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Abstract. The forthcoming three-satellite mission Swarm
will allow us to investigate plasma processes and phenom-
ena in the upper ionosphere from an in-situ multi-spacecraft
perspective. Since with less than four points in space the
spatiotemporal ambiguity cannot be resolved fully, analysis
tools for estimating spatial gradients, wave vectors, or bound-
ary parameters need to utilise additional information such
as geometrical or dynamical constraints. This report deals
with gradient estimation where the planar component is con-
structed using instantaneous three-point observations or, for
quasi-static structures, by means of measurements along the
orbits of two close spacecraft. A new least squares (LS) gra-
dient estimator for the latter case is compared with existing
finite difference (FD) schemes and also with a three-point LS
technique. All available techniques are presented in a com-
mon framework to facilitate error analyses and consistency
checks, and to show how arbitrary combinations of planar
gradient estimators and constraints can be formed. The ac-
curacy of LS and FD planar gradient estimators is assessed
in terms of prescribed and adjustable discretization parame-
ters to optimise their performance along the satellite orbits.
Furthermore, we discuss the implications of imperfect con-
straint equations for error propagation, and address the ef-
fects of sub-scale structures. The two-spacecraft LS scheme
is demonstrated using Cluster FGM measurements at a pla-
nar and essentially force-free plasma boundary in the solar
wind where all three different types of constraints to con-
struct out-of-plane derivatives can be applied.

Keywords. Magnetospheric Physics (Current systems;
Magnetosphere-ionosphere interactions; Instruments and
techniques)

1 Introduction

Over the past decade, magnetic measurements made by Low
Earth Orbiting (LEO) satellites such as Ørsted (Neubert
et al., 2001), CHAMP (Reigber et al., 2002), and also SAC-C
have significantly advanced our understanding of the geo-
magnetic field and its dynamics. Models like POMME (e.g.,
Maus et al., 2006) and CHAOS (Olsen et al., 2006) resolve
variability on small spatial and temporal scales and allow to
study, e.g., crustal magnetization and secular variations in
unprecedented detail. Further improvements in geomagnetic
main (internal) field modelling will require identifying the in-
ternal field signal at LEO altitudes with even higher accuracy,
and here the contributions from electrical currents in space
impose severe limitations. Separating these external contri-
butions from the internal field in magnetic measurements is
thus a key challenge in geomagnetism (Lühr et al., 2009).

A current system that arguably causes the most severe
problems in geomagnetic field modelling from LEO satel-
lite data is associated with magnetic field-aligned currents
(FAC) that flow along magnetic flux tubes in the auroral zone.
These FAC connect the ionospheric end of auroral flux tubes
where electromagnetic energy is dissipated through conduc-
tion (Pedersen) currents with the equatorial magnetosphere.
Auroral FAC are highly variable in both time and space, in
particular during magnetospheric substorms. At LEO alti-
tudes they affect the measurements of geomagnetic field mis-
sions directly. In the transient phase when the auroral cur-
rent circuit is established, FAC are communicated by shear
Alfvén waves that travel along geomagnetic field lines and
do not suffer from geometrical attenuation. Auroral phenom-
ena are closely linked with FAC. The so-called auroral elec-
trojet is an ionospheric current system fed by FAC that gives
rise to magnetic disturbances of up to several 1000 nT on the
ground. For a discussion of FAC and Alfvén waves in the
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auroral context, seePaschmann et al.(2002), Vogt (2002),
and Keiling (2009). A FAC model based on ten years of
CHAMP measurements was recently presented byHe et al.
(2012).

The upcoming Swarm mission consists of three LEO
spacecraft on polar orbits at altitudes around 400 km and
530 km. The lower two will fly side-by-side with a longitudi-
nal separation of about 1.5◦. In addition to scalar and vector
magnetometers, the Swarm satellites will also be equipped
with an electric field instrument (EFI) based on ion drift mea-
surements. Since processes that vary in time and also in sev-
eral independent spatial dimensions cannot be resolved by
single-spacecraft measurements, the multi-spacecraft mis-
sion Swarm will introduce a new quality in geomagnetic ob-
servations from LEO satellites.

To tap the full potential of Swarm multi-point observa-
tions, analysis techniques need to be tailored to the specifics
of the mission. The problem of FAC estimation based on in-
situ measurements from two Swarm satellites was addressed
by Ritter and Lühr(2006) who used simulated FAC struc-
tures to test their method.Vogt et al. (2009) introduced an
analysis framework for three-spacecraft configurations based
on the set of planar reciprocal vectors as a generic tool to esti-
mate the components of parameter vectors (spatial gradients,
wave vectors, boundary normals) in the plane spanned by the
three position vectors. To estimate the out-of-plane compo-
nent of parameters vectors, additional information has to be
considered, e.g., in the form of geometrical constraints, sta-
tionarity assumptions, or other conditions.Shen et al.(2012)
carried this approach further and constructed a scheme to es-
timate the full magnetic gradient matrix for stationary field-
aligned current structures from measurements along the or-
bits of two spacecraft.

This paper brings together the various approaches to gra-
dient and FAC estimation for two-spacecraft and three-
spacecraft configurations such that measurements and con-
straints can be freely combined. The resulting data analysis
framework is supposed to facilitate consistency checks and
error analyses, thus enhancing both the significance and the
accuracy of parameter estimates based on Swarm measure-
ments. Using the least squares (LS) principle, we derive a
planar gradient estimator for quasi-static structures observed
along the orbits of two spacecraft. Existing finite difference
(FD) schemes are presented in a canonical form and then
compared with the new LS technique. The force-free con-
straint formulated byShen et al.(2012) is converted into the
same algebraic form as the geometrical constraints ofVogt
et al. (2009). We study statistical errors and truncations er-
rors of the discretization schemes, and discuss possibilities to
improve their performance. The two-spacecraft LS gradient
estimator is applied to magnetic field measurements of two
Cluster satellites in the solar wind during their transit through
a directional discontinuity. Geometrical constraints and the
force-free condition are used to produce curl estimates that

can be compared with the boundary curl profile obtained
from four-point crossing time analysis.

2 Multi-spacecraft gradient estimation

The problem of estimating spatial gradients from multi-
spacecraft measurements has been addressed through several
approaches including discretized boundary integrals (Dunlop
et al., 1988), spatial interpolation (Chanteur, 1998), LS min-
imisation (Harvey, 1998; De Keyser et al., 2007; De Keyser,
2008; Hamrin et al., 2008; Vogt et al., 2008, 2009), and FD
schemes (Vogt and Paschmann, 1998; Ritter and Lühr, 2006;
Shen et al., 2012). Most of these methods yieldlinear esti-
mators, i.e., gradient reconstruction formulas were the data
enter linearly.

