually different. These differences are addressed in this
paper.

A general theoretical framework for computing the fields
due to an ionospheric electrojet above a layered Earth was
proposed by Hakkinen and Pirjola (1986). To simplify com-
putations, we use the complex image method (CIM), intro-
duced by Wait and Spies (1969) and used by Thomson and
Weaver (1975) to replace a conducting planar model for lay-
ered Earth by an image current placed at a depth equal to the
height of the current system above the Earth plus twice the
complex-valued skin depth associated with electromagnetic
waves penetrating the Earth. Pirjola and Viljanen (1998) took
this approach and applied it to a finite auroral electrojet with
field-aligned currents carrying away excess charges to or
from the magnetosphere in the Northern Hemisphere.

This paper takes the simulated magnetic data from Boteler
et al. (2000) and use inversion techniques in the complex im-
age method to obtain the current strength (and position) of
the modelled auroral electrojet. For this purpose we take this
ionospheric current to be a line current above the Earth. The
planar model in the Cartesian coordinate system with a line
current above a layered Earth is a local approximation of a
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Figure 1. A conceptual diagram to illustrate the following: (1) the
surface impedance for a layered medium independent of positionx,
(2) the electric fieldEy can be determined from the direct relation
Ey(xi ,ω) = −Z(ω)Hx(xi ,ω) (shown as stars) based on the mea-
sured magnetic field (shown as dots), (3) the electric field and the
magnetic field (shown as solid lines) can be determined from the
Fourier integrals of the currents obtained from the inversion of the
measured magnetic field, (4) the direct and indirect methods give
approximately the same values for the electric field.

ring current around the Earth. No field-aligned currents are
considered here.

2 Theory

We introduce an inversion approach on simulated magnetic
data to obtain ionospheric current system characteristics. The
application of the CIM allows one to approximate the re-
flection coefficient to an exponential. It is dependent on the
skin depth, and thus the surface impedance. The surface
impedance can be computed for one fixed frequency by using
the Quebec conductivity structure in Canada (see Hakkinen
and Pirjola, 1986), which is based on the general theory for
computing the geomagnetic and geoelectric fields due to an
electrojet in the magnetosphere above a layered Earth. Ap-
pendix A contains details of the relevant derivations of the
theory.

We restate the expressions of Eq. (A9) here:[
Bx,Bz

]T
(x,ω) =

Iµ

2π

( [
h + 2p,x

]T
(h + 2p)2

+ (x − xo)
2

+
[h,−x]T

h2 + (x − xo)
2

)
, (1)

wherex is the latitude andω is the frequency. The parameters
areI the ionospheric current strength,h the height,xo the ref-
erence latitude. The constant of free-space permeability isµ.
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The functionp(ω) is the complex skin depth that depends on
the conductivity structure. The transpose of a vector is indi-
cated by the symbolT .

The Fourier integral expression of ground magnetic field
components (Eq. 1) is the model function in the inversion
problem that obtains the output parameters (I , h, xo) of the
model for a line current system above the Earth. These pa-
rameters, once found, are substituted into the ground geo-
electric field expression for estimation:

Ey (x,ω) =
iω

2

Iµ

2π
ln

(
h2

+ (x − xo)
2

(h + 2p)2
+ (x − xo)

2

)
. (2)

3 Methodology

3.1 Forward procedure

A model comprises entities and relations defined by variables
and parameters. Entities include the currents, the fields and
the Earth. The relations between these entities in the for-
ward problem are Eqs. (1) and (2). The input variables to
these equations are the surface distancex and frequencyω.
Output variables are the electric and magnetic fields. The
skin depthp is dependent on frequencyω and two sets of
parameters: conductivitiesσn plus half-space conductivity
σN+1, and thicknesseshn for leveln = 1, . . .,N of a layered
structure of the Earth. The other parameters are the current
strengthI and heighth. The equations have been altered to
include another parameter: the positionxo of the current sys-
tem. Then,x is replaced byx − xo, here. Therefore, the pa-
rameterxo shifts the fields along the surface in either direc-
tion.

Before any inversion can be performed, reference mag-
netic data must be obtained against which the inversion can
be tested. The test data were obtained by calculating Eq. (1)
to replicate the physical set-up of Boteler et al. (2000). In this
reference, the physical set-up was a Cauchy distributed cur-
rent system 100 km above the Earth with a spread of 200 km.
Thus, the line current system for this study should be 300 km
high to produce the same results. These data have a sur-
face range from−1000 to+1000 km with a grid spacing
of 50 km. They can be regarded as a string of magnetome-
ter stations at positionsxi along a meridian. Take note that
the modelled curves are symmetric aroundxo = 0 km forBx

andEy , and antisymmetric forBz. The current strength was
assumed to be 103 kA.

For a Quebec conductivity structure and fluctuation pe-
riod of τ = 5 min, skin depthp(τ ; [hn,σn]) and impedance
Z(τ ; [hn,σn]) estimates were obtained and passed along to
the field Eq. (1). Here the skin depth and impedance de-
pend on the following variables:τ is the fluctuation period
and [hn,σn] is the set of conductivitiesσn plus half-space
conductivityσN+1, and thicknesseshn from the conductivity
structure.

