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Abstract. Using time series prediction methods, it is pos-
sible to pursue the behaviors of earthquake precursors in
the future and to announce early warnings when the differ-
ences between the predicted value and the observed value
exceed the predefined threshold value. Support Vector Ma-
chines (SVMs) are widely used due to their many advantages
for classification and regression tasks. This study is con-
cerned with investigating the Total Electron Content (TEC)
time series by using a SVM to detect seismo-ionospheric
anomalous variations induced by the three powerful earth-
quakes of Tohoku (11 March 2011), Haiti (12 January 2010)
and Samoa (29 September 2009). The duration of TEC time
series dataset is 49, 46 and 71 days, for Tohoku, Haiti and
Samoa earthquakes, respectively, with each at time resolution
of 2 h. In the case of Tohoku earthquake, the results show that
the difference between the predicted value obtained from the
SVM method and the observed value reaches the maximum
value (i.e., 129.31 TECU) at earthquake time in a period of
high geomagnetic activities. The SVM method detected a
considerable number of anomalous occurrences 1 and 2 days
prior to the Haiti earthquake and also 1 and 5 days before the
Samoa earthquake in a period of low geomagnetic activities.
In order to show that the method is acting sensibly with re-
gard to the results extracted during nonevent and event TEC
data, i.e., to perform some null-hypothesis tests in which the
methods would also be calibrated, the same period of data
from the previous year of the Samoa earthquake date has
been taken into the account. Further to this, in this study, the
detected TEC anomalies using the SVM method were com-
pared to the previous results (Akhoondzadeh and Saradjian,
2011; Akhoondzadeh, 2012) obtained from the mean, me-
dian, wavelet and Kalman filter methods. The SVM detected
anomalies are similar to those detected using the previous

methods. It can be concluded that SVM can be a suitable
learning method to detect the novelty changes of a nonlinear
time series such as variations of earthquake precursors.

Keywords. Ionosphere (Ionospheric irregularities)

1 Introduction

Due to the nonsystematic behavior and intrinsic complex-
ity of earthquake anomalies that is related to the complica-
tion of its physical mechanism, earthquake prediction has be-
come a difficult yet challenging task. Appropriate detection
of the novelty phenomena in a nonlinear time series, such
as seismo-ionospheric precursors, could lead to reduction of
the uncertainty in the estimation of earthquake parameters
(i.e., time, location and magnitude). Since the variations of an
earthquake precursor depend on many nonseismic parame-
ters and cannot be easily acknowledged using the earthquake
physical mechanism, the mathematical methods implement-
ing pattern recognition independent from the physical mod-
els could be developed.

Support Vector Machines (SVMs) are widely used due
to their many advantages for classification and regression
tasks. In previous studies it has been indicated that in con-
trast to classical and intelligent methods such as Autoregres-
sive Moving Average (ARMA) and Artificial Neural Net-
work (ANN), the SVMs can make models in a much more
efficient way, using less data than the other methods (Thissen
et al., 2003). It can be shown that, if the difference between
the predicted value using the SVM method and the observed
value exceeds the predefined threshold value, then the ob-
served unusual precursor value in the absence of nonseis-
mic effective parameters could be regarded as earthquake
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174 M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection

anomaly. Liu et al. (2004) statistically described the tempo-
ral parameters of the seismo-ionospheric precursors detected
during 1–5 days prior to the earthquakes using TEC (Total
Electron Content) data for 20 major earthquakes in Taiwan.
Xu et al. (2011) reported the existence of the unusual changes
in latent heat flux and TEC 3 days prior to the powerful To-
hoku earthquake of 11 March 2011. Klimenko et al. (2011)
suggested that such great TEC enhancement observed 3 days
prior to the Wenchuan earthquake could be explained by
combined action of seismogenic vertical electric field and in-
ternal gravity waves (IGWs) generated by the solar termina-
tor. After removing the influence of solar radiation origin in
GIM (Global Ionospheric Map) TEC, the analysis results of
He et al. (2012) show that the TEC around the forthcoming
epicenter and its conjugate were significantly enhanced in the
afternoon period of 8 March 2011, 3 days before the Tohoku
earthquake.

1.1 TEC precursor

The effects of the preseismic activity on the ionosphere
can be investigated using the ionospheric electron density
variations. These anomalies usually happen in the D-layer,
E-layer and F-layer and may be observed 1 to 10 days
prior to the earthquake, and continue a few days after it
(Hayakawa and Molchanov, 2002; Pulinets and Boyarchuk,
2004; Akhoondzadeh, 2011).

