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Abstract. The forthcoming three-satellite mission Swarm 1 Introduction
will allow us to investigate plasma processes and phenom-

ena in the upper ionosphere from an in-situ multi-spacecraft .
perspective. Since with less than four points in space theOverthe past decade, magnetic measurements made by Low

; . . Earth Orbiting (LEO) satellites such as @rstade(bert
spatiotemporal ambiguity cannot be resolved fully, analysis :
tools for estimating spatial gradients, wave vectors, or boundEt al, 2003, CHAMP (Reigber et a].2009, and also SAC-C

ary parameters need to utilise additional information suchhave significantly advanced our understanding of the geo-

as geometrical or dynamical constraints. This report deal%agnetic fiezlg(;ind itz ?SZQ:S'IMOdeIS Iik;o%OMMEI .g.,
with gradient estimation where the planar component is con- aus .e.t al, 9 an : Olsen et al, § resolve
ariability on small spatial and temporal scales and allow to

structed using instantaneous three-point observations or, fof

quasi-static structures, by means of measurements along tRiudy, €.g., crustal magnetization and seculgr variations in
orbits of two close spacecraft. A new least squares (LS) graynprecedented detail. Further improvements in geomagnetic

dient estimator for the latter case is compared with existingmalin (i_”tem?") field mOde“"?g will require iden_tifying the in-
finite difference (FD) schemes and also with a three-point LSternal field signal at LEO altitudes with even higher accuracy,

technique. All available techniques are presented in a comand here the contributions from electrical currents in space

mon framework to facilitate error analyses and consistencﬂmpose Severe Iimitations: Separating these external cont.ri—
checks, and to show how arbitrary combinations of pIanarbhm'Onskfromhﬂllle mter.nal field in mtgggrgetlc tmelzazsg(r)ements IS
gradient estimators and constraints can be formed. The ad! Lf akey chailenge n;}geomagg:e ieir e ah’ 9-

curacy of LS and FD planar gradient estimators is assessed current system that arguably causes the most severe

in terms of prescribed and adjustable discretization paramel[.)mt:jlems. In georr_]agr(;engrl:leld mOd.e”]'PgI] dfrolm LIZO satel-
ters to optimise their performance along the satellite orbits. '€ data is associated with magnetic field-aligned currents

Furthermore, we discuss the implications of imperfect con-(FAC) that flow along ma.gneticflux.tubes in the auroral zone.
straint equations for error propagation, and address the eff Nese FAC connect the ionospheric end of auroral flux tubes

fects of sub-scale structures. The two-spacecraft LS schem\é{here eleciromagnetic energy s dissipatgd through conduc-
is demonstrated using Cluster FGM measurements at a ple{lon (Pedersen) culrrents W'.th thg equato_rlal magnetosphgre.
nar and essentially force-free plasma boundary in the solai’o‘ur(?ral FAC are highly variable n both time and space, n
wind where all three different types of constraints to con- particular during magnetospheric substorms. At ,LE,O aIt|.-
struct out-of-plane derivatives can be applied. tL_Jdes they affect the measqrements of geomagnetic field mis-
sions directly. In the transient phase when the auroral cur-
Keywords. Magnetospheric Physics (Current systems;rent circuit is established, FAC are communicated by shear
Magnetosphere-ionosphere interactions; Instruments ang|fyén waves that travel along geomagnetic field lines and
techniques) do not suffer from geometrical attenuation. Auroral phenom-
ena are closely linked with FAC. The so-called auroral elec-
trojet is an ionospheric current system fed by FAC that gives
rise to magnetic disturbances of up to several 1000 nT on the
ground. For a discussion of FAC and Alfvén waves in the
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auroral context, sePaschmann et a(2002, Vogt (2002, can be compared with the boundary curl profile obtained
and Keiling (2009. A FAC model based on ten years of from four-point crossing time analysis.

CHAMP measurements was recently presentetibyet al.
(2012.

The upcoming Swarm mission consists of three LE
spacecraft on polar orbits at altitudes around 400km an
530 km. The lower two will fly side-by-side with a longitudi-
nal separation of about X.5In addition to scalar and vector : ; . . :
magnetometers, the Swarm satellites will also be equippe pproaches including discretized boundary integfals(op

: L , i t al, 1989, spatial interpolation@hanteur1998, LS min-
with an electric field instrument (EFI) based on ion drift mea- imisation %ar?/ey 1098 Be Keys(efr etal 2’2307 %e Keyser
surements. Since processes that vary in time and also in sev j i y

. T i 008 Hamrin et al, 2008 Vogt et al, 2008 2009, and FD
eral independent spatial dimensions cannot be resolved bgchemes\(ogt and Paschman998 Ritter and Lihr 2008
single-spacecraft measurements, the multi-spacecraft mi ’

ion Swarm will introd new lity in maanetic ob SShen et al.2019. Most of these methods yielthear esti-
slon swa oduce a new quality In geomagnetic 0b- mators, i.e., gradient reconstruction formulas were the data
servations from LEO satellites.

To tap the full potential of S Iti-point ob enter linearly.
i 0 apl N l: Eo_en al o dv;/ai)m tm_lIJ "%Otmﬂ? sen/a_l]:_ The case of = 4 spacecraft received special attention be-
Ions, analysis techniques need to be tarored to the Specilicg, e of the Cluster mission. Here all instantaneous param-
of the mission. The problem of FAC estimation based on in-

itum rements from two Swarm satellites w ddr eters of a general linear field in space (offset and all com-
Situ measurements 1o 0 Swarm satetiites was adaressef, nants of the gradient) can be uniquely determined from

by Ritter and Luhr(200§ who used simulated FAC struc- the data if no further constraints are employ®ddt et al,

tures tp test their methodlogt et al. (2009 mjtroduc_:ed an 008. Hence, in this case all linear gradient estimators give
analysis framework for three-spacecraft configurations base

. . Identical results. Explicitly, the identity of the homogeneous
on the set of planar reciprocal vectors as a generic tool to esti-

) ~~"least squares and the linear spatial interpolation methods was
mate the components of parameter vectors (spatial grad|ent§hown byChanteur and Harve§1998. The equivalence of
wave vectors, boundary normals) in the plane spanned by th

h i ¢ To estimate th t-of-0l fhe latter with the finite difference (FD) approach follows di-
ree position vectors. 10 estimate th€ out-oi-planeé Compoyq .y trom the algebra of reciprocal vectors (see Eq. 14.6 in
nent of parameters vectors, additional information has to b