The results of the forward computations are given in
Sect. 4.

3.2 Inversion fundamentals

Usually we have a data setd and a model design setm
related to each other by an operationF through the rela-
tion d = F(m). This defines the forward problem. We only
have available the observationsd. The process has to be in-
verted form = F−1 (d) = G(d), and that requires optimi-
sation techniques and an objective functionG(d). This de-
fines the inverse problem. For a more comprehensive descrip-
tion of the theory, consult Chave and Jones (2012). See also
Taranatola (2005).

The linear inverse problems take the formd = Fm or
m = Gd in which caseF andG are matrices andm andd are
column vectors. These matrices are constant with respect to
m andd. However, the optimisation is in general of a nonlin-
ear nature. Some approaches take advantage of linear meth-
ods by considering a linearised form of the inverse problem.
This is accomplished by expandingF(m) in a Taylor series
around a reference modelm∗:

F(m) = F(m∗) + Jm∗
(m − m∗) + o(‖m − m∗‖), (3)

where Jm∗
is a Jacobian matrix with

[
Jm∗

]
ij

=

∂Fi (m)/∂mj

∣∣
m=m∗

. The ‖·‖ is the norm of a vector
ando is the Landau operator from asymptotic theory on the
norm of the model differencem − m∗. A linearised inverse
problemF̄ is formed when only the first two terms in Eq. (3)
are retained and the higher-order terms are discarded.F̄ is
then an affine transformation: a linear transformation plus a
constant.

3.2.1 Errors and standard deviations

Adding an error vectorε to the data gives̃d = F(m)+ε. This
alters the inversion relation to include errors in the model:
m̃ = G

(
d̃
)
. The notion of well-posed problems (forward

and inverse) was established by Hadamard (1902). The con-
ditions for well-posed are a solution to a problem must (1)
exist, (2) be unique, and (3) be stable. Failure of any one of
these conditions results in an ill-posed problem. Thus, we
have a forward problem̃d = F

(
m̃
)
. TheF maps a subset of

vectors in model space (the domain ofF) to a subset of vec-
tors in the data space (the range ofF). The existence of̃m
means that̃d must be in the range ofF. The uniqueness of
m̃ follows whenF has a one-to-one transformation, mapping
different vectors in model space to different vectors in data

space. Then the solution is given bỹm = F−1
(
d̃
)
, where

F−1 is defined such that its domain is in the range ofF. The
stability ofm̃ pertains to the effect of the errorε onm̃. When
error-free (ε = 0), thenm̃ = F−1 (F(m)) = m; that is, the so-
lution is not only unique, it is correct. In general, however,

δm = m̃ − m = F−1 (F(m) + ε) − F−1 (F(m)) . (4)
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Stability requires that the solution error be bounded when
the data error is bounded as well. Thus,m̃ is stable when a
positive functionε(µ) exists, such that‖δm‖ < µ whenever
‖ε‖ < ε(µ). This is a definition for the continuity transfor-
mation:m̃ is stable whenF−1 is continuous.

It is possible to calculate variances and standard devia-
tions of the output parameters in the model. The variances
and deviations are obtained from a covariance matrix for
parameters. We start with the error vector of residualsε =

[r1, r2, . . ., rN ]. The residualsri are computed by taking the
difference between the data and the forward problem func-
tion, whereN is the number of data. A Jacobian matrixJ
is formed by partial differentiating of the objective func-
tion with respect to each of its parameters for a set of data
pointsxi . Then the deviation of the fittedm from the actual
m̃ parameter vector position for the minimum of the objec-
tive function is

µ = m − m̃ = J−1ε + o(‖ε‖). (5)

Neglecting higher power terms of‖ε‖, we multiply µ with
its transpose:

µµT
=

[
J−1ε

][
J−1ε

]T
=

[
J−1

]
εεT

[
J−1

]T
. (6)

The sum-of-squared residuals (SSR) are obtained from the
corresponding multiplication ofε with its transpose:εεT

=∑N
i r2

i = NsSSR. Here the SSR variation issSSR. Substitut-
ing this into Eq. (6) and dividing byN , the parameter covari-
ance matrix6 is formed:

6 =

[
J−1

](∑N

i
r2
i /N

)[
J−1

]T
= sSSR

[
JT J

]−1
. (7)

The variance for the parameters can then be obtained from
the diagonal elements of6. The square roots of the diagonal
elements are the parameter standard deviations.

3.2.2 An optimisation problem

An optimisation in a simple case is a minimisation or max-
imisation of a function describing some system character-
istic (say a physical property) dependent onm. In an ad-
vanced case the objective functionf(d,m) might then be
subject to equalityfη (d,m) = 0[η = 1, . . .,N ] and inequal-
ity fµ (d,m) ≤ 0[µ = 1, . . .,M] constraints and/or parameter
boundsmL andmH . A general problem description may be
stated as follows:

f(d,m), subject tomL ≤ m ≤ mH , (8)

fη (d,m) = 0 [η = 1, . . .,N ],

fµ (d,m) ≤ 0 [µ = 1, . . .,M] .