Currently, thousands of GPS receivers are used to monitor
the Earth’s surface deformations. TEC data retrieved from
GPS measurements have made a considerable contribution
to the understanding of seismo-ionospheric variations (Liu
et al., 2004). In this study TEC variations have been ana-
lyzed using GIM data provided by the NASA Jet Propulsion
Laboratory (JPL). The GIM is constructed from a 5◦

× 2.5◦

(longitude, latitude) grid with a time resolution of 2 h.
Hypotheses exist to explain the seismic electromagnetic

mechanism based on geophysical and geochemical processes
(Pulinets and Boyarchuk, 2004). Preseismic electric field and
its polarity cause the electrons in the F-layer to penetrate to
lower layers and therefore to create an anomaly in the iono-
spheric parameters. The thin layer of particles created be-
fore earthquakes due to ions radiation from the earth has a
main role in transferring the electric field into the atmosphere
and then to the ionosphere. The vertical electric field on the
ground surface is transformed into an electric field perpen-
dicular to the geomagnetic field lines. This zonal component
leads to plasma density anomalies, which are observed prior
to the earthquake (Namgaladze et al., 2009; Pulinets, 2009).

1.2 Geomagnetic indices

The ionospheric parameters are affected by solar geophys-
ical conditions and geomagnetic storms especially in the
equatorial and polar regions. Also, auroral activity has an
important role in the mid-latitude ionosphere perturbations.

The ionosphere current and equatorial storm-time ring cur-
rent in periods of solar–terrestrial disturbances produce sig-
nificant geomagnetic field disturbances. The measured such
parameters may display variations even in absence of seis-
mic activity making it difficult to separate preseismic iono-
spheric phenomena from the ionospheric disturbances due to
the solar–terrestrial activities. Therefore, to discriminate the
seismo-ionospheric perturbations from geomagnetic distur-
bances, the geomagnetic and solar indices indices (i.e., Dst,
Kp and F10.7) accessed through NOAA (http://spider.ngdc.
noaa.gov) have been checked. The Kp index monitors the
planetary activity on a worldwide scale, while the Dst in-
dex records the equatorial ring current variations (Mayaud,
1980).

2 Methodology

Classical models such as autoregressive moving average
(ARMA) and intelligent methods such as artificial neural
networks (ANNs) are well known methods for time series
prediction. The ARMA method is easily and quickly imple-
mented, and it efficiently acts for linear solutions. ANNs are
a class of intelligent systems that can discover patterns with
a few a priori assumptions and learn any complex functional
relationship from the data to model a phenomenon. But these
methods do not lead to unique solutions due to differences in
their initial parameters, including the number of pattern in-
puts, lag values, the number of hidden layers, and their num-
ber of neurons.

SVMs have been applied for classification and regression
tasks but their principles can be extended feasibly to the time
series prediction. In linear learning machines such as SVMs,
a linear function (f (x) = wx+b) is used to solve the regres-
sion problem. The best line is defined to be that line which
minimizes the following cost function (CF) (Thissen et al.,
2003; Muller et al., 1997):

CF= 0.5‖w‖
2
+ C

N∑
i=1

Lε(xi,yi,f )

Subject to:yi − wxi − b ≤ ε + ξi;

wxi + b − yi ≤ ε + ξ∗

i ;

ξi ξ
∗

i ≥ 0

, (1)

wherew is a weight decay which is used to regularize weight
sizes and penalizes large weights. Since the large weights
increase the variance and therefore decrease the efficiency
of the SVM, using this regularization the weights meet the
smaller values. The second part of the cost function is a
penalty function which penalizes errors larger than±ε us-
ing a so calledε-insensitive loss functionLε for each of the
N training points. The positive constantC indicates the tol-
eration value ofε deviations. Errors exceeding the±ε are
depicted with the so-called slack variablesξ andξ∗, respec-
tively. The last parts of the Eq. (1) are constraints showing
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M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection 175

the predictive errors between the predictions (wxi + b) and
true values (yi).

The minimization of Eq. (1) can be done by applying La-
grangian theory. Based on this theory the weight vector is
equal to the linear combination of the training data:

w =

N∑
i=1

(αi − α∗

i )xi, (2)

whereαi andα∗

i are Lagrange multipliers that are related to
a specific training point. The asterisk again indicates differ-
ence above and below the regression line. Using introducing
of this equation into the linear function,f (x) = wx + b, the
following solution is derived for an unknown data pointx

(Thissen et al., 2003):

f (x) =

N∑
i=1

(αi − α∗

i ). 〈xi,x〉 + b

=

N∑
i=1

(αi − α∗

i ).K(xi,x) + b

K(xi,x) = 〈φ(xi),φ(x)〉 , (3)

whereK is the so-called kernel function.
Burges (1998) has shown that the solution of this equation

is global and unique because the cost function is strictly con-
vex. Since some Lagrange multipliers are zero, not all train-
ing points contribute to the solution. In other words, if these
training points with zero Lagrange multipliers are not intro-
duced, the same solutions are obtained. Training points with
nonzero Lagrange multipliers are called support vectors and
represent the shape of the solution (Thissen et al., 2003).

This method can be extended by mapping the dataxi into
a high-dimensional feature space via a nonlinear mapping
φ(xi). Without full knowledge ofφ(xi), using the kernel
function, the data can be mapped into a feature. The most
used kernel functions are the Gaussian RBF kernel:

K(xi,x) = exp(−‖x − xi‖
2/2σ 2). (4)

The values ofε andC and also the type of the kernel and
its parameters are tuned by the user, and the aforesaid pa-
rameters can be chosen based on an optimized solution. If
time series prediction is seen as autoregression in time, then
a regression method can be used for this task (Thissen et al.,
2003).