The case ofS = 4 spacecraft received special attention be-
cause of the Cluster mission. Here all instantaneous param-
eters of a general linear field in space (offset and all com-
ponents of the gradient) can be uniquely determined from
the data if no further constraints are employed (Vogt et al.,
2008). Hence, in this case all linear gradient estimators give
identical results. Explicitly, the identity of the homogeneous
least squares and the linear spatial interpolation methods was
shown byChanteur and Harvey(1998). The equivalence of
the latter with the finite difference (FD) approach follows di-
rectly from the algebra of reciprocal vectors (see Eq. 14.6 in
Chanteur, 1998) that ensures the general FD condition

fτ − fσ = (rτ − rσ ) · ∇̃f (1)

wherefσ and fτ denotes the data at positionsrσ and rτ ,
respectively, and

∇̃f =

4∑
σ=1

fσ kσ (2)

is the gradient estimator based on reciprocal vectorskσ , see
Chanteur(1998).

The multi-spacecraft gradient estimation problem is
overdetermined when the number of spacecraftS > 4. A LS
solution still exists (Harvey, 1998; De Keyser et al., 2007; De
Keyser, 2008) and can be written in a form similar to Eq. (2),
namely,

∇̃f =

S∑
σ=1

fσ qσ (3)

seeVogt et al.(2008). Thegeneralised reciprocal vectors

qσ = R−1rσ (4)

are defined through theposition tensor

R =

S∑
α=1

rαrT
α . (5)

in a mesocentric frame of reference characterised by∑
σ rσ = 0.
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With less than four spacecraft, the gradient estimation
problem is underdetermined and its solution no longer
unique. Non-collinear configurations ofS = 3 spacecraft de-
fine a plane, and measurements give information only on the
planar component∇pf of the gradient. An estimator for∇pf

is the minimum norm solution of the LS problem (Vogt et al.,
2009):

∇̃pf =

3∑
σ=1

fσ qσ . (6)

Here theqσ ’s denoteplanar reciprocal vectorsgiven by

qσ =
n × rτν

|n|2
, σ = 1,2,3 , (7)

whererτν = rν − rτ are relative position vectors,(σ,τ,ν) is
the cyclic permutation of(1,2,3) with σ in the first position,
andn is the normal vector defined through

n = r12× r13 . (8)

The corresponding normal unit vector isn̂ = n/|n|.
The planar component∇p and the normal component∇n

of the del (nabla) operator∇ are formally related through

∇n = n̂(n̂ · ∇) ≡ n̂
∂

∂n
, (9)

∇p = ∇ − ∇n, (10)

wheren̂·∇ ≡ ∂/∂n is the directional derivative along the unit
vectorn̂, i.e., the normal derivative. The full gradient can be
reconstructed as follows:

∇f = ∇pf +
∂f

∂n
n̂ . (11)

To obtain an estimate for the normal derivative,Vogt et al.
(2009) considered two types of geometrical constraints.
When the spatial gradient∇f is parallel to a given unit vec-
tor ê, then

∂f

∂n
=

(ê · ∇pf )(ê · n̂)

|ê × n̂|2
. (12)

When the spatial gradient∇f is perpendicularto a given
unit vectorê, then

∂f

∂n
= −

ê · ∇pf

ê · n̂
. (13)

These formulas for the normal derivatives were derived in the
three-spacecraft context, but they are more general as they do
not depend on the specifics of the planar gradient estimator,
and thus can also be used for two-spacecraft estimation of
quasi-static spatial gradients as described in Sect.3.

Any linear estimator for both the full gradient or its planar
component can be written in a form analogous to Eqs. (2),
(3), and (6) with the reciprocal vectors possibly replaced by

others. We are going to refer to this representation as the
canonical formof a linear gradient estimator, and call the as-
sociated set of vectors likekσ or qσ its canonical base vec-
tors. The canonical form facilitates comparison with other
estimators, and allows to use elements of the error analy-
sis framework developed byChanteur(1998) for Eq. (2), see
alsoVogt et al.(2008, 2009).

3 Gradient estimation schemes for Swarm

This section deals with gradient estimation schemes for
the Swarm mission like those proposed byRitter and Lühr
(2006) andShen et al.(2012). The two Swarm satellitesa
andb orbiting at the same altitude collect data in the plane
spanned by the separation vector and the average velocity
vector. Spatial structures that vary only weakly during the
transit of the satellites can be considered quasi-static in this
context. For such structures an estimate of the planar gradient
can be obtained by combining the along-track variations with
the measured differences between the two satellites. Since
the configuration does not probe the normal gradient, addi-
tional conditions have to be taken into account. The general
procedure of first estimating the planar gradient and then in-
ferring its normal component is thus similar to gradient esti-
mation from three-spacecraft data as described byVogt et al.
(2009), with the limitation that time-varying gradients have
to be excluded from the two-spacecraft case.

3.1 Geometry of planar four-point configurations

When the local trajectories of two spacecrafta andb are in
one plane, and measurements at two (orN ) points along each
orbit are taken into account, one effectively obtains planar
four-point (or planar 2N -point) configurations. Spacecraft
velocities areVa andVb. The mesocenter

r∗ =
1

2
(ra + rb) (14)

is moving at the velocity

V∗ =
1

2
(Va + Vb) . (15)

The difference vector

r1 =
1

2
(rb − ra) (16)

allows to express the spacecraft positions at a centre timet∗
as follows:

ra = r∗ − r1 , (17)

rb = r∗ + r1 . (18)

Since spatial gradients are independent of constant offsets,
we may assume the frame of reference to be mesocen-
tric: r∗ = 0. Mesocentric position vectors arera = −r1 and
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rb = r1. Throughout this paper, we assume coordinate sys-
tems to be mesocentric unless the more general case is ex-
plicitly addressed.

Figure 1 shows the main parameters a planar four-point
configuration for the estimation of stationary spatial gradi-
ents. We need to choose a time interval1t that gives suitable
separations of measurement points along the orbits. The re-
sulting configuration consists of the following four points:

r±
a = ra ± Va 1t , (19)

r±

b = rb ± Vb 1t . (20)

For the two Swarm satellites that orbit side-by-side, the
directions of their spacecraft velocitiesVa and Vb differ
slightly, but the magnitudes can be considered identical, oth-
erwise the orbits would soon be out-of-phase:|Va| = |Vb|.
This implies that the difference vector

V1 =
1

2
(Vb − Va) (21)

must be perpendicular to the mesocenter velocityV∗ . Fol-
lowing Ritter and Lühr(2006) andShen et al.(2012), we now
establish a local planar coordinate system where one axis (v)
is aligned with the mesocenter velocity. The coordinate unit
vector is thuŝv = V∗/|V∗|. The second axis (u) completes the
planar orthogonal frame, see Fig.1. With the definitions

L = û · r1 = −û · ra = û · rb , (22)

` = v̂ · r1 = −v̂ · ra = v̂ · rb , (23)

M = v̂ · V∗1t = v̂ · Va1t = v̂ · Vb1t , (24)

m = û · V11t = −û · Va1t = û · Vb1t (25)

the(u,v) coordinates of the measurement points are

r±
a =

(
−L ∓ m

−` ± M

)
=

(
−L

±M

)
+

(
∓m

−`

)
, (26)

r±

b =

(
L ± m

` ± M

)
=

(
L

±M

)
+

(
±m

`

)
. (27)

The set of discretization parameters(L,M,`,m) repre-
sents four degrees of freedom of which two are prescribed
by the orbit geometry, namely, the (local) values ofL and
m/M = ε. L is the spatial separation between the satellite
orbits, andε indicates how much they deviate from an ideal
parallel case, withε = 1 corresponding to perpendicular or-
bits. In the case of Swarm,L ≈ 80 km at the equator (the to-
tal separation is 160 km) and about less than half this value in
the auroral zone. The parameterm/M = ε is not larger than
0.015 and can thus be treated as a small parameter.