This is a minimisation problem. Most optimisation tech-
niques are designed to be minimisation techniques. Maximis-
ing the objective function instead requires that function to be

negated and the negative function be then minimised again,
e.g.f(d,m) = [−f(d,m)]. The inequality constraints may be
negated as well, that isfµ (d,m) ≥ 0 [µ = 1, . . .,M].

An efficient and accurate solution to this problem depends
not only on the size of the problem in terms of the num-
ber of constraints and model design parameters, but also on
the characteristics of the objective function and constraints.
When bothf(d,m) and fη,µ (d,m) are linear functions of
the model vector, the problem is known as a Linear Optimi-
sation (LO) problem. Quadratic Optimisation (QO) concerns
the optimisation of a quadratic objective function with lin-
ear constraints. For both types of problems, reliable solution
procedures are readily available, such as the decomposition
methods. More difficult to solve are Nonlinear Optimisation
(NO) problems, in whichf(d,m) andfη,µ (d,m) can be non-
linear functions of the model vector. A solution of the NO
problem generally requires an iterative technique to establish
a search direction. This is usually achieved by an approxi-
mate solution of an LO, a QO or unconstrained sub-problem.

3.2.3 Least-squares problems

When the optimisation problem is a least-squares prob-
lem, the objective functionf(d,m) assumes the form of a
sum-of-squares function of residuals. That is for datad =

(d1,d2, . . .,dN ) and modelm = (m1,m2, . . .,mM):

f (d,m) =

∑N

i=1
r2
i =

∑N

i=1
(Fi (m) − di)

2 . (9)

The same constraints apply andfη,µ (m) are arbitrary func-
tions.

Linear least squares will not be used in this study, so de-
composition techniques does not apply. One has to rely on
iterative optimisation algorithms. Many iterative techniques
can be applied on nonlinear least-squares inversion prob-
lems. These require much computational work, representing
the different methods in which a nonlinear model starts at an
initial guess positionms, and is brought closer to the position
mm of a minimum of the objective function by an appropri-
ately determined search vectors at each iteration. Thems
can be arbitrarily chosen by the user, but it should be in the
neighbourhood of a localmo to ensure convergence of that
minimum. Otherwise, the technique converges to a wrong
minimum or does not converge at all. When convergence is
too slow, the technique stops after a maximum number of
iterations has been reached and then outputs a warning.

3.2.4 Levenberg–Marquardt algorithm

The Levenberg–Marquardt (LM) algorithm is a restricted-
step method, in only theL2 norm for least-square nonlin-
ear problems that locates a minimum of a function expressed
as the sum of squares of nonlinear functions. According
to the abstract of Lourakis (2005) “[It] can be thought of
as a combination of [the] steepest-descent and the Gauss-
Newton method[s]”. When the current solution is far from
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the correct one, the steepest-descent behaviour dominates:
slow but guaranteed to converge. When close to the correct
solution, the Gauss–Newton behaviour takes over.

We map an output parameter vectorm ∈ Rm to a measure-
ment vectord ∈ Rn with an assumed function̂d = F(m). An
initial parameter estimatem0 and corresponding measure-
mentx is provided. It is desired to find a vectormmin that
best satisfies the functional relationF, i.e. that minimises the
squared distanceεT ε, with ε = d − d̂ = δd. The basis of LM
is a linear approximation toF in the neighbourhood ofm.
The symbol|| · || is a 2-norm. For a small||δm|| a Taylor
series expansion leads to the approximation

F(m + δm) ≈ F(m) + Jδm, (10)

whereJ is the Jacobian matrix ofF(m). Like all nonlinear
optimisation methods, LM is iterative – starting fromp0 it
produces a series of vectorsm1, m2, . . . that converge to the
local minimisermmin for F. At each step, it is required to find
the model changeδm that minimises

||d − F(m + δm)|| ≈ ||d − F(m) − Jδm (11)

|| = ||ε − Jδm||.

The desiredδm is therefore a solution to a linear least-square
problem: the minimum is obtained whenJδm − ε is orthog-
onal to the column space ofJ. Thus,JT (Jδm − ε) = 0. This
yieldsδm as a solution to the so-called normal equation:

JT Jδm = JT ε. (12)

The matrixJT J on the left-hand side of Eq. (12) is an ap-
proximate Hessian. The LM actually solves a variation of
Eq. (12), known as the augmented normal equations:

Nδm = JT ε, (13)

whereN = JT J + αdiag(JT J). The strategy of adjusting di-
agonal elements ofN is called damping and theα is referred
to as the trust-region damping term.