: . X . eChanteurlQQa that ensures the general FD condition
considered, e.g., in the form of geometrical constraints, sta-

tionarity assumptions, or other conditio@hen et al(2012  fi — fo = (re —15)-Vf 1)
garried this approach further gnd con;tructed a.schem('e to eSihere #, and f, denotes the data at positions andr.,
timate the full magnetic gradient matrix for stationary field- ;

. respectively, and
aligned current structures from measurements along the or-
bits of two spacecraft. . 4

This paper brings together the various approaches to gra-vf = Z Joko @)
dient and FAC estimation for two-spacecraft and three- o=1
spacecraft configurations such that measurements and cois the gradient estimator based on reciprocal vedtgrsee
straints can be freely combined. The resulting data analysi§€hanteu(1998.
framework is supposed to facilitate consistency checks and The multi-spacecraft gradient estimation problem is
error analyses, thus enhancing both the significance and theverdetermined when the number of spacecSaft4. A LS
accuracy of parameter estimates based on Swarm measurgolution still exists Klarvey, 1998 De Keyser et a) 2007, De
ments. Using the least squares (LS) principle, we derive aeyser 2008 and can be written in a form similar to EQ)(
planar gradient estimator for quasi-static structures observedamely,

02 Multi-spacecraft gradient estimation

c‘ll'he problem of estimating spatial gradients from multi-
spacecraft measurements has been addressed through several

along the orbits of two spacecraft. Existing finite difference s
(FD) schemes are presented in a canonical form and thew f = Zf"‘la (3)
compared with the new LS technique. The force-free con- o=1

straint formulated byshen et al(2012) is converted into the
same algebraic form as the geometrical constraintgogt
et al. (2009. We study statistical errors and truncations er- 4o = R, (4)
rors of the discretization schemes, and discuss possibilities 19 ¢ gefined through theosition tensor

improve their performance. The two-spacecraft LS gradient

estimator is applied to magnetic field measurements of two 5 T

Cluster satellites in the solar wind during their transit through = D Tary ®)
a directional discontinuity. Geometrical constraints and the o=l

force-free condition are used to produce curl estimates thaiﬂz”': a mesocentric frame of reference characterised by
sTo =0.

seeVogt et al.(2008. Thegeneralised reciprocal vectors
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With less than four spacecraft, the gradient estimationothers. We are going to refer to this representation as the
problem is underdetermined and its solution no longercanonical formof a linear gradient estimator, and call the as-

unigue. Non-collinear configurations 8f= 3 spacecraft de-

sociated set of vectors like, or ¢, its canonical base vec-

fine a plane, and measurements give information only on theors. The canonical form facilitates comparison with other

planar componer¥, f of the gradient. An estimator for, f
is the minimum norm solution of the LS problenogt et al,
2009:

3
6[)]( = Zfaqa . (6)

o=1
Here theg,'s denoteplanar reciprocal vectorgiven by

nXxXrey

,0=123, 7
wz 0 ° (7)

9o =
wherer., = r, — r are relative position vectorgg, 7, v) is
the cyclic permutation ofl, 2, 3) with o in the first position,
andn is the normal vector defined through

n = r12 Xri3. (8)

The corresponding normal unit vectoris=n/|n|.
The planar componen, and the normal componei,
of the del (nabla) operatdr are formally related through

0

Van=nm-V) = n—,
on

(9)

estimators, and allows to use elements of the error analy-
sis framework developed yhanteu (1998 for Eq. (2), see
alsoVogt et al.(2008 2009.

3 Gradient estimation schemes for Swarm

This section deals with gradient estimation schemes for
the Swarm mission like those proposed Rigter and Luhr
(2006 and Shen et al(2012. The two Swarm satellites
andb orbiting at the same altitude collect data in the plane
spanned by the separation vector and the average velocity
vector. Spatial structures that vary only weakly during the
transit of the satellites can be considered quasi-static in this
context. For such structures an estimate of the planar gradient
can be obtained by combining the along-track variations with
the measured differences between the two satellites. Since
the configuration does not probe the normal gradient, addi-
tional conditions have to be taken into account. The general
procedure of first estimating the planar gradient and then in-
ferring its normal component is thus similar to gradient esti-
mation from three-spacecraft data as describeddyy et al.
(2009, with the limitation that time-varying gradients have
to be excluded from the two-spacecraft case.

wheren-V = 9/9n is the directional derivative along the unit 3.1 Geometry of planar four-point configurations

vectorn, i.e., the normal derivative. The full gradient can be

reconstructed as follows:

of .

VS = Vo 4o (11)

To obtain an estimate for the normal derivatiVlegt et al.

(2009 considered two types of geometrical constraints.
When the spatial gradieM f is parallel to a given unit vec-

tor e, then
aif _ (@~VApf)A(é-fl). (12)
on |é x 7|2

When the spatial gradier¥ f is perpendicularto a given
unit vectore, then

of &V

on e-n

(13)

These formulas for the normal derivatives were derived in the
three-spacecraft context, but they are more general as they 45
not depend on the specifics of the planar gradient estimatol;, = r, —r |
and thus can also be used for two-spacecraft estimation O;b

quasi-static spatial gradients as described in Sect.

When the local trajectories of two spacecrafindb are in
one plane, and measurements at twa\®points along each
orbit are taken into account, one effectively obtains planar
four-point (or planar &/-point) configurations. Spacecraft
velocities areV, andV,. The mesocenter

1
r*=§(ra+rb) (14)
is moving at the velocity
1
The difference vector
rAZE(rb_ra) (16)

allows to express the spacecraft positions at a centrerfime
s follows:

(17)

=ryt+ra. (18)

Any linear estimator for both the full gradient or its planar Since spatial gradients are independent of constant offsets,
component can be written in a form analogous to EBk. ( we may assume the frame of reference to be mesocen-
(3), and @) with the reciprocal vectors possibly replaced by tric: r, = 0. Mesocentric position vectors arg = —r and

www.ann-geophys.net/31/1913/2013/
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rp =r. Throughout this paper, we assume coordinate sys- v ,
tems to be mesocentric unless the more general case is e f VoAt
plicitly addressed. M
Figure 1 shows the main parameters a planar four-point SR [ 7 =T
configuration for the estimation of stationary spatial gradi- I ;
ents. We need to choose a time intergxalthat gives suitable
separations of measurement points along the orbits. The re 1
sulting configuration consists of the following four points: . L

U

rE ro £ V, At (19)

a:

ri=ry, £ Vy At. (20) AR

For the two Swarm satellites that orbit side-by-side, the
directions of their spacecraft velocitidg, and V,, differ
slightly, but the magnitudes can be considered identical, othfig. 1. Geometry of the planar four-point configuration generated
erwise the orbits would soon be out-of-phagEg;| = |V;|. by moving satellites: andb.