The remaining two degrees of freedom are captured in the
parametersM and ` or, alternatively, the scaled variables
M/L = µ and `/L = λ. We may call themadjustable pa-
rametersbecauseM or µ can be changed through the time
interval1t , and` or λ can be varied by introducing a time
shift τ between the reference times of the two spacecraft.
Such a time shift was employed byRitter and Lühr(2006)

�~Va�t

~Va�t

~Vb�t

�~Vb�t

~rb = ~r�

~ra = �~r�

~V⇤�t

u

v

`

L

M

m

M

Samstag, 19. Januar 13

Fig. 1. Geometry of the planar four-point configuration generated
by moving satellitesa andb.

to enforce a symmetric configuration with̀' 0. Geometri-
cally, µ = M/L measures the along-track separation relative
to the across-track distance, andλ = `/L indicates how close
the polygon is to an equal-sided trapezoid. To obtain error
formulas and quality measures in terms of the adjustable pa-
rameters, we are going to write the formulas also in terms
of the set(L,m/M,M/L,`/L) = (L,ε,µ,λ). For the mea-
surement pointsr±

a,b we obtain

r±
a = L

(
−1∓ εµ

−λ ± µ

)
= L

{(
−1
±µ

)
+

(
∓εµ

−λ

)}
, (28)

r±

b = L

(
1± εµ

λ ± µ

)
= L

{(
1

±µ

)
+

(
±εµ

λ

)}
. (29)

Note that the parameters1t and τ should be increased
only within certain bounds to ensure that the quasi-static as-
sumption is not violated. Both the time interval and the time
shift effectively increase the time scale on which the struc-
tures are required to vary only weakly.

3.2 LS approach to planar gradient estimation

A least squares (LS) estimator for planar four-point config-
urations can be constructed by minimising the cost function

4∑
σ=1

[
f∗ + rσ · ∇̃pf − fσ

]2
(30)

with respect to the planar gradient estimator∇̃pf and the
constant valuef∗. In a non-mesocentric frame, we need to
replacerσ by (rσ −r∗). The problem is overdetermined, and
the algebra is analogous to the full (three-dimensional) gra-
dient estimation problem when measurements fromS > 4
satellites are available (Vogt et al., 2008). The solution can
be written in the form

∇̃pf =

4∑
σ=1

fσ qσ = f +
a q+

a + f −
a q−

a + f +

b q+

b + f −

b q−

b (31)
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where the canonical base vectorsqσ are (minimum-norm)
solutions of the equationsRqσ = rσ . HereR =

∑4
σ=1rσ rT

σ

is the position tensor. As long as the four measurement points
are located in a plane but not on a line, the position tensor
has rank 2, with two positive eigenvaluesλ1,λ2 (note thatR
is positive definite), and corresponding eigenvectorsê1, ê2.
The third eigenvalue is zero, and the eigenvector is normal
to the plane spanned by the four measurement points. The
pseudo-inverse ofR is then given by

Q = (1/λ1) ê1 + (1/λ2) ê2 , (32)

and the canonical base vectors are

qσ = Qrσ . (33)

In (u,v) coordinates, the position tensorR is a (2× 2) ma-
trix with a regular inverseR−1 as long as the four measure-
ment points are not collinear. Representations of the tensor
R−1 and the vectorsq±

a,b in (u,v) coordinates are given in
Appendix A.

The accuracy of the solutionsqσ , and thus also of the
gradient estimates, is controlled by the condition number
c = λ1/λ2 of R. The condition number is conveniently anal-
ysed in(u,v)-coordinates whereR is a(2×2) matrix so that
c may be expressed as

c = exp

[
arcosh

(
T 2

2D
− 1

)]
, (34)

see Appendix A for a proof. HereT and D are the trace
and the determinant of the matrix, respectively. The condi-
tion number is a function ofT 2/D. Using the expressions in
Appendix A we obtain

T 2

2D
=

(1+ ε2µ2
+ µ2

+ λ2)2

2µ2[1+ ε2(µ2 + λ2)]
. (35)

The logarithm of the condition numberc = c(λ,µ) is dis-
played in Fig.2 for ε = 0.01. The ideal casec = 1 corre-
sponds toλ = 0 andµ = 1. As long asλ is not much larger
andµ not much smaller than unity, the condition number as-
sumes tolerable values. Very large values ofλ have a negative
effect on the stability of the matrix inversion. In such a case
the orbit phases should be adjusted through an appropriate
time shiftτ as inRitter and Lühr(2006).

3.3 FD approach to planar gradient estimation

Shen et al.(2012) employed finite differencing (FD) to con-
struct a planar gradient estimator for the four-point configu-
ration sketched in Fig.1. Their formulas (8) and (10) are now
brought into the canonical form. In the following,f can be a
scalar field or one component of a vector field. Time deriva-
tivesḟa,b are evaluated by means of centred finite differences
at timet∗ using a time interval1t :

λ

µ

log10 condition number, ε=0.01
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v̂ · ∇f ≈
1

2V∗

(
ḟa + ḟb

)
=

1

4M

(
f +

a − f −
a + f +

b − f −

b

)
. (36)

With |r1|
2

= L2
+`2, |r1| sinβ = L, andLcosβ = `sinβ,

Eq. (10) ofShen et al.(2012) can be rearranged as follows:

û · ∇f ≈
1

sinβ

(
1

2|r1|
(fb − fa) − cosβ v̂ · ∇f

)
=

1

4L

(
f +

b + f −

b − f +
a − f −

a

)
−

`

4LM

(
f +

a − f −
a + f +

b − f −

b

)
(37)

when the valuesfb andfa are replaced by arithmetic means:
fb = (f +

b +f −

b )/2,fa = (f +
a +f −

a )/2. The expressions can
be combined to write the FD planar gradient estimator of
Shen et al.(2012) in (u,v) coordinates in the canonical form

∇̃pf = f +
a p+

a + f −
a p−

a + f +

b p+

b + f −

b p−

b (38)

where the canonical base vectors are

p±
a =

(
−

1
4L

∓
`

4LM

±
1

4M

)
=

1

4L

(
−1∓ λµ−1

±µ−1

)
, (39)

p±

b =

(
1

4L
∓

`
4LM

±
1

4M

)
=

1

4L

(
1∓ λµ−1

±µ−1

)
. (40)