If the updated parameter term leads to a reduction in the
error ε, the update is accepted and the process repeats with
a decreased value ofα. Otherwiseα is increased, the aug-
mented normal equation is solved again, and the process it-
erates until a value ofδm is found that decreases error. The
process of repeatedly solving Eq. (13) for different values
of the damping term until an acceptable parameter vector up-
date is found corresponds to an iteration of the LM algorithm.

If the damping term is set to a larger value, the matrix
N is nearly diagonal and the LM update stepδm is near
the steepest-descent direction. The magnitude ofδm is re-
duced contributing to its slowness in this behaviour. Damp-
ing also handles situations where the Jacobian is rank de-
ficient andJT J is singular. The LM then defensively nav-
igates a region of the parameter space where the model is
nonlinear. If damping is small, the LM step approximates
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Figure 2. A sketch of the forward (left) and inverse (right) prob-
lem. The residual is the difference between modelled and measured
magnetic field:ri = di − G(xi;m) for the ith data pointdi at sur-
face positionxi . Sum of squared residuals over surface position is
S = 6ir

2
i

for a least-squares inversion.G is the objective function
Eq. (1).

the exact quadratic step appropriate for a linear problem in
a Gauss–Newton way. LM is adaptive because it controls its
own damping. It raises damping if a step fails to reduce error.
Otherwise, damping is reduced. In this way, the LM is capa-
ble of alternating between a slow descent approach when far
from the minimum and a fast convergence when in the neigh-
bourhood of the minimum.

3.2.5 The computer software

The inversion set-up used in this study is an optimisa-
tion curve-fitting tool in the Matlab programming language
(MathWorks Inc., 2012) and the inversion problem is sum-
marised in Table 1 and Fig. 2.

The Levenberg–Marquardt algorithm in Matlab terminates
when at least one of the following conditions (exitflag value)
is met:

4 Magnitude of search direction is smaller than the speci-
fied tolerance.

3 Change in the residualε was less than the specified tol-
erance.

2 Change inm was less than the specified tolerance.

1 Function converged to a solutionm.

0 Number of iterations exceeded option “MaxIter”, or
number of function evaluations exceeded option “Max-
FunEvals”.

−1 Output function terminated the algorithm.

−2 Problem is infeasible: the bounds are inconsistent.

−4 Optimisation could not make further progress.
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3.3 Inversion procedure

One needs a space domain over which the inversion must
run. That is provided by the surface positionx, with a grid of
data pointsd i =

[
dBx ,dBz

]T
(xi), 50 km apart from−1000 to

+1000 km, wherexi is theith position of the datumd i along
the meridian. The frequencyω can also be a domain over
which a different inversion problem could run. However, for
purposes of this paper the period of the frequency is fixed to
τ = 2π/ω = 5 min.

An objective function is the sum-of-squared residuals:

f (d,m) =

∑
i

[Fi (m) − d i ]
2 (14)

=

∑
i

{[
Bx

Bz

]
(xi;m) −

[
dBx

dBz

]
(xi)

}2

.

The model function is the ground geomagnetic field com-
ponent expressions of Eq. (1). The components are complex
valued and the code of the curve-fitting toolkit cannot oper-
ate on complex values. Therefore, the model function should
be expanded from the usual vector form

[
Bx,Bz

]
to a matrix[

ReBx,ReBz; ImBx, ImBz

]
instead. Here commas separate

columns and semi-colons separate rows. The geoelectric field
on the ground, Eq. (2), remains in the forward problem. Once
the set of output parameters are found by inversion, they can
be substituted into Eq. (2) to estimate the geoelectric field.

Using the LM technique the objective function (sum-of-
squared residuals) is minimised to determine the output pa-
rameters of the model. In the LM, there are no equality or
inequality restrictions, but bounds can be set for the parame-
ters.

The aim of the inversion is to optimisef (d,m) to an in-
put data setd of magnetic values reproduced here in the for-
ward problem. Outputs are the parameter setm from any el-
ements in the current system set[I,h,x0] and the layered
Earth set[hn,σn] plus σN+1. In a full inversion, all the pa-
rameters are adjusted simultaneously; otherwise, the inver-
sion is partial with one or more parameters fixed and at least
one parameter adjusted. For instance, adjusting only the cur-
rent, when the other parameters do not take part, is a partial
inversion. On the other hand, a full inversion adjusts all the
parameters of both sets combined. Depending on the aims
and scope of any geophysical research project that involves
inversion theory, any combination of any number of param-
eters from any set can be used in the optimisation (such as
m = [I,hn,σm]; mn = 1,2, . . .N). In this study, however, we
will concern ourselves only with adjusting the current system
set of parameters and fix the layered Earth set to the values
of Quebec’s structure. Thus,m = [m1,m2,m3] = [I,h,x0].

From the placement of the current strengthI in the mag-
netic field equations (Eq. 1), it is clear that the current
strength is a linear model parameter, leading to a linear
least-square inversion problem when only this parameter is
adjusted. The current is unbounded and can even be zero

Table 1.Summary of the inversion set-up.