This implies that the difference vector

—V.At

to enforce a symmetric configuration with~ 0. Geometri-
cally, » = M /L measures the along-track separation relative
must be perpendicular to the mesocenter velogity Fol- to the across-track distance, ane- ¢/ L indicates how close

lowing Ritter and Liih(200§ andShen et al(2012), we now the polygon is to an equal—side_d trapezoid. To o_btain error
establish a local planar coordinate system where one ais ( formulas and quality measures in terms of the adjustable pa-
is aligned with the mesocenter velocity. The coordinate unit/@Meters, we are going to write the formulas also in terms
vector is thug) = V,./|V.|. The second axisd completes the ~ ©f the set(L, m/M, M/L,t/L) = (L& p,A). For the mea-
planar orthogonal frame, see Fig.With the definitions surement points,, , we obtain

1
Va =5V —Va) (21)

e = (G3) = () () e
L=0.rp = —Dry =19-rp, (23) H H

M=% -V,At = 9-V,At = p-VyAt, (24) r;f:L<1f;/i‘> =L{(ilu)+<ii“>}. (29)
m=u-VaAt = —u-V,At = u-V,At (25) _

. . Note that the parameters: and ¢ should be increased
the (u, v) coordinates of the measurement points are only within certain bounds to ensure that the quasi-static as-
_ _ sumption is not violated. Both the time interval and the time
e =\ _paem) = \lay) T\ 20 ) (26) shift effectively increase the time scale on which the struc-
tures are required to vary only weakly.
S Ltm\ _ L i +m 27)
b=\txMm) — \ M ¢ ) 3.2 LS approach to planar gradient estimation

The set of discretization parametes, M, £,m) repre- — p jgaqt squares (LS) estimator for planar four-point config-

sents four degrees of freedom of which two are prescribeq 4iions can be constructed by minimising the cost function
by the orbit geometry, namely, the (local) valueslofand
4

m/M =¢. L is the spatial separation between the satellite
orbits, ande indicates how much they deviate from an ideal Z
parallel case, witlke = 1 corresponding to perpendicular or-

bits. In the case of Swarnd, ~ 80 km at the equator (the to- jith respect to the planar gradient estimatgyf and the

tal separation is 160 km) and about less than half this value ionstant valuef,. In a non-mesocentric frame, we need to

the auroral zone. The parametefM = ¢ is not larger than  yeplacer, by (r, —r,). The problem is overdetermined, and

0.015 and can thus be treated as a small parameter.  the algebra is analogous to the full (three-dimensional) gra-
The remaining two degrees of freedom are captured in thgjient estimation problem when measurements fi§m 4

parameters\/ and ¢ or, alternatively, the scaled variables gatellites are available/ggt et al, 2008. The solution can
M/L =pn and£/L = A. We may call themadjustable pa-  pe written in the form

rametersbecauseM or p can be changed through the time

interval At, and¢ or A can be varied by introducing a time Vo f if a4 e+ frat + frar (3)
shift  between the reference times of the two spacecraft,  ~ 2709 = Jada T ada T Ip 4y T 10 4

Such a time shift was employed Ritter and Lihr(2006

[fotro-Sof — 1] (30)

o=1

Ann. Geophys., 31, 19131927 2013 www.ann-geophys.net/31/1913/2013/



J. Vogt et al.: Gradient estimation using two or three spacecraft 1917

where the canonical base vectgrs are (minimum-norm) log10 condition number, £=0.01
solutions of the equatiorRq, = r,. HereR = Zizlrorl ° ' ‘ ‘
is the position tensor. As long as the four measurement points 45
are located in a plane but not on a line, the position tensor
has rank 2, with two positive eigenvaluesg A, (note thatR

is positive definite), and corresponding eigenvectars..

The third eigenvalue is zero, and the eigenvector is normal
to the plane spanned by the four measurement points. The

3

pseudo-inverse @R is then given by 25 1145

35

12.5

Q = (I/raper+ (L/rp ez, (32) 2 1 L s
15 |
and the canonical base vectors are

qo = Qr, . (33)

In (u, v) coordinates, the position tensBris a (2 x 2) ma- 0 1 2
trix with a regular invers&® ! as long as the four measure-
ment points are not collinear. Representations of the tensofig. 2. Logarithm of the condition number of the position tensor
R~! and the vectorqu in (u,v) coordinates are given in Rinterms ofs = ¢/L andu = M/L for e = 0.01.
Appendix A.

The accuracy of the solutiong,, and thus also of the
gradient estimates, is controlled by the condition number. 1

1

0.5

0.5

¢ = A1/ of R. The condition number is conveniently anal- ° i 2V, (fa+ fo)
ysed in(u, v)-coordinates wherR is a(2 x 2) matrix so that + 3 4 B
¢ may be expressed as = m( o a1 (36)
T2 With |ra|2 = L2+¢2, |ra| sinB = L,andL cosg = ¢sing,
¢= exp[arcosl-(— B )] ’ (34) Eq. (10) ofShen et al(2012 can be rearranged as follows:
see Appendix A for a proof. Herg and D are the trace 4.V f ~ i( 1 (fp — fa) — COSB D - Vf)
and the determinant of the matrix, respectively. The condi- sing \ 2|ra|
tion number is a function of 2/ D. Using the expressions in o i (f+ - f_)
Appendix A we obtain T4 Vb A Ja s a
¢ ot
T2 (1+2u%+ p2+22)? (35) —arag e —Ta I = 1y) (37)

2D 2uP[1+4e2(u?+ 23] when the valueg;, and £, are replaced by arithmetic means:
—(fTa —(fta e i

The logarithm of the condition number= c(., ) is dis- /o = s +1,)/2, fa = (fg" + f;)/2. The expressions can
played in Fig.2 for ¢ = 0.01. The ideal case = 1 corre- be combined to .erte the FD 'planar. gradient e;tlmator of
sponds ta. = 0 andy = 1. As long ash is not much larger Shen et al(2012 in (u, v) coordinates in the canonical form
andu not much smaller than unity, the condition number as-
sumes tolerable values. Very large values bave a negative V.f — frpt - - + + -