Ritter and Lühr(2006) also employed a FD approach to
approximate partial derivatives for estimating the FAC den-
sity. They usedx and y to denote the along-track and the
cross-track coordinate, respectively. Furthermore, they ap-
plied a time shift to adjust the orbit phases of satellitesa
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andb such that the separation vector 2r1 is perpendicular
to the mesocenter velocity, thus effectively enforcing` ' 0.
The estimation scheme for partial derivatives is found from
Eqs. (3) and (5) inRitter and Lühr(2006):

∂By

∂x
≈

dBy(A) + dBx(B)

dx(A) + dx(B)
, (41)

∂Bx

∂y
≈

dBx(t1) + dBx(t2)

dy(t1) + dy(t2)
, (42)

where the equivalences with the present notation arex = v,
y = u, t1 = t∗−1t , t2 = t ′∗+1t , dx(A) = dx(B) = 2V∗1t =

2M, dy(t1) = 2(L+ `), dy(t2) = 2(L− `). Using the appro-
priate finite differences for dBy and dBx , we obtain

∂By

∂x
≈

B+
y,a − B−

y,a + B+

y,b − B−

y,b

4M
, (43)

∂Bx

∂y
≈

B+

y,b − B+
y,a + B−

x,b − B−
x,a

4L
. (44)

Comparison with Eqs. (36) and (37) shows that the∂By/∂x

and∂Bx/∂y equations correspond to the` → 0 limit of the
FD formulas for∂Bu/∂v and∂Bv/∂u of Shen et al.(2012).
Hence there is no need for a separate assessment of theRitter
and Lühr(2006) FD method.

In Appendix A it is found that the FD approach to planar
four-point gradient estimation differs from the LS approach
only in terms proportional toε:

p±
a = q±

a + O(ε) , (45)

p±

b = q±

b + O(ε) . (46)

3.4 Boundary integral approach to curl estimation

A second approach to FAC estimation mentioned byRitter
and Lühr(2006) is the boundary integral (BI) method based
on Ampère’s integral law

jn =
1

µ0A

∮
B · ds (47)

where path integration is along the boundary of the areaA,
see alsoDunlop et al.(1988). For the polygon associated with
the planar four-point configuration of Fig.1, the boundary
integral is most naturally discretized using the trapezoidal
rule on each of the four legs. The algebra is summarised
in Appendix B. A salient conclusion from the analysis con-
cerns the equivalence with curl estimation based on the FD
schemes discussed in Sect.3.3, namely, the discrete form of
the boundary integral gives exactly the same result as the FD
curl estimator formed by combining the appropriate discrete
partial derivatives. Another useful result of the algebra in Ap-
pendix B is a particularly compact representation of the cur-
rent estimator:

jn ≈
1

2µ0A

[(
B+

b − B−
a

)
·
(
r+

a − r−

b

)
−
(
B+

a − B−

b

)
·
(
r+

b − r−
a

)]
(48)

where the areaA is the modulus of the oriented area

A =
1

2

(
r−

a − r+
a

)
×
(
r+

b − r+
a

)
+

1

2

(
r+

b − r−

b

)
×
(
r−

a − r−

b

)
= 4r1 × V∗1t = 4LMn̂ . (49)

3.5 Force-free constraint for normal derivatives

The estimators discussed in Sects.3.2, 3.3, and3.4 utilise
all the information from measurements of planar four-point
configurations. To construct estimators for derivatives in the
direction normal to the spacecraft plane, one needs to em-
ploy additional information, e.g., in the form of geometrical
or physical constraints. Two types of geometrical constraints
that can be used for this purpose are presented in Sect.2, see
alsoVogt et al.(2009).

In the auroral context, an appropriate condition follows
from the observation that electrical currentsj are typically
aligned with the ambient magnetic fieldB. Since the asso-
ciated force termj × B in the magnetohydrodynamic equa-
tion of motion vanishes, we may refer to this condition as
theforce-free constraint. The FAC densityj|| can then be in-
ferred from the normal current densityjn through

j|| =
jn

n̂ · B̂
, (50)

see alsoRitter and Lühr(2006). In the case of circular orbits,
n̂ is the radial direction, and thusj|| = jn/sinI whereI is
the inclination of the magnetic field.Shen et al.(2012) pur-
sued this approach further and showed that all normal deriva-
tives can be constructed from the planar gradient if the force-
free constraint and the divergence-free nature of the magnetic
field are taken into account. In Appendix C these conditions
are rearranged into the form

∂B

∂n
= −

{n̂ × [(∇p × B) × B̂]} × n̂

n̂ · B̂
−
(
∇p · B

)
n̂ (51)

that allows direct comparison with constraint equations (12)
and (13). LS estimators for∇p×B and∇p ·B are found from
the corresponding gradient formulas:

∇̃p × B =

4∑
σ=1

qσ × Bσ , (52)

∇̃p · B =

4∑
σ=1

qσ · Bσ . (53)

FD estimators are obtained by replacing the canonical base
vectors:qσ → pσ .

4 Accuracy of gradient estimation schemes

In assessing the quality of gradient estimators and their ro-
bustness against undesirable effects like measurement noise
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or deviations from underlying assumptions, we consider sep-
arately the planar gradient (Sect.4.1), the normal derivatives
(Sect.4.2), and deviations from linearity (Sect.4.3).

4.1 Accuracy of planar gradient estimation

The main sources of error considered in the analysis of
four-point (Chanteur, 1998; Vogt and Paschmann, 1998) and
three-point (Vogt et al., 2009) gradient estimators are instru-
mental noise (physical errors) and inaccuracies in the space-
craft positions (geometrical errors). To assess their relative
importance for planar gradient estimation from Swarm mea-
surements, we followVogt and Paschmann(1998) and com-
pare the instrumental errorδB ∼ 1nT with |∇B|δr whereδr

denotes the inaccuracy in spacecraft position. The magnetic
field variation associated with a typical auroral FAC density
of 1 µA m−2 is |∇B| ∼ 10−3 nT m−1. For LEO satellites,δr
is in the range of several ten meters, hence|∇B|δr is ex-
pected to be one to even two orders of magnitude smaller
than δB which means that errors due to positional inaccu-
racies should be negligible compared to instrumental errors.
This observation simplifies the error analysis considerably.