Heading Description

The data set: Magnetic field measurements.
The model parameters: h = Height,x0 = Surface position,

I = Current.
The objective function: The real and imaginary parts of

magnetic field componentsBxBz of
Eq. (1) at a given frequencyω.

The technique: Levenberg–Marquardt.
Derivatives: Automatically determined

(Forward finite-difference).
Constraints: None.
The performance outputs: Iterations performed, Function counts

and values, Sum-of-squares residual
norm, Optimality, Any messages, er-
rors or warnings.

Table 2. Ground conductivity structure parameters for Quebec,
Canada, [53◦45′ N, 71◦59′ W] (adapted from Boteler et al., 2000).

Layer Thickness (km) Conductivity (mS m−1)

Layer 1 15 0.05
Layer 2 10 5
Layer 3 125 1
Layer 4 200 10
Layer 5 ∞ 333

or negative. Placement of the heighth and surface posi-
tion x0 in those field expressions turns the inversion prob-
lem into a nonlinear least-square fit. The surface position is
also unbounded in both the negative and positive directions.
The height can have no negative values however, hence the
lower bound of 0 km (i.e. the surface). The skin depth and
impedance are not output parameters to the inversion, as they
are dependent on output parameters from the structure set.
Since the structure set is fixed, these two surface quantities
will be fixed when the period ofτ = 5 min is fixed.

Optimisation results are shown in Sect. 5.

4 Preliminary work

The 1-D approximation of the ground conductivity struc-
ture of Quebec, Canada, based on magneto-telluric measure-
ments, is summarised in Table 2. Quebec appears to have a
resistive structure. This can be used to calculate the material
properties (skin depth and impedance) at the surface. This
structure determines how the magnetic and electric fields be-
have.

The skin depth value at periodτ = 5 min is 135.122–
80.950i km (or in terms of complex amplitude and
phase, 157.52 km at−30.93◦) and the impedance value
is 2.131+ 3.556i m� (or 4.15 m� at 59.07◦). Here the
impedance is 90◦ ahead of the skin depth.
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Table 3. Extreme values of the magnetic and electric field components at periodτ = 5 min obtained by using the ground conductivity
structure of Quebec.

Bx (nT) Bz (nT) Ey (V km−1)

Complex parts ∼ (1000+ 90i) ∼ (−220+ 60i) ∼ (−1.2− 3.0i)

Amplitude and phase ∼ (1004.04 at 5.14◦) ∼ (228.04 at 164.74◦) ∼ (3.23 at 248.20◦)

Geomagnetic and geoelectric fields

Once the impedance and skin depth were evaluated at the
given period, one works out the respective electric and mag-
netic fields (still in the forward problem, and shown in Fig. 3)
of a line current with strength 1000 kA, positioned atxo =

0 km and a height of 300 km above the surface of the Earth.
The extreme values obtained by reading off from the plots of
Fig. 3 are listed in Table 3.

Thus, magnetic componentBx oscillates almost in phase
with fluctuations in the current, while componentBz is al-
most out of phase with the current (between 29.74 and 8.75◦

short of 180◦). The electric componentEy is more than
90◦ behind the current (between 51.84 and 78.69◦ ahead of
180◦).

Figure 3 gives a general idea of how the fields behave in
the surface position space. These can be used in an inverse
problem, for example to narrow down the region of interest
and provide reasonable starting points for the search of the
optimal point in parameter space.

5 Inversion results

Using the data reproduced in Fig. 3, an inversion was per-
formed as a test to determine the parameters for the cur-
rent system. This was done to make sure the inversion works
properly and to check that the output parameters settle close
to the expected values. The inversion worked no matter how
far the parameters were initialised from their expected val-
ues (as given in the caption of Fig. 3). The results of a full
inversion are given in Fig. 4.

When all the parameters of a model are estimated in the in-
version, that inversion is called a full inversion. When some
parameters are fixed, that inversion is called a partial inver-
sion. For partial inversions with either or both distance pa-
rameters fixed, the distance parameters have the constant val-
ues given in the caption of Fig. 3. The parameter of the cur-
rent was never fixed in all inversion cases. The fitted param-
eters were initialised to the values given in the caption of
Fig. 4.

Table 4 shows the final parameter values after the inver-
sion in the three cases where the current and one or both dis-
tance parameters were varied. The full inversion is “Case 1”,
while the partial inversions are “Case 2” and “Case 3” re-
spectively (with only one fixed parameter). All parameters
are within 2 % below their values given in the caption of
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Figure 3.Simulated magnetic (Bx ,Bz) and electric (Ey ) field com-
ponent plots against surface positionx in the forward problem
(parameters:h = 300 km,xo = 0 km, I = 103 kA) for the Quebec
structure and periodτ = 5 min. Each complex part is plotted sep-
arately. All plots are symmetric (Bx ,Ey ) or anti-symmetric (Bz)
aroundx = 0 km.

Fig. 3. Rerunning the inversion with both distance parame-
ters fixed, thus varying only the current, produces the current
strength atI = 980±2.405 kA (or1I/I = 0.245 %). This is
not shown in Table 4; but it may be labelled as “Case 4”.