” o : = + + + 38
effect on the stability of the matrix inversion. In such a case pf = JaPa o Pa + Sy Py + Ty Py (38)
the orbit phases should be adjusted through an appropriat@here the canonical base vectors are

time shiftz as inRitter and Lih(2006. 1 ‘ 1
ot = “artam) _ 1 (—-1xau” (39)
3.3 FD approach to planar gradient estimation “ :I:ﬁ 4L +put ’
1 ¢
Shen et al(2012 employed finite differencing (FD)tocon- + _ (az Tam | _ 1 (1F At (40)
struct a planar gradient estimator for the four-point configu-* ? :tﬁ ap\ +upt ’

ration sketched in FigL. Their formulas (8) and (10) are now ) .
brought into the canonical form. In the following,can be a Ritter and Luhr(2009 also employed a FD approach to

scalar field or one component of a vector field. Time deriva-2PProximate partial derivatives for estimating the FAC den-

tives f, , are evaluated by means of centred finite differencesSiy: They usedv andy to denote the along-track and the
at timer, using a time intervalz: cross-track coordinate, respectively. Furthermore, they ap-

plied a time shift to adjust the orbit phases of satelldes

www.ann-geophys.net/31/1913/2013/ Ann. Geophys., 31, 191927, 2013



1918 J. Vogt et al.: Gradient estimation using two or three spacecraft

andb such that the separation vector £ is perpendicular

1
to the mesocenter velocity, thus effectively enforcing0. 4 = 3 (ra —rH) x(rf =r))
The estimation scheme for partial derivatives is found from 1
Egs. (3) and (5) irRitter and Liihr(2008: +3 (rf —ry) x(ry —r})
9By _ UBy(A) +dB«(B) (41) =4rp x V,At = ALMi . (49)
dx dx(A) + dx(B)
9B, dB.(t1) + dB.(12) 3.5 Force-free constraint for normal derivatives

dy dy(r1) + dy(r2) “42)
where the equivalences with the present notatiorvasev,
y=u,t1 =t,—At, tp =t,+At,dx(A) = dx(B) = 2V, At =
2M, dy(t1) = 2(L + ¢), dy(t2) = 2(L — £). Using the appro-
priate finite differences for B, and dB,, we obtain

The estimators discussed in Se@®<, 3.3 and 3.4 utilise

all the information from measurements of planar four-point

configurations. To construct estimators for derivatives in the

direction normal to the spacecraft plane, one needs to em-

ploy additional information, e.g., in the form of geometrical

3B, By+,a — B, + Bth ~-B, or physical constraints. Two types of geometrical constraints
~ - ) (43) that can be used for this purpose are presented in Jesde

Gl aM

N B* Bt +B- _B- alsoVogt et al.(2009.
9 By ny 20D y.a x,b xa (44) In the auroral context, an appropriate condition follows
dy AL from the observation that electrical currentsare typically

Comparison with Eqs.36) and @7) shows that thé B, /dx aligned with the ambient magnetic fieBl. Since the asso-
andd B, /dy equations correspond to tlie— O limit of the ciated force terny x B in the magnetohydrodynamic equa-

FD formulas ford B, /dv andd B, /du of Shen et al(2012). tion of motion vanishes, we may refer to this condition as
Hence there is no need for a separate assessmentRittte  theforce-free constraintThe FAC densityj; can then be in-
and Lihr(2006 FD method. ferred from the normal current density through
In Appendix A it is found that the FD approach to planar .

four-point gradient estimation differs from the LS approach ji = AJ"A , (50)
only in terms proportional te:
pE=qF + O, (45)  see alsdRitter and Liihi(2008. In the case of circular orbits,
Pr=qf + O). (46) 7 is the radial direction, and thug = j,/sin/ where[ is

the inclination of the magnetic fiel&hen et al(2012 pur-
3.4 Boundary integral approach to curl estimation sued this approach further and showed that all normal deriva-

o _ . tives can be constructed from the planar gradient if the force-
A second approach to FAC estimation mentionedRifer  free constraint and the divergence-free nature of the magnetic
and Luhr(2009 is the boundary integral (BI) method based field are taken into account. In Appendix C these conditions

on Ampere’s integral law are rearranged into the form
1 ~ ~ ~
p = —— @ B-ds 47 oB {nx[(Vox B)x B]} xn R
Sy “7) PP P 3 —(Vp-B)n (51)
n .

where path integration is along the boundary of the atea . ) . ) )

see als®unlop et al(1988. For the polygon associated with  that allows direct comparison with constraint equatidt (
the planar four-point configuration of Fid, the boundary ~and (3). LS estimators foF/, x B andVy- B are found from
integral is most naturally discretized using the trapezoidalthe corresponding gradient formulas:

rule on each of the four legs. The algebra is summarised 4

in Appendix B. A salient conclusion from the analysis con- % x B = an x By | (52)
cerns the equivalence with curl estimation based on the FD o=1

schemes discussed in Se&3, namely, the discrete form of 4

the boundary integral gives exactly the same result as the FD% ‘B = 2‘1“ -B, . (53)
curl estimator formed by combining the appropriate discrete o=1

partial derivatives. Another useful result of the algebra in Ap- 5 estimators are obtained by replacing the canonical base
pendix B is a particularly compact representation of the CUMyectorsigy — po.

rent estimator:

- + - +_ -
I oA [(By —B.)-(ra —r5) 4 Accuracy of gradient estimation schemes
+ - + _ -
— (B —B,) - (ry —r)] (48)  |n assessing the quality of gradient estimators and their ro-
where the area is the modulus of the oriented area bustness against undesirable effects like measurement noise

Ann. Geophys., 31, 19131927, 2013 www.ann-geophys.net/31/1913/2013/



J. Vogt et al.: Gradient estimation using two or three spacecraft 1919

or deviations from underlying assumptions, we consider sep- 4 1/1 1 2
arately the planar gradient (Seétl), the normal derivatives Z 1pol? == <_2 + =+ ﬁ)
(Sect.4.2), and deviations from linearity (See.3). o=1 4\L M= LM

1
4.1 Accuracy of planar gradient estimation = 7 <1+ 1?+ )»2) , (57)

The main sources of error considered in the analysis ofgng for the LS scheme:
four-point Chanteur1998 Vogt and Paschmant998 and

three-point Yogt et al, 2009 gradient estimators are instru- 4 g2 = AM?+ 02+ L% +m?)
mental noise (physical errors) and inaccuracies in the spaceaz_:1 4o = D

craft positions (geometrical errors). To assess their relative 1 1ty 432 4 62,2
importance for planar gradient estimation from Swarm mea- = ( T A e ) ,
surements, we followobgt and Paschmanf1998 and com- 4L2p? 1+e2(u?+22)
pare the instrumental erréB ~ 1nT with |V B|5r wheredr  where D is the determinant of the position tensor, see
denotes the inaccuracy in spacecraft position. The magnetigq, (A3). The FD and LS sets of canonical base vectors dif-
field variation associated with a typical auroral FAC density fer only by terms of orde®(e), hence their amplification
of LUAm™?is [VB| ~10-3nTm*. For LEO satellitessr  factors are identical up & (£2). For the Swarm satellitas

is in the range of several ten meters, hefed|sr is ex- andb, & < 10-2 which implies that the LS and FD estima-

pected to be one to even two orders of magnitude smallef, s shoyig give almost identical results in practice. Figire
than§ B which means that errors due to positional '”accu'displays the product

racies should be negligible compared to instrumental errors.