We first consider the three-spacecraft estimator of the in-
stantaneous (not necessarily quasi-static) planar gradient as
introduced byVogt et al.(2009). The accuracy of the method
was studied in the same paper (Sect. 5.2 and Appendix B)
using an error analysis framework introduced byChanteur
(1998) that essentially rests on the algebraic structure of the
gradient estimator. Assuming the instrumental errors to be
mutually uncorrelated and isotropic, the covariance of the
planar gradient vector of a componentBj of the magnetic
field is given by〈
δ[∇pBj ]δ[∇pBj ]

T
〉

= (δB)2Q (54)

whereQ =
∑3

σ=1qσ qT
σ is the reciprocal tensor. In the ex-

pression for the square magnitude error

〈
∣∣δ∇pBj

∣∣2〉 = (δB)2 trace(Q) (55)

instrumental errors are amplified by the factor

trace(Q) =

3∑
σ=1

|qσ |
2 . (56)

For details, seeVogt et al.(2009).
Now we look at the FD and LS four-point estimators of

quasi-static planar gradients presented in Sects.3.3 and3.2.
Since each estimator is available in canonical form and thus
in the same algebraic structure as the three-spacecraft scheme
discussed in the previous paragraph, both FD and LS estima-
tors can be studied in the same way as before. One just needs
to insert the appropriate canonical base vectors to obtain the
error amplification factors for the FD scheme:

4∑
σ=1

|pσ |
2

=
1

4

(
1

L2
+

1

M2
+

`2

L2M2

)
=

1

4L2µ2

(
1+ µ2

+ λ2
)

, (57)

and for the LS scheme:

4∑
σ=1

|qσ |
2

=
4(M2

+ `2
+ L2

+ m2)

D

=
1

4L2µ2

(
1+ µ2

+ λ2
+ ε2µ2

1+ ε2(µ2 + λ2)

)
, (58)

where D is the determinant of the position tensor, see
Eq. (A3). The FD and LS sets of canonical base vectors dif-
fer only by terms of orderO(ε), hence their amplification
factors are identical up toO

(
ε2
)
. For the Swarm satellitesa

andb, ε . 10−2 which implies that the LS and FD estima-
tors should give almost identical results in practice. Figure3
displays the product(

4∑
σ=1

|qσ |
2

)
·

1

4

(
4∑

σ=1

|rσ |
2

)
=

(1+ µ2
+ λ2

+ ε2µ2)2

4µ2[1+ ε2(µ2 + λ2)]
(59)

i.e., the error amplification factor of the LS estimator
normalised by the mean square inter-spacecraft distance
(1/4)

∑4
σ=1 |rσ |

2. The normalised error amplification factor
of the LS estimator turns out to be identical withT 2/4D

whereT andD are the trace and the determinant, respec-
tively, of the position tensorR, and thus shows the same be-
haviour as the condition numberc, see Sect.3.2. Configura-
tional error amplification occurs most prominently for large
values ofλ = `/L and hence can be reduced through orbit
phase adjustment.

Significant differences between the error amplification
factors of the LS and FD estimators are noticed only for
larger values ofε. To illustrate the effect, Fig.4 shows for
ε = 0.5 the error amplification factors of the FD (left panel)
and the LS (right panel) planar gradient estimators, both nor-
malised by the mean square inter-spacecraft distance. Here
the LS estimator turns out to be more robust than the FD es-
timate with respect to error propagation.

Another possible source of error concerns the assumption
of quasi-static structures. With three spacecraft, planar gra-
dients can be obtained also for spatial structures that un-
dergo at least slow temporal changes. In the case of planar
four-point configurations realised with only two spacecraft
a and b, however, the velocitiesVa and Vb of the space-
craft relative to the spatial phenomenon of interest must be
known. Using data from the three-spacecraft Space Technol-
ogy 5 mission,Wang et al.(2009) studied the motion of FAC
sheets in the auroral zone. Typical values are in the range of
a few 100 m s−1, equivalent to several percent of the space-
craft speed, thus introducing an error of the same small mag-
nitude. More critical may be Alfvénic structures propagating
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Fig. 3. Logarithm of the normalised error amplification factor
(
∑

σ |qσ |
2)·(

∑
σ |rσ |

2)/4 of the least squares planar (LS) gradient
estimator in terms ofλ = `/L andµ = M/L for ε = 0.01.

along the ambient magnetic field with speeds in the range
of 100 km s−1. Attributing the resulting change in the mea-
sured magnetic field to the spatial structure could lead to
much larger errors, therefore, efforts should be made to iden-
tify Alfvénic structures using both magnetic and electric field
data.

4.2 Accuracy of normal derivative estimation

The use of constraint equations in the reconstruction of nor-
mal derivatives means that an additional source of error
comes into play, namely, when the constraints are not satis-
fied exactly. For a detailed discussion of the two geometrical
constraintŝe ⊥ ∇f and ê‖ ±∇f , seeVogt et al.(2009). In
brief, the angleγ between the normal direction̂n and the
true gradient∇f is found to be of key importance. Further-
more, error indicators that should not become too small are
|ê × n̂| for the parallel constraint̂e‖±∇f , and|ê · n̂| for the
perpendicular constraintê ⊥ ∇f .

For the force-free constraint, the error introduced by a non-
zero forcej × B is given in Appendix C. The error magni-
tude assumes its maximum valueµ0j⊥/n̂ · B̂ when the force
vector is in the spacecraft plane. Herej⊥ is the current com-
ponent perpendicular to the magnetic field. For Swarm, the
denominatorn̂ · B̂ will not be far from unity in the auroral
zone which means that here the method should be reason-
ably robust against errors. At low latitudes, normal derivative
estimates should be more cautiously interpreted.

λ

µ

log10 FD error, ε=0.5
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Fig. 4. Logarithms of the normalised error amplification factors
(
∑

σ |pσ |
2) · (

∑
σ |rσ |

2)/4 and(
∑

σ |qσ |
2) · (

∑
σ |rσ |

2)/4 of the
finite differences (left panel) and the least squares (right panel) pla-
nar gradient estimators, respectively. Both error measures are given
in terms ofλ = `/L andµ = M/L and forε = 0.5.

4.3 Nonlinearity and sub-scale structures

The first three terms of the Taylor expansion of a two-
dimensional scalar field can be written as follows:

f (r) = f◦ + (r − r◦)
TG +

1

2
(r − r◦)

TH(r − r◦) (60)

where the first two terms constitute the corresponding linear
field, G = ∇pf is the gradient, andH is the Hessian matrix
of second-order derivatives. Without loss of generality, we
may identify the reference position vectorr◦ with the origin
of the mesocentric coordinate frame, thusr◦ = r∗ = 0.

Linear gradient estimators are called consistent if they re-
produce the true gradientG = ∇f when applied to a gen-
eral linear field. In canonical form with base vectorsqσ ,
the condition is equivalent to

∑
σ qσ = 0 (null vector) and∑

σ qσ rT
σ = 1 (identity matrix). In Appendix A it is shown

that linear LS estimators are consistent by construction. For
the FD gradient estimators discussed in Sect.3.3, the con-
ditions are easily verified in(u,v) coordinates. Consistency
implies at least first-order accuracy in the sense that the esti-
mated gradient differs from the true gradient only in terms
that are linear in the set of discretization parameters such
as the separation lengthsL andM. Second-order accuracy
is achieved when a gradient estimator eliminates also the
quadratic term in the Taylor expansion. For the four-point
FD and LS estimators of Sect.3.3, the algebra is straightfor-
ward but very lengthy. The final result for the FD estimator
can be written as
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∇̃pf2 =

( m

LM

)(
fuv(M

2
− `2) − fuuLm

fuuL
2

+ fuvLm

)
= εL

(
fuv(µ

2
− λ2) − fuuλ

fuu + fuvλ

)
(61)

with fuu = ∂2f/∂u2, fuv = ∂2f/∂u∂v, andf2(r) =
1
2rTHr.