The residuals are not randomly distributed, as could be ex-
pected from a Gaussian distribution of errors. The inversion
is nevertheless a close to optimal fit of the model to the data.
Inversion output parameter standard deviations, denoted by
1m in Table 4, are derived in Sect. 3. For further information
we refer to Chave and Jones (2012). The standard deviations
are increasing when inverting Case 1 through Case 4 in that
order. Table 4 shows how they increase. A higher deviation
means the parameter is more unstable. The fewer the num-
ber of current system parameters involved in the inversion, it
seems the more unstable they become.
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Table 4. Deviations1m from the nominal valuesm of the inverted parameters in the form1m/m, from the inputs of the published data.
The notation ofm ∈ [I,h,xo] in each case is the parameter of interest.

Full inversion Current and height Current and latitude
(Case 1) (Case 2) (Case 3)

CurrentI [kA] 2 .016/990.000 2.083/990.000 2.349/998.000
Heighth [km] 0.977/295.000 1.010/295.000 Fixed.
Surfacexo [km] 0.972/1.620 Fixed. 1.144/1.590
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Figure 4. Fitted magnetic fieldsBx ,Bz from inversion for the Que-
bec ground conductivity structure at a period ofτ = 5 min. Ini-
tial values of the parameters were as follows: current strengthI =

5× 104 kA, height h = 6000 km, surface positionxo = 1000 km.
Target parameter values were as follows:I = 103 kA, h = 300 km
andxo = 0 km. A positive value ofxo means a position north of the
equator. All fitted parameters came close to their targeted values.
The legends are defined as follows: “Data” is simulated magnetic
field observations, “Init” is the initial estimate of the magnetic field
before the inversion, “Final” is the final estimate of the magnetic
field obtained through the inversion.
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Figure 5. Estimated electric fieldEy from inversion of the simu-
lated magnetic field data shown in Fig. 4 using the Quebec ground
conductivity structure at a period ofτ = 5 min. Initial values of the
parameters were as follows: current strengthI = 5×104 kA, height
h = 6000 km, surface positionxo = 1000 km. Target parameter val-
ues were as follows:I = 103 kA, h = 300 km andxo = 0 km. A
positive value ofxo means a position north of the equator. All fitted
parameters came close to their target values. The legends are de-
fined as follows: “Data” is electric field simulations from simulated
magnetic field observations viaEy(xi ,ω) = −Z(ω)Hx(xi ,ω) (see
Fig. 1), “Init” is the initial estimate of the electric field before the in-
version (using parameter initial values), “Final” is the final estimate
of the electric field obtained after the inversion (using parameter
final values obtained by the inversion).

6 Conclusions

This paper demonstrates the use of inversion techniques, us-
ing the complex image method to determine the parameters
(current strength and/or two positions) of the line current by
fitting the ionospheric currents to magnetic data calculated
from Eq. (1). For this purpose the ionospheric current was
taken as a line current above the Earth. No field-aligned cur-
rents were considered.

The current is the most important of the three parameters
involved and always varies in each inversion case. Case 3
shows the best current value (0.2 % error) against a target
of 1000 kA. Cases 1 and 2 are intermediate; the current is

Ann. Geophys., 32, 1263–1275, 2014 www.ann-geophys.net/32/1263/2014/



J. S. de Villiers and P. J. Cilliers: Applying inversion techniques to derive source currents 1271

1 % below target. Case 4 is the worst case: the current is 2 %
below target.

The value of the estimated current height decreases by
35 km when the surface position is fixed (in both Cases 1
and 2) and gets closer to a target value of 300 km. The value
of the estimated surface position moves south to within 2 km
of the target at the equator, when the height is fixed, but not
crossing the equator (in Cases 1 and 3 respectively).

After the inversion from magnetic data, the electric field
were inferred as shown in Fig. 5. The estimated electric field
can then be used to determine the GIC in power networks.
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Appendix A

A1 Magnetotelluric basics

We start with Faraday’s law of induction, which describes the
relationship between the magnetic and electric field:

∇ ×E = −
∂B

∂t
. (A1)

Variations in the horizontal magnetic field componentsBx

andBy induce a geoelectric field which then drives an elec-
tric current in the Earth according to Ohm’s lawJ = σE. The
geoelectric field at the Earth’s surface can be modelled using
the plane wave model (Viljanen and Pirjola, 1989; Pirjola,
2002).

A2 Homogeneous Earth model

As a first approximation, we assume the Earth is a uni-
form half-space of homogeneous conductivity and assume
that there is a plane wave field that propagates vertically
downwards. Using a Cartesian coordinate system where the
xy plane corresponds to the Earth’s surface, then at a single
frequencyω the fields of a plane wave can be expressed as

E (x, t) = Eoe
i(ωt−kz) or B (x, t) = Boe

i(ωt−kz), (A2)

whereEo = (ExEyEz) andBo = (BxByBz).
For the given frequencyω, the propagation constantk is

given byk = −iκ, whereκ = ω
√

εoµo. For a lossy medium
the skin depth is complex. For a good conductor and low
frequencies the quasi-static approximation (ωεo/σ � 1) can
be applied:

1

p
=
√

iωµoσ
√

1+ iωεo/σ ≈
√

iωµoσ =
1+ i

δ
, (A3)

whereµo andεo are the permeability and permittivity con-
stants of free space andσ the uniform conductivity. Here use
was made of a complex identity

√
i = (1+ i)/

√
2.