This observation simplifies the error analysis considerably. / 4 1[4 (L4 (2 + 22 4+ 6222
We first consider the three-spacecraft estimator of the in- Zlqa|2> "2 (Z Ira|2> = ATt 222
stantaneous (not necessarily quasi-static) planar gradient ay =1 o=1 AL e+ 291
introduced byvogt et al.(2009. The accuracy of the method ¢ ' the error amplification factor of the LS estimator
was studied in the same paper (Sect. 5.2 and Appendix B)ormajised by the mean square inter-spacecraft distance
using an error analysis framework introduced ®@ganteur (1/4) 24_1|r0|2_ The normalised error amplification factor

(1998 that essentially rests on the algebraic structure of the,f ihe LJS_ estimator turns out to be identical it /4D
gradient estimator. Assuming the instrumental errors to b& here 7 and D are the trace and the determinant, respec-
mutually uncorrelated and isotropic, the covariance of thetively, of the position tensaR, and thus shows the same be-
planar gradient vector of a componeBif of the magnetic  ayigur as the condition numbersee Sec3.2 Configura-
field is given by tional error amplification occurs most prominently for large

T 5 values ofA = ¢/L and hence can be reduced through orbit
<5[VDBJ‘]5[VPB./] > = (6B)°Q (54)  phase adjustment.

Significant differences between the error amplification

whereQ = 23:1q0ql is the reciprocal tensor. In the ex- factors of the LS and FD estimators are noticed only for

o

(58)

(59)

pression for the square magnitude error larger values ok. To illustrate the effect, Figd shows for
¢ = 0.5 the error amplification factors of the FD (left panel)
<|8VpBA,~|2) = ((SB)Ztrace(Q) (55) and the LS (right panel) planar gradient estimators, both nor-
malised by the mean square inter-spacecraft distance. Here
instrumental errors are amplified by the factor the LS estimator turns out to be more robust than the FD es-
3 timate with respect to error propagation.
_ 2 Another possible source of error concerns the assumption
traceQ) = ;'q‘rl ' (56) of quasi-static structures. With three spacecraft, planar gra-

dients can be obtained also for spatial structures that un-
For details, se®ogt et al.(2009. dergo at least slow temporal changes. In the case of planar
Now we look at the FD and LS four-point estimators of four-point configurations realised with only two spacecraft
quasi-static planar gradients presented in S&c8and3.2 a and b, however, the velocitied,, and V;, of the space-
Since each estimator is available in canonical form and thugraft relative to the spatial phenomenon of interest must be
in the same algebraic structure as the three-spacecraft scherkgown. Using data from the three-spacecraft Space Technol-
discussed in the previous paragraph, both FD and LS estimasgy 5 mission\Wang et al(2009 studied the motion of FAC
tors can be studied in the same way as before. One just need$ieets in the auroral zone. Typical values are in the range of
to insert the appropriate canonical base vectors to obtain the few 100 ms?, equivalent to several percent of the space-
error amplification factors for the FD scheme: craft speed, thus introducing an error of the same small mag-
nitude. More critical may be Alfvénic structures propagating
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log10 LS error amplification, €=0.01 log10 FD error, €=0.5 log10 LS error, €=0.5
5

w

N

[

0 2 4
A

Fig. 3. ngarithm °f2 the normalised error amplification fac_tor Fig. 4. Logarithms of the normalised error amplification factors

(Z_G lgo] _)-(Z(7 |ro|¢)/4 of the least squares planar (LS) gradient >, |Pa|2) (X, |r6|2)/4 and(y, |q5|2) (3, |ra|2)/4 of the

estimator in terms of = ¢/L andu = M/L for ¢ = 0.01. finite differences (left panel) and the least squares (right panel) pla-
nar gradient estimators, respectively. Both error measures are given

. o . . interms ofA =¢/L andu = M/L and fore = 0.5.
along the ambient magnetic field with speeds in the range

of 100 km L. Attributing the resulting change in the mea-

sured magnetic field to the spatial structure could lead to4.3 Nonlinearity and sub-scale structures

much larger errors, therefore, efforts should be made to iden-

tify Alfvénic structures using both magnetic and electric field The first three terms of the Taylor expansion of a two-
data. dimensional scalar field can be written as follows:

4.2 Accuracy of normal derivative estimation f(r) = fot (r—ro) G+ }(r —r)TH(r — o) (60)
o e} 2 o] o

The use of constraint equations in the reconstruction of nor- , . L

. - where the first two terms constitute the corresponding linear
mal derivatives means that an additional source of error, ; . X . .
. . - field, G = Vp f is the gradient, andi is the Hessian matrix
comes into play, namely, when the constraints are not satis- 2 . .
. . . . . of second-order derivatives. Without loss of generality, we
fied exactly. For a detailed discussion of the two geometrical

constrainte L V f ande| £ V f, seeVogt et al.(2009. In
brief, the angley between the normal directiofa and the
true gradientv f is found to be of key importance. Further-
more, error indicators that should not become too small ar

€ x | for the parallel constraird] + V f, and|é - 4| for the the condition is equivalent t§_, g, = 0 (null vector) and

perpendicular constraiit L V.f' : Y qor] =1 (identity matrix). In Appendix A it is shown
For the force-free constraint, the error introduced by a non-4-=° . . )
. i . . . that linear LS estimators are consistent by construction. For

zero forcej x B is given in Appendix C. The error magni-

. : RN the FD gradient estimators discussed in S8, the con-
tude assumes its maximum valugj, /n - B when the force o . I . .
g - ditions are easily verified i, v) coordinates. Consistency
vector is in the spacecraft plane. Hgeis the current com-

ponent perpendicular to the magnetic field. For Swarm, the|mplles at least first-order accuracy in the sense that the esti-

i oA o mated gradient differs from the true gradient only in terms
denominatom - B will not be far from unity in the auroral : . . 2
; that are linear in the set of discretization parameters such
zone which means that here the method should be reason- .
: : .~~~ "as the separation lengtlisand M. Second-order accuracy
ably robust against errors. At low latitudes, normal derivative . . : . o
; . : is achieved when a gradient estimator eliminates also the
estimates should be more cautiously interpreted. . ) . .
guadratic term in the Taylor expansion. For the four-point
FD and LS estimators of Se@&.3 the algebra is straightfor-
ward but very lengthy. The final result for the FD estimator

can be written as

may identify the reference position vectay with the origin
of the mesocentric coordinate frame, thys=r, = 0.