Using a curvature length scaleLc to approximate the sec-
ond derivativesfuu,fuv ∼ f∗/L

2
c, we find that, although

second-order terms do not cancel exactly, they are propor-
tional toO(ε) and thus small if the discretization parameters
(L,M,`,m) do not exceed the curvature length scaleLc. For
Swarm the discretization scheme is thus effectively second-
order as long as we are not concerned with inhomogeneity
scales that are smaller than the spacecraft separations, i.e.,
with sub-scale structures.

5 Example

The gradient analysis framework proposed in this paper is
tailored to the two Swarm satellites orbiting the upper iono-
sphere and auroral zone in an east–west side-by-side con-
figuration. To demonstrate the analysis methods, one would
ideally use multi-spacecraft FAC observations from such a
configuration in the LEO environment with its high ambi-
ent magnetic field. Unfortunately, past and ongoing multi-
spacecraft missions like Cluster (Escoubet et al., 1997) or
Space Technology 5 (e.g.,Slavin et al., 2008) produced
crossings of the auroral zone in string-of-pearls configura-
tions. To test the different types of constraints for computing
normal derivatives, we need to consider current structures in
other geospace regions that share the main characteristics of
auroral current sheets, i.e., the structures should be planar,
force-free, and stationary in a well-defined frame of refer-
ence. As shown in Appendix D, the force-free condition is
satisfied at a planar plasma boundary characterised by the
profileP , normal unit vector̂s, and speedU , if both the mag-
nitude change1|P | and the normal componentPs are suffi-
ciently small. Directional discontinuities in the interplanetary
magnetic field typically meet these requirements, seeKnetter
et al. (2004). Cluster FGM measurements at such a plasma
boundary are displayed in Fig.5. The transits of S/C 2 (red)
and S/C 3 (green) happen at approximately the same time
and (in the reference frame moving with the structure) in a
side-by-side configuration, so that the event is well suited for
the demonstration of two-spacecraft gradient estimators.

Information from all four Cluster spacecraft are used to de-
termine the key boundary parameters and their errors through
crossing time analysis as described byVogt et al. (2011).
We obtain the following values for boundary speed and
orientation:

U = 613 km s−1 , (62)

ŝ = (−0.9603,−0.1972,−0.1975)T . (63)

Fig. 5.Cluster FGM data (solid) and boundary profile (dashed, ma-
genta) used for demonstrating the two-spacecraft gradient analysis
framework. The magnetic field measurements of the four Cluster
spacecraft (S/C 1: black, S/C 2: red, S/C 3: green, S/C 4: blue) are
given in GSE coordinates.

The accuracy of these estimates is controlled by the geome-
try of the Cluster tetrahedron as given by its inter-spacecraft
distanceL = 4190 km, planarityP = 0.51, and elongation
E = 0.45, as well as by the timing accuracyδt ∼ 0.1s. The
resulting uncertainties in boundary orientation and speed can
be obtained using the error formulas and Figs. 1–3 inVogt
et al.(2011), and they turn out to be. 2◦ and. 3 %, respec-
tively. Hence the reference frame in which the plasma struc-
ture appears stationary is indeed well defined. Furthermore,
the similarity of the four boundary profiles as displayed in
Fig. 5 strongly suggests that the structure is planar on the
inter-spacecraft separation scale. Figure6shows that the field
magnitudes vary only little during the whole time interval,
and the normal componentsBs are small, in particular until
about 01:38:55 UTC, so that we can assume the overall struc-
ture to be force-free, see Appendix D. A more refined anal-
ysis based on the decomposition of the boundary curl profile
into components parallel and perpendicular to the local mag-
netic field vector is presented below, see Fig.8. It turns out
that a small portion of the boundary is not force-free, with
significant effects on the corresponding curl estimator.
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Fig. 6. Magnetic field magnitude and normal component for the
Cluster discontinuity crossing on 23 January 2003, 01:38:45 UTC
to 01:38:55 UTC (S/C 1: black, S/C 2: red, S/C 3: green, S/C 4:
blue).

The boundary profileP = P (t) superposed in Fig.5 was
obtained through averaging the shifted time seriesBσ . The
derivative Ṗ = dP /dt (computed through finite differenc-
ing) and the boundary slowness vectorm = ŝ/U yield the
following estimator for the curl of the magnetic field:

∇̃ ×B = −m × Ṗ (64)

seeVogt (2014) and Appendix D. The three components of
the resulting boundary curl profile are the magenta lines in
Fig. 7, as they should be observed at the mesocenter of the
two spacecraft S/C 2 and S/C 3. After entering the boundary
at 01:38:52 UTC, the curl increases very rapidly for about
0.3 s, followed by a much slower decrease.

Displayed in the same Fig.7 are curl estimates produced
by the two-spacecraft LS scheme using FGM measurements
from Cluster S/C 2 and S/C 3. Three different constraints
were applied to compute the derivatives normal to the plane
spanned by the spacecraft separation vector and the veloc-
ity vector, namely, (a) the gradient is assumed to be parallel
to the boundary normal unit vectorŝ (red), (b) the gradient
is assumed to be perpendicular to the (local) magnetic field
vector obtained as the average of the measurements at the
two spacecraft (green), and (c) the force-free condition is as-
sumed (blue). The three constraints yield almost identical re-
sults for the GSEy component of the estimated curl because
this component is determined by derivatives in the four-point
plane, i.e., by in-plane gradient estimates that are not af-
fected by the conditions to construct the out-of-plane deriva-
tives. Note that the spatial separation of S/C 2 and S/C 3 was
mostly in GSEz direction, and the boundary was moving

Fig. 7. Magenta: boundary curl profile−m × Ṗ derived from four-
point crossing time analysis (m: slowness vector,P : boundary field
profile). Red, green, blue: curl estimates based on FGM data from
the two Cluster spacecraft S/C 2 and S/C 3 on 23 January 2003,
01:38:50 UTC to 01:38:55 UTC, using the time interval1t = 0.4s,
for three different types of constraints, namely,(a) gradient parallel
to the boundary normal unit vector (red),(b) gradient perpendicular
to the (local) magnetic field vector (green),(c) force-free condition
(blue). All curl profiles are given in the GSE frame.

essentially along thex axis, so the unit vector normal to the
four-spacecraft configuration was mainly along they axis.

The time interval chosen for the analysis was1t = 0.4 s
(equivalent to nine samples), so the differences between lead-
ing and trailing positions in the quasi-four-point configura-
tion were 21t = 0.8 s. Assuming an instrumental error of
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Fig. 8.Components of the curl estimator−m×Ṗ derived from four-
point crossing time analysis: parallel (magenta) and perpendicular
(black) to the (local) magnetic field vector.

the orderδB . 0.5nT, the configuration yields geometrical

errors for the planar gradient of aboutδB ·

√∑
σ |qσ |2 .