In a homogeneous conducting medium with uniform con-
ductivity, the plane wave amplitude decays with depth into
the medium. The depth at which the amplitude has decayed
to e−1 times the amplitude at the surface is the skin depth
δ =

√
2/ωµoσ . And the complex skin depth isp.

It can be shown thatκδ =
√

2ωεo/σ . The approximation
of the reflection coefficient by an exponential function is
based on the assumptionκδ � 1. This assumption is justi-
fied in the context of GIC modelling since the spectrum of
the geomagnetic field is typically in the range 1 to 10 mHz.
For a homogeneous ground conductivity ofσ = 1 mS m−1,
which is typical for the locations of interest, the values ofδκ

are in the range 10−6 to 10−5.
With Eq. (A2) substituted into Eq. (A1) it follows that

the ratios between the orthogonal electric and magnetic field
components define the surface impedanceZ(ω). The ratio
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Skin depth (p) x
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D
e

p
th

 (
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Figure A1. Plane-Earth model of the current image method for a 1-
D representation of a conductivity structure. Labels define the con-
cepts of the method.

between the electric field and the spectral component atω of
the time derivative of the magnetic field,∂B

∂t
, which will be

denoted byḂ (referred to as B-dot) defines the complex skin
depthp (Deri et al., 1981). Thus,

Ex

By

= −
Ey

Bx

=
Z(ω)

µo

=
1

µo

√
µoω

iσ
and (A4)

Ex

Ḃy

= −
Ey

Ḃx

=
Z(ω)

iωµo

=
1

i
√

iµoωσ
= −ip.

A3 Elementary fields

From Maxwell’s equations in the plane-Earth model
(Fig. A1) and the quasi-static approximation, a diffusion
equation is derived and an electric field elementary solu-
tion is found (Hermance and Peltier, 1970) – i.e.∇

2Ey =

iωσµoEy , with Ey (x,z;ω,ν) = e±γ z cosνx where γ 2
=

ν2
+ iωσµo in Cartesian coordinates.
There are however both incidente−γ z and reflectede+γ z

waves; the solution is symmetrical inx aroundx = 0, and
above the Earth’s surface (z > 0)γ = ν becauseσ = 0 there.
Thus, the electric field is given by

Ey (x,z;ω,ν) = C
(
e−νz

− Reνz
)
cosνx, (A5a)

whereR(ω) is the reflection coefficient andC is an arbitrary
constant.

The magnetic field components are computed by tak-
ing the curl of the diffusion equation and using Maxwell’s
equations. It then follows that the only nonzero components
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are

Hx (x,z;ω,ν) = −C
ν

iωµ

(
e−νz

+ Reνz
)
cosνx (A5b)

Hz (x,z;ω,ν) = C
ν

iωµ

(
e−νz

− Reνz
)
sinνx. (A5c)

A4 Layered-Earth model

We next consider a multi-layered model of the Earth. The
appendix of Wait (1980) described a general approach to de-
termineZ(ω) from the 1-D multilayer ground conductivity
structure of a given location. We assumeN planar layers
in the ground below the Earth’s surface. Each layer(n =

N,. . .,1) has a finite thicknesshn and a uniform conductiv-
ity σn. Correspondingly, uniform elementary impedances can
be obtained from the conductivity for each layer. We define
a modified wave number for each layerκn. Equation (A3)
still applies, but theµo, εo andσ are replaced byµn, εn and
σn respectively for each layer. The intrinsic layer impedance
is defined byKn = iωµn/κn and related to the layer reflec-
tion by Rn =

Kn−Zn

Kn+Zn
. For a good conductor in quasi-static

approximation (ωεn/σn � 1), we haveκn =
√

iωµnσn and
Kn =

√
iωµn/σn.

The (N + 1)th layer is called the remaining half-space in
plane-Earth geometry and is assumed to have infinite thick-
ness, uniform conductivityσN+1 and layer impedanceKN+1.
These layer impedances are independent of each other. To re-
late them, a second set of impedancesZn at the boundaries
are defined which are dependent on the layer thicknesses and
layer impedances of the layers below and up to that bound-
ary. For the lowest boundary, separating the half-space from
the next layer, the boundary impedance isZN+1 = KN+1.
Thus, a recursion relation is set up, starting at the bottom and
working all the way up to the top (that is forn = N,. . .,1):

Zn = Kn

Zn+1 − Kn tanhνnhn

Kn − Zn+1 tanhνnhn

. (A6)

Then the surface impedance is the boundary impedance of
the Earth’s surface:Z(ω) = Z1. In general, the constants of
permittivity εn and permeabilityµn are all different for each
layer. In the present study the layer permittivities are all set
to εn = ε0 and the layer permeabilities toµn = µ0 for all n.