Linear gradient estimators are called consistent if they re-
eProduce the true gradier@ = V f when applied to a gen-
eral linear field. In canonical form with base vecters,

Ann. Geophys., 31, 19131927, 2013 www.ann-geophys.net/31/1913/2013/
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Cluster FGM, 23 Jan 2003
————

m ><qu(M2_£2) - fuuLm)

Vol = (1
pf2 LM fuuL2 + fuvLm

2 42y _
:sL(fuv(l}W —i»}ukauu)‘) (61)

With f,,, = 82 £/0u?, fun = 82 f/dudv, and fo(r) = %rTHr.
Using a curvature length scale; to approximate the sec-
ond derivatives f,, fuv ~ f«/L2, we find that, although
second-order terms do not cancel exactly, they are propor-—
tional to O(¢) and thus small if the discretization parameters
(L, M, ¢,m) do not exceed the curvature length scaleFor
Swarm the discretization scheme is thus effectively second-
order as long as we are not concerned with inhomogeneity »
scales that are smaller than the spacecraft separations, i.e.;
with sub-scale structures.

[=
—

>
m

B

Bz,

5 Example

The gradient analysis framework proposed in this paper is
tailored to the two Swarm satellites orbiting the upper iono-
sphere and auroral zone in an east-west side-by-side con-
figuration. To demonstrate the analysis methods, one would
ideally use multi-spacecraft FAC observations from such a -10
configuration in the LEO environment with its high ambi- 5 10 15
ent magnetic field. Unfortunately, past and ongoing multi- Seconds since 01:38:45 UT

issi i telEgcoubet et al.199%) or
spacecraft missions like Clusteeg a 7 Fig. 5. Cluster FGM data (solid) and boundary profile (dashed, ma-

Space Technology 5 (e.gSlavin et al, 2009 produced genta) used for demonstrating the two-spacecraft gradient analysis

crossings of the auroral zone in string-of-pearls Conflgura'framework. The magnetic field measurements of the four Cluster

tions. To test the different types of constraints for computingSloacecraft (S/C 1: black, S/C 2: red, S/C 3: green, S/C 4: blue) are
normal derivatives, we need to consider current structures ijiven in GSE coordinates.

other geospace regions that share the main characteristics of
auroral current sheets, i.e., the structures should be planar,
force-free, and stationary in a well-defined frame of refer- The accuracy of these estimates is controlled by the geome-
ence. As shown in Appendix D, the force-free condition is try of the Cluster tetrahedron as given by its inter-spacecraft
satisfied at a planar plasma boundary characterised by théistanceL = 4190 km, planarityP = 0.51, and elongation
profile P, normal unit vecto§, and speed , if both the mag-  E = 0.45, as well as by the timing accuraéy~ 0.1s. The
nitude change\|P| and the normal compone# are suffi-  resulting uncertainties in boundary orientation and speed can
ciently small. Directional discontinuities in the interplanetary be obtained using the error formulas and Figs. 1-%dgt
magnetic field typically meet these requirements leetter et al.(2011), and they turn out to bg 2° and< 3 %, respec-
et al. (2004. Cluster FGM measurements at such a plasmatively. Hence the reference frame in which the plasma struc-
boundary are displayed in Fi§. The transits of S/C 2 (red) ture appears stationary is indeed well defined. Furthermore,
and S/C 3 (green) happen at approximately the same timéhe similarity of the four boundary profiles as displayed in
and (in the reference frame moving with the structure) in aFig. 5 strongly suggests that the structure is planar on the
side-by-side configuration, so that the event is well suited forinter-spacecraft separation scale. Fighishows that the field
the demonstration of two-spacecraft gradient estimators.  magnitudes vary only little during the whole time interval,
Information from all four Cluster spacecraft are used to de-and the normal componeni are small, in particular until
termine the key boundary parameters and their errors throughbout 01:38:55 UTC, so that we can assume the overall struc-
crossing time analysis as described Vgt et al. (2011). ture to be force-free, see Appendix D. A more refined anal-
We obtain the following values for boundary speed andysis based on the decomposition of the boundary curl profile
orientation: into components parallel and perpendicular to the local mag-
_ netic field vector is presented below, see Fglt turns out
U= 613kms™, (62) that a small portion of the boundary is not force-free, with
§ = (—0.9603 —0.1972 —0.1975" . (63)  significant effects on the corresponding curl estimator.
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Cluster FGM, 23 Jan 2003 Two-S/C estimates of curl(B): x—component
10 [ T T T
8f - -
. Bmmag £
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— 6f ] £
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E 4 ] :
=) L o
© L
E 2f
m
g 5 6 7 8 9 10

Seconds since 01:38:45 UT

Two-S/C estimates of curl(B): y—component

5 10 15
Seconds since 01:38:45 UT

Fig. 6. Magnetic field magnitude and normal component for the
Cluster discontinuity crossing on 23 January 2003, 01:38:45UTC
to 01:38:55UTC (S/C 1: black, S/C 2: red, S/C 3: green, S/C 4:
blue).

curlB_y [nT/Mm)

5 6 4 8 9 10
The boundary profile? = P(¢) superposed in Figb was Seconds since 01:35:45 UT
obtained through averaging the shifted time seBgs The
derivative P = dP/dr (computed through finite differenc-
ing) and the boundary slowness vectar=§/U yield the

following estimator for the curl of the magnetic field:

Two-S/C estimates of curl(B): z—component

16

VxB =—-mxP (64)

seeVogt (2014 and Appendix D. The three components of
the resulting boundary curl profile are the magenta lines in
Fig. 7, as they should be observed at the mesocenter of the
two spacecraft S/C 2 and S/C 3. After entering the boundary . . .
at 01:38:52 UTC, the curl increases very rapidly for about 5 6 v 8