1nT Mm−1. Shortly before and after the rapid increase at
01:38:52 UTC, actual deviations of the two-spacecraft curl
estimates from the boundary profile are larger. They com-
ponents of the estimated curl profiles are clearly smeared out
because the rapid increase is not resolved by the finite dif-
ferencing window of 0.8 s. For the geometrical (parallel and
perpendicular) conditions, this effect is also present in the
z component of the curl. The overall shape is reproduced but
the resulting peak values turn out to be lower than in the curl
estimate derived from the four-spacecraft averaged boundary
profile.

Unlike the geometric conditions, the curl estimate pro-
duced with the force-free constraint yields az-component at
01:38:52 UTC that is far too large to be explained by differ-
encing scale effects. Figure8 shows that the force-free condi-
tion is not satisfied at that time. The curl component parallel
to the local magnetic field (magenta) is much larger than the
perpendicular component (black) only about±0.7 s around
01:38:53 UTC, and during this time interval thez component
of the two-spacecraft estimate is indeed close to the boundary
curl profile.

6 Summary

In preparation of the three-satellite mission Swarm where
two spacecraft move on neighbouring orbits, this paper pro-
vides a generic framework for gradient and FAC estimation.
Measurements in the plane spanned by either three spacecraft

or by two spacecraft and the orbital velocity are utilised to
estimate the planar gradient component. The normal compo-
nent is constructed in a second step from a suitable geomet-
rical or physical constraint in algebraic form. Both steps are
independent in the sense that planar gradient estimators and
constraints for the construction of normal derivatives can be
freely combined.

For probing quasi-static structures by means of four-point
configurations generated by two spacecraft on neighbouring
orbits, available FD estimators of the planar gradient were
brought into a canonical form, and compared with a new LS
planar gradient estimator. Comparison of the canonical base
vectors revealed that the FD estimators proposed byRitter
and Lühr (2006) and Shen et al.(2012) are algebraically
identical. Furthermore, they yield the same numerical ap-
proximation of electrical currents as the boundary integral
approach. The new LS planar gradient estimator was shown
to differ from the FD estimators only in terms proportional
to the parameter combinationε = m/M which is of the order
10−2 for configurations generated by the Swarm satellitesa

andb. We studied statistical errors associated with measure-
ment noise, and discretization errors induced by deviations of
the actual field from a linear model. The results suggest that
the adjustable time interval1t should be chosen to make the
resulting along-track separationM of measurements compa-
rable with the across-track discretization lengthL given by
the separation of the two satellites. For the Swarm mission
whereL changes substantially along the satellite orbits, the
time interval1t should thus be continuously varied in ac-
cordance withL. Furthermore, orbit phase adjustment of the
two satellites through a time shiftτ can significantly reduce
the errors of the planar gradient estimators studied here. Note
that such an adjustment requires the quasi-static assumption
to be valid over a longer time scale.

For the construction of normal derivatives we considered
three types of constraint equations, namely, the two geo-
metrical conditions ofVogt et al.(2009), and the combina-
tion of force-free and divergence-free conditions as intro-
duced byShen et al.(2012). The latter was rewritten to ease
comparison with the geometrical constraints, and to anal-
yse its robustness against errors when the underlying as-
sumptions are not exactly met. In practice, the predictions
of different constraints may be compared among each other
and with ground-based instruments, thus facilitating consis-
tency checks and error analyses. This approach was illus-
trated for a transition of the Cluster tetrahedron through a
planar plasma boundary in the solar wind. A reference curl
profile was constructed from four-point crossing time anal-
ysis. Two-spacecraft curl estimates were produced for three
different types of constraints. As expected, large errors can
result when constraint equations are not satisfied. Further-
more, it was demonstrated how the finite spatial resolution
of the satellite array affects curl estimates when sub-scale
structures are present.
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Appendix A

Least-squares planar gradient estimator for four-point
configurations

In mesocentric(u,v) coordinates, the position tensor is the
(2× 2) matrix:

R =

4∑
σ=1

rσ rT
σ = 4

(
L2

+ m2 L`

L` M2
+ `2

)
= 4L2

(
1 + ε2µ2 λ

λ µ2
+ λ2

)
. (A1)

The inverse of the matrix can be written as follows

R−1
=

4

D

(
M2

+ `2
−L`

−L` L2
+ m2

)
=

1

4L2µ2D̂

(
µ2

+ λ2
−λ

−λ 1 + ε2µ2

)
. (A2)

where the determinant ofR is

D = 16(L2M2
+ M2m2

+ `2m2)

= 16L4µ2
[
1+ ε2

(
µ2

+ λ2
)]

(A3)

andD̂ = D/16L4µ2
= 1+ ε2(µ2

+ λ2). The canonical base
vectorsq±

a = R−1r±
a , q±

b = R−1r±

b are

q±
a =

4

D

(
−LM2

∓ LM` ∓ M2m ∓ `2m

±L2M ± L`m ± Mm2
− `m2

)
=

1

4LD̂

(
−1∓ λµ−1

∓ εµ ∓ ελ2µ−1

±µ−1
± ελµ−1

± ε2µ − ε2λ

)
, (A4)

q±

b =
4

D

(
LM2

∓ LM` ± M2m ± `2m

±L2M ∓ L`m ± Mm2
+ `m2

)
(A5)

=
1

4LD̂

(
1∓ λµ−1

± εµ ± ελ2µ−1

±µ−1
∓ ελµ−1

± ε2µ + ε2λ

)
(A6)

One compares with Eqs. (39) and (40) to find that the LS ap-
proach to planar four-point gradient estimation differs from
the FD approach discussed in Sect.3.3only in terms propor-
tional toε:

p±
a = q±

a + O(ε) , (A7)

p±

b = q±

b + O(ε) . (A8)

Note that̀ . M is the main requirement for this ordering to
be meaningful. The condition may hold even ifL ∼ M is not
met, e.g., when for the study of thin elongated structures one
chooses a small time interval1t to improve the along-track
resolution.

The algebra of LS gradient estimators further yields∑
σ

qσ =

∑
σ

R−1rσ = R−1
∑
σ

rσ = 0 , (A9)∑
σ

qσ rT
σ =

∑
σ

R−1rσ rT
σ = R−1R = 1 (A10)

which implies that linear LS gradient estimators are consis-
tent by construction, see also Sect.4.3.

To prove the formula for the condition number of a(2×2)

matrix given in Eq. (34), we denote their eigenvalues asλ1
andλ2 and make use of the fact that the determinantD = λ1 ·

λ2 and the traceT = λ1 + λ2 are invariant under coordinate
transformations. We then form

T 2

2D
=

λ2
1 + 2λ1λ2 + λ2

2

2λ1λ2
=

c + c−1

2
+ 1 (A11)

wherec = λ1/λ2 is the condition number. With the (natural)
logarithmx = lnc we may write

T 2

2D
− 1 =

1

2

(
ex

+ e−x
)

= coshx (A12)

which finally gives

lnc = x = arcosh

(
T 2

2D
− 1

)
(A13)

and thus Eq. (34).