A5 Complex image method

Next, we consider the complex image method (CIM) and
an approximation to the reflection coefficient to accommo-
date this method. For convenience, this also introduces an
equally important material property called the skin depth for
multi-layered Earth. The other important material property is
the surface impedance. The surface skin depth is computed
from the surface impedance asp(ω) = Z(ω)/iωµ0. How-
ever, the surface is a boundary of the layered-Earth model
and, as with boundary impedancesZn, one can also form
a set of boundary skin depthspn similarly computed from
these impedances (withµn replacingµ0).

The reflection coefficient (Boteler and Pirjola, 1998) can
be expressed as

R(Z;ω,ν) =
K − Z

K + Z
=

iωµ0/ν − Z

iωµ0/ν + Z
(A7)

=
iωµ0 − νZ

iωµ0 + νZ
=

1− νp

1+ νp
.

Note thatR depends not only on angular frequencyω and
wave numberν, but also on the complex surface impedance
Z(ω) or skin depthp(ω).

Under the condition thatpν � 1, it can be shown that
the reflection coefficient can be written in exponential form
which facilitates analytic solution of the inversion integrals.
Replace the Taylor expansion of Eq. (A7) with the Taylor
expansion of an exponential function; then,R ≈ e−2pν . This
can then be inserted into the Fourier integral expressions for
the magnetic and electric fields, which then makes it possible
to derive their solutions analytically.

Here the image current is employed to represent the re-
flected part of the electromagnetic field off the Earth’s sur-
face (or equivalently a layered conductive Earth). An image
line current is assumed to be flowing in the opposite direction
to the external line current at a depthz = h + 2p.

A6 Geomagnetic and geoelectric fields in a
plane-Earth model

To relate the elementary fields (in Sect. A3) to that of a line
current, one must take Fourier integrals of the components
over propagation spaceν. This forms the total fields over
surface distance and frequency space at the Earth’s surface
(z = 0). Adapted from Boteler et al. (2000), the geoelectric
and geomagnetic field components are then Ey

Bx

Bz

(x,ω) =

 Ey

µHx

µHz

(x,ω) (A8)

=
µ

2π

∞∫
0

J (ν)

 iω (R − 1)cos(νx)ν−1

(R + 1)cos(νx)

(R − 1)sin(νx)

e−νhdν,

where J (ν) =
∫

∞

−∞
j (x)e−iνxdx is the current density.

These integrals look like a Fourier transform of the integral
in Biot–Savart’s law in thexν-space.

Boteler et al. (2000) discuss distributions of currents of
one type and points out a field equivalence. For a current
system defined by a Cauchy distribution, characterised by a
spread parametera, we havej (x) =

I
π

a

a2+x2 and the distri-

bution of currents in propagation space isJ (ν) = Ie−|ν|a .
WhenJ (ν) is replaced in the integrals, the extra exponen-
tial factor produced is absorbed into the exponential factor
of the height:e−νae−νh

= e−ν(h+a). Thus, a Cauchy spread
parametera is then added to the heighth. An equivalence
of representation has resulted: the fields produced by us-
ing a Cauchy distributed current placed at a heightz = −h,
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would be equivalent to those created by a line current sys-
tem placed at a height ofz = −(h + a). The new height can
be denoted asz = −h′. Cauchy distributed current systems
are represented by line currents further from thez = 0 in-
terface (the Earth’s surface), as determined by the Cauchy
parameter. Therefore, one can disregard the need for such
distributions, and consider only line current systems. A line
current would only havej (x) = Iδ (x), leading toJ (ν) =

I
∫

∞

−∞
δ (x)e−iνxdx = I .

The integrals will need to be solved numerically if the ex-
act expression forR in Eq. (A7) is substituted for the re-
flection coefficient. No closed analytic solutions exist for the
combination of elementary functions present in the resulting
integrands. However, replacing the reflection coefficient in
the integrals by its approximation to Eq. (A7) means there
will only be two elementary functions in the integrands: the
trigonometric and exponential functions. Exact solutions for

these types of integrals have been derived, and that serves as
a motivation for using the image current method in simplify-
ing the derivation and evaluation of these integrals. Making
all the substitutions to Eq. (A8), the final form solutions can
be obtained from any standard integral table, and is given as Ey

Bx

Bz

(x,ω) (A9)

=
µI

2π

∞∫
0

 iω
(
e−2pν

− 1
)
cos(νx)ν−1(

e−2pν
+ 1

)
cos(νx)(

e−2pν
− 1

)
sin(νx)

e−νhdν

=
µI

2π


iω
2 ln

(
h2

+x2

(h+2p)2
+x2

)
h+2p

(h+2p)2
+x2 +

h

h2+x2

x

(h+2p)2
+x2 −

x

h2+x2


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