0.3 s, followed by a much slower decrease. Seconds since 01:38:45 UT

Displayed in the same Fig. are cur.l estimates produced Fig. 7.Magenta: boundary curl profilem x P derived from four-
by the two-spacecraft LS scheme using FGM measurem_en oint crossing time analysigi( slowness vecto®: boundary field
from Cluster S/C 2 and S/C 3. Three different constraintsyofile). Red, green, blue: curl estimates based on FGM data from
were applied to compute the derivatives normal to the planene two Cluster spacecraft S/C 2 and S/C 3 on 23 January 2003,
spanned by the spacecraft separation vector and the velo@1:38:50 UTC to 01:38:55 UTC, using the time interal = 0.4s,
ity vector, namely, (a) the gradient is assumed to be parallefor three different types of constraints, namég), gradient parallel
to the boundary normal unit vect®r(red), (b) the gradient to the boundary normal unit vector (red®) gradient perpendicular
is assumed to be perpendicular to the (local) magnetic fieldo the (local) magnetic field vector (gree(g) force-free condition
vector obtained as the average of the measurements at tHBlue)- All curl profiles are given in the GSE frame.
two spacecraft (green), and (c) the force-free condition is as-
sumed (blue). The three constraints yield almost identical re-
sults for the GSB component of the estimated curl because essentially along the axis, so the unit vector normal to the
this component is determined by derivatives in the four-pointfour-spacecraft configuration was mainly along thaxis.
plane, i.e., by in-plane gradient estimates that are not af- The time interval chosen for the analysis was=0.4s
fected by the conditions to construct the out-of-plane deriva-(equivalent to nine samples), so the differences between lead-
tives. Note that the spatial separation of S/C 2 and S/C 3 wafg and trailing positions in the quasi-four-point configura-
mostly in GSEz direction, and the boundary was moving tion were 2Ar=0.8s. Assuming an instrumental error of

curlB_z [nT/Mm]

] 10
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Curl component magnitudes or by two spacecraft and the orbital velocity are utilised to
r r r r estimate the planar gradient component. The normal compo-

nent is constructed in a second step from a suitable geomet-
rical or physical constraint in algebraic form. Both steps are
independent in the sense that planar gradient estimators and
constraints for the construction of normal derivatives can be
freely combined.

For probing quasi-static structures by means of four-point
configurations generated by two spacecraft on neighbouring
orbits, available FD estimators of the planar gradient were
brought into a canonical form, and compared with a new LS
planar gradient estimator. Comparison of the canonical base
vectors revealed that the FD estimators proposeditter
and Liuhr (2009 and Shen et al.(2012 are algebraically
identical. Furthermore, they yield the same numerical ap-
NN, 7 proximation of electrical currents as the boundary integral
5 6 v 8 9 10 app_roach. The new LS planar gradien_t estimator was _shown

. to differ from the FD estimators only in terms proportional
Seconds since 01:38:;45 UT o o
to the parameter combinatien= m /M which is of the order
Fig. 8.Components of the curl estimatewm x P derived from four- 1072 for configurations generated by the Swarm satellites
point crossing time analysis: parallel (magenta) and perpendicularndb. We studied statistical errors associated with measure-
(black) to the (local) magnetic field vector. ment noise, and discretization errors induced by deviations of
the actual field from a linear model. The results suggest that
the adjustable time intervalr should be chosen to make the
the orders B < 0.5nT, the configuration yields geometrical resulting along-track separatidf of measurements compa-
errors for the planar gradient of aboiB - /Za Igo12 < rable with the across-track discretization lendtlgiven by
1nTMm-L. Shortly before and after the rapid increase atthe separation of the two _satellltes. For the Syvarm mission
01:38:52 UTC, actual deviations of the two-spacecraft CurIwhereL changes substantially along the satellite orbits, the

estimates from the boundary profile are larger. Fheom- time interval Ar should thus be continuously varied in ac-
' Lﬁordance withL. Furthermore, orbit phase adjustment of the

because the rapid increase is not resolved by the finite dif Vo satellites through a time shiftcan significantly reduce

ferencing window of 0.8s. For the geometrical (parallel andthe errors of the planar gradient estimators studied here. Note

perpendicular) conditions, this effect is also present in thethat such an adjustment requires the quasi-static assumption
o be valid over a longer time scale.

component of the curl. The overall shape is reproduced buE . L .
: P P P For the construction of normal derivatives we considered

the resulting peak values turn out to be lower than in the curl

estimate derived from the four-spacecraft averaged boundarﬂ:ree. types o'f'constralnt equations, namely, the tW.O geo-
etrical conditions of/ogt et al.(2009, and the combina-

profile. tion of force-f d di f diti int
Unlike the geometric conditions, the curl estimate pro- lon of force-lree and divergence-iree conditions as Intro-

duced with the force-free constraint yieldg-aomponent at duced pyShen.et al(2012. The. latter was rewritten to ease
01:38:52 UTC that is far too large to be explained by differ- comparison with the geometrical constraints, and to anal-

encing scale effects. FiguBshows that the force-free condi- yse itg robustness against errors wheq the underly?ng as-
tion is not satisfied at that time. The curl component parallelSumptlons are not exacily met. In practice, the predictions

to the local magnetic field (magenta) is much larger than theof different constraints may be compared among each other

perpendicular component (black) only abat®.7 s around and with ground-based instruments, thus facilitating consis-
01:38:53 UTC, and during this time interval theomponent tency checks and error analyses. This approach was illus-

of the two-spacecraft estimate is indeed close to the boundar ated for a transition of Fhe Cluster te_trahedron through a
curl profile. lanar plasma boundary in the solar wind. A reference curl

profile was constructed from four-point crossing time anal-
ysis. Two-spacecraft curl estimates were produced for three
6 Summary different types of constraints. As expected, large errors can
result when constraint equations are not satisfied. Further-
In preparation of the three-satellite mission Swarm wheremore, it was demonstrated how the finite spatial resolution
two spacecraft move on neighbouring orbits, this paper pro-of the satellite array affects curl estimates when sub-scale
vides a generic framework for gradient and FAC estimation.structures are present.
Measurements in the plane spanned by either three spacecraft

—
[¢)]

—
o

(S

curlP_para, curlP_perp [nT/Mm]

o
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Appendix A which implies that linear LS gradient estimators are consis-
tent by construction, see also SetB.