Appendix B

Equivalence of FD and BI curl estimation schemes
using planar four-point configurations

The planar four-point configuration sketched in Fig.1 natu-
rally suggests to evaluate the boundary integral

∮
B · ds by

means of the trapezoidal rule on each of the four legs:∮
B · ds ≈

B−
a + B+

a

2
· (r−

a − r+
a ) +

B+
a + B+

b

2
· (r+

a − r+

b )

+
B+

b + B−

b

2
· (r+

b − r−

b ) +
B−

b + B−
a

2
· (r−

b − r−
a ) (B1)

This yields sixteen dot products of which eight cancel. The
remaining eight terms can be rearranged to yield∮

B · ds ≈
1

2

[(
B+

b − B−
a

)
·
(
r+

a − r−

b

)
−
(
B+

a − B−

b

)
·
(
r+

b − r−
a

)]
. (B2)

Inserting Eqs. (19) and (20), we obtain

r+
a − r−

b = 2 (−r1 + V∗1t) = 2

(
−L

M − `

)
, (B3)

r+

b − r−
a = 2 (r1 + V∗1t) = 2

(
L

M + `

)
, (B4)

and thus for the discrete version of the boundary integral∮
B · ds ≈

(
B+

u,b − B−
u,a

)
(−L) +

(
B+

v,b − B−
v,a

)
(M − `)

−

(
B+

u,a − B−

u,b

)
L −

(
B+

v,a − B−

v,b

)
(M + `) . (B5)
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The oriented areaA = An̂ is composed of contributions
from two triangles:

A1 =
1

2

(
r−

a − r+
a

)
×
(
r+

b − r+
a

)
, (B6)

A2 =
1

2

(
r+

b − r−

b

)
×
(
r−

a − r−

b

)
. (B7)

Using again Eqs. (19) and (20), the expressions can be rear-
ranged to yield

A1 = 21t [−V∗ × r1 − V∗ × V11t + V1 × r1] , (B8)

A2 = 21t [−V∗ × r1 + V∗ × V11t − V1 × r1] , (B9)

thusA = A1 + A2 = 4r1 × V∗1t = 4LMn̂. The modulus
is A = 4LM.

The resulting curl estimator

1

A

∮
B · ds ≈ −

B+
u,a

4M
+

B−

u,b

4M
−

B+

u,b

4M
+

B−
u,a

4M
−

(M + `)B+
v,a

4LM

+
(M + `)B−

v,b

4LM
+

(M − `)B+

v,b

4LM
−

(M − `)B−
v,a

4LM
(B10)

is identical with the combination of partial derivatives

∂Bv

∂u
−

∂Bu

∂v
(B11)

estimated using the FD method:

∂Bv

∂u
= û · ∇Bv ≈

4∑
σ=1

û · pσ Bv,σ

=
1

4LM

[
−(M + `)B+

v,a − (M − `)B−
v,a

+(M − `)B+

v,b + (M + `)B−

v,b

]
, (B12)

−
∂Bu

∂v
= −v̂ · ∇Bu ≈ −

4∑
σ=1

v̂ · pσ Bu,σ

=
1

4M

[
−B+

u,a + B−
u,a − B+

u,b + B−

u,b

]
. (B13)

Appendix C

Force-free and divergence-free constraints

As demonstrated byShen et al.(2012), the conditions

(∇ ×B) × B = 0 , (C1)

∇ ·B = 0 , (C2)

allow to construct the normal derivatives∂/∂n = n̂ ·∇ of the
magnetic fieldB from the planar gradient∇pB. We now
show that the resulting constraint equations can be written
in the form given by Eq. (51) that facilitates comparison with
other constraint equations.

Like any other vector, the normal derivative∂B/∂n can be
decomposed into its planar component (perpendicular ton̂)
and its normal component (parallel to±n̂) as follows:

∂B

∂n
=

(
n̂ ×

∂B

∂n

)
× n̂ +

(
n̂ ·

∂B

∂n

)
n̂ . (C3)

The divergence-free condition

0 = ∇ · B = ∇p · B + n̂ ·
∂B

∂n
(C4)

immediately gives the normal component in terms of∇p ·B.
The planar component is found from the force-free condition
using∇ = ∇p + ∇n = ∇p + n̂(∂/∂n) and∂/∂n = n̂ · ∇:

0 =

(
∇p × B + n̂ ×

∂B

∂n

)
× B . (C5)

Cross-multiplication witĥn yields

(n̂ · B̂)

(
n̂ ×

∂B

∂n

)
= −n̂ ×

[
(∇p × B) × B

]
(C6)

where the identitya × (b × c) = b(a · c)− c(a · b) was used.
Another cross-multiplication witĥn gives the final form of
the planar component of∂B/∂n:(

∂B

∂n

)
p

= −
{n̂ × [(∇p × B) × B̂]} × n̂

n̂ · B̂
. (C7)

The derivation further demonstrates which error results when
the observed structure is not exactly force-free. We note
µ0j = ∇×B, measure the mismatch throught = ̂ ×B̂, and
obtain for the resulting error in∂B/∂n:

δ

(
∂B

∂n

)
= −

µ0j {n̂ × t} × n̂

n̂ · B̂
(C8)

wherej = |j |. The error is zero only in the exceptional case
of the force vectorj × b and thus alsot being parallel to the
normal direction, i.e., when both the electrical current and
the magnetic field are in the spacecraft plane. The error is
maximum in magnitude when the force vector itself is in the
spacecraft plane, then

δ

(
∂B

∂n

)
= −

µ0j t

n̂ · B̂
= −

µ0j |t |

n̂ · B̂
t̂ = −

µ0j⊥

n̂ · B̂
t̂ (C9)

where|t | = |̂ × B̂| = sin6 (j ,B), andj⊥ = j |t | is the cur-
rent component perpendicular to the magnetic field.

Appendix D

Force-free planar structures

We show that a planar plasma boundary characterised by the
profile P = P (t), normal unit vector̂s, and speedU , is ap-
proximately force-free if both the magnitude change1|P |
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and the normal componentPs are small. Measurements at
such a boundary can be modelled as

Bσ (t) = M(t,rσ ) + δBσ (t)

= P (t − m · rσ ) + δBσ (t) , (D1)

seeVogt (2014). Herem = ŝ/U is the boundary slowness
vector, and the termsm · rσ are identical with the lags in
crossing time analysis. The spatiotemporal modelM(t,r) =

P (t −m · r) yields the following estimator for the curl of the
field:

∇̃ ×B = ∇ × M = −m × Ṗ (D2)

whereṖ denotes the ordinary derivative of the boundary pro-
file P . Forµ0j × B = (∇ ×B) × B we obtain

(−m × Ṗ ) × P = −m(P · Ṗ ) + Ṗ (m · P ) . (D3)

Note that

P · Ṗ =
d

dt

(
|P |

2

2

)
= |P |

d|P |

dt
, (D4)

thus the first term is proportional to the change in inten-
sity. The second term is proportional to the normal compo-
nent becausem·P = mPs . Therefore, planar structures with
Bs close to zero and sufficiently small variations in mag-
netic intensity can be considered approximately force-free
(j × B ≈ 0).
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