Least-squares planar gradient estimator for four-point To prove the formula for the condition number of2ax 2)

configurations matrix given in Eq. 84), we denote their eigenvalues as

. . - _ andi, and make use of the fact that the determinant A1 -
In mesocentriqu, v) coordinates, the position tensor is the , and the tracd” = A1 + A, are invariant under coordinate

(2 x 2) matrix: transformations. We then form
4 2 2 2 2 2 -1
Lc4+m Le T AS 4+ 202 + A c+c

R= rrT:4< > — =1 2 = 1 All

2.7 Lt  M?+¢2 2D 20102 > (AL1)

— 42 (1 + 2 A ) (A1) wherec = A1/12 is the condition number. With the (natural)
Ao pPtal logarithmx = Inc we may write

The inverse of the matrix can be written as follows T2
Rfl _ i M2 +e2 —Le 5 -1 = (ex + e_x) = coshx (A].Z)

T D\ Lt L?*4m? . _

which finally gives
1 (u2+k2 - > (A2)
=22\ — 2,2 ) - T2
4Lp°D rol4etu Inc = x = arcos)—(ﬁ —1) (A13)
where the determinant & is
D = 16(L2M? + M?m? + €?m?) and thus Eq.34).
— 16142 [1+ £2 (uz + xz)] (A3)
Appendix B

andD = D/16L =1+ &2(u?+ A2). The canonical base
vectorsgt = i ff g7 =R~ are Equivalence of FD and BI curl estimation schemes

L A (—LM2FLMOT M2 O%m using planar four-point configurations
=D ( +L2M + Lm + Mm? — tm? ) The planar four-point configuration sketched in Figiatu-
1 “1xipntxepFzeriyt rally suggests to evaluate the boundary integrd - ds by

= ALD (:I:,ul +eapn o2y — 82)»> (A4) means of the trapezoidal rule on each of the four legs:

4 ( LM?2FLME+ M?m =+ 02m B-+B" Bf + B}
+_ 7 + e~ Za +b5; e et a b . _
% =7 (j:LZM + Lém + Mm? + tm? (A5) %B ds v o= (g =)+~ =)
B} +B; _ B, +B, _ _
—b b rf b "a (r, —ry) (B1)

(ry —r,) +

1 < 1xapnTxtepn+erzu? ) (A6) 5 5

T aLD \En T e £ 24 6% o o
) ) This yields sixteen dot products of which eight cancel. The
One compares with Eqs39) and @0) to find that the LS ap- o maining eight terms can be rearranged to yield
proach to planar four-point gradient estimation differs from

the FD approach discussed in S&Bonly in terms propor- ?gB s ~ } [(B+ _ B‘) _ (r+ _ r_)
tional toe: 2\7h a a b

Pr=qf + 0@, (A7) —(By —B,) (rj —r7)] - (B2)
pzt = qlf + O(e) . (A8) Inserting Eqgs.19) and @0), we obtain
Note that¢ < M is the main requirement for this ordering to - —L
be meanlngful The condition may hold everLif- M is not —rp =2(rat VA =2 M—¢ (B3)
met, e.g., when for the study of thin elongated structures one L
chooses a small time intervalr to improve the along-track rj} —r, =2(ra+ ViAr) = 2 <M +£> ; (B4)
resolution.

The algebra of LS gradient estimators further yields and thus for the discrete version of the boundary integral

— p1 —
an —ZR =R ng =0, (A9) yfg.dsz@;r’b_gu—’a)(_mju (BIb_Bv_,a)(M_Z)
— l _ _

Z% ZR R=1 (A10) —(Bfa—Br,)L = (Bfa-By,)M+0 . (B9
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The oriented areal = An is composed of contributions
from two triangles:

Ar=3 (s —r) < (rf —rl) (B6)
A = %(r;' —ry)x(r; —ry) . (B7)

Using again Egs.1Q) and @0), the expressions can be rear-
ranged to yield

Al =2At [V xra—Vix VAAt+ VA xral,
A = 2At [V xra+ Vi x VAAL — VA xFA],

(B8)
(B9)
thusA = A1+ Ay = 4ra x VoAt = 4L Mn. The modulus

iSA=4LM.
The resulting curl estimator

1¢B.ds%_Blta+Bu_,b_B;—,b BLZa_(M_‘_E)BIJ[a
A aM ' AM  AM ' AM ALM
(M+0B,, (M-0B, (M—-0B;,
: b : B10
M T am aLM (B10)

is identical with the combination of partial derivatives

0B, 0B,
ou ov

(B11)

estimated using the FD method:

aB, . 4.
3 =u-VB, ~ Zu'poBv,U
u o=1
= g - M+ OB, —(M—0B],
+(M—£)B,jb+(M+e)B;b], (B12)
9B . 4.
_8u=_v'VBu%_Zv'p0Bu,o
v o=1
1 _ _
= B+ B =B+ B, (B13)
Appendix C

Force-free and divergence-free constraints

As demonstrated b8hen et al(2012, the conditions

(VxB)xB =0,
V-B=0,

(C1)
(C2)

allow to construct the normal derivativeégin = n - V of the
magnetic fieldB from the planar gradienVpB. We now

1925

Like any other vector, the normal derivati§® /on can be
decomposed into its planar component (perpendicula) to
and its normal component (parallel4az) as follows:

B oB B
— =[x — 7 n-— | n. C3
™ (nxan>xn+<n 8n>n (C3)
The divergence-free condition
. 0B
ozv.B:vp.B+n.a_ (C4)
n

immediately gives the normal component in term&/gf B.
The planar component is found from the force-free condition
usingV = Vp+ Vh = Vp +1(3/9n) andd/on =n - V:

0B
0=<Vpr+ﬁxa—>xB. (C5)
n
Cross-multiplication withz yields
A~~~ OB R
(n~B)<nx8—> = —nx[(Vpr)xB] (C6)
n

where the identityt x (b x ¢) = b(a - ¢) — c(a - b) was used.
Another cross-multiplication witl gives the final form of
the planar component ofB /on:

(@) ~ {Ax[(Vpx B) x Bl} x
on p_ h-B '

(C7)

The derivation further demonstrates which error results when
the observed structure is not exactly force-free. We note
woj =V x B, measure the mismatch througk: j x B, and
obtain for the resulting error i6B /9n:

5 dB\  pojiAxt)xn
on ) Ai-B

(C8)

wherej = |j|. The error is zero only in the exceptional case
of the force vectoyy x b and thus alse being parallel to the
normal direction, i.e., when both the electrical current and
the magnetic field are in the spacecraft plane. The error is
maximum in magnitude when the force vector itself is in the
spacecraft plane, then

s(OB) _ _moit _  pojltls _ pojL g
on A-B B

i (C9)

A

n-B n-

where|t| = |} x B| =sin/(j, B), andj, = j|t| is the cur-
rent component perpendicular to the magnetic field.

Appendix D

show that the resulting constraint equations can be writterf-orce-free planar structures

in the form given by Eq.%1) that facilitates comparison with
other constraint equations.

www.ann-geophys.net/31/1913/2013/

We show that a planar plasma boundary characterised by the
profile P = P(¢), normal unit vectos, and speed/, is ap-
proximately force-free if both the magnitude charyygP|
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