A time series is a set of time-ordered observationsxt ,
each one being recorded at a specific timet . To start pre-
diction process by SVMs, one input object (xi) to the
SVM is a time series of consecutive measurements:xi =

{x(ti),x(ti − s), ...,x(ti − τs)}, wheres is the sampling time
step (i.e., 1 day) andτ determines the time window and thus
the number of elements of the input vector. The output of the
regression,yi , is equal tox(ti + h), whereh is the predic-
tion horizon. The parameter ofh is selected as 3. When per-
forming time series prediction, the input window becomes an
additional tunable parameter (Thissen et al., 2003).

To implement the SVM method, training, validating and
testing data were initially set respectively to 40 %, 20 % and
40 % of all TEC data. The parameter ofτ is selected as 2.
The input patterns in the SVM method are

x4 = f (x1,x2,x3)

x5 = f (x2,x3,x4)

...

xN = f (xN−3,xN−2,xN−1). (5)

At each step, using the training data, the SVM method is im-
plemented and then the predictive error is minimized during
the validation of data. The prediction error (PE) can be writ-
ten as

PE=

N∑
i=4

(xi − x̂i), (6)

wherexi andx̂i are the actual value and the output from the
SVM method, respectively.

Finally, the TEC value is predicted and then is compared
to the true value in the testing set. Increasing the size of the
training set does not lead to a decrease of the predictive error.
The training set is used to determine the best model settings
while the test set is used to determine the final predictive er-
rors for each prediction horizon (Thissen et al., 2003). At
the next step, the size of the validating set increases by the
order of 1 and also the size of the testing set decreases by
the order of 1. The SVM algorithm is executed and the TEC
value is estimated again for the next time. The process is re-
peated until the all of TEC values are predicted. In the case
of the testing process, if the value ofDXi (i.e., the difference
between the actual valueXi and the predicted valuêXi) is
outside the predefined boundsµ ± 1.5× σ , (µ andσ are the
mean and the standard deviation ofDXi values) the anomaly
is detected.

3 Implementation

The implementation has been performed on three earth-
quakes as case studies (Table 1). The first case study
is an earthquake which occurred near the northeast coast
of Honshu in Japan with a magnitude ofMw = 9.0 on
11 March 2011 at 14:46:23 LT (UTC= LT − 09:00). The
second one is about an earthquake that happened in Haiti
with a magnitude ofMw = 7.0 on 12 January 2010 at
16:53:10 LT (UTC= LT + 05:00). The third case study is
about a strong earthquake of magnitudeMw = 8.1 that oc-
curred in Samoa Island on 29 September 2009 at 06:48:11 LT
(UTC= LT + 11:00).

3.1 Tohoku earthquake

Figure 1a illustrates the variations of Kp geomagnetic in-
dex during the period of 1 February to 21 March 2011. An

www.ann-geophys.net/31/173/2013/ Ann. Geophys., 31, 173–186, 2013



176 M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection

Fig. 1. (a), (b) and(c) show, respectively, the variations of Kp, Dst and F10.7 geomagnetic and solar indices during the period of 1 February
to 21 March 2011.(d) TEC variations. An asterisk indicates the earthquake time. The x-axis represents the days relative to the Tohoku
earthquake day. The y-axis represents the universal time coordinate.

Table 1.List of the earthquakes selected in this study (reported byhttp://earthquake.usgs.gov/).

Area Date Time Geographic Magnitude Focal depth
(UTC) latitude, longitude (Mw) (km)

Samoa Islands 29 September 2009 17:48:10.99 15.49◦ S, 172.10◦ W 8.1 18.0
Haiti 12 January 2010 21:53:10 18.457◦ N, 72.533◦ W 7.0 13.0
Tohoku 11 March 2011 05:46:23 38.322◦ N, 142.369◦ E 9.0 29.0

asterisk indicates the earthquake time. The x-axis represents
the days relative to the earthquake day. The y-axis represents
the universal time coordinate. The high geomagnetic activ-
ities are seen 35 and 21 days before the earthquake onset.
The high Kp values between 14:00 and 22:00 UTC, 10 days
before the earthquake and also the moderate values of this
index from 7 to 9 days before the event can be interpreted as
high geomagnetic activities. The Kp value reaches the values
of 4, 4.5 and 5 between 18:00 and 24:00 UTC 1 day before
the earthquake, and increases to the maximum value of 6.0
from 12:00 to 18:00 UTC after the main shock. These un-
usual variations of Kp index from 1 day before to 1 day af-
ter the earthquake can hide pre and postseismic ionospheric
anomalies.

Figure 1b shows the variations of Dst geomagnetic index
during the period of 1 February to 21 March 2011. The un-
usual Dst values observed from 7 to 10 days and also 32
to 35 days before the earthquake indicate the high geomag-
netic activities. It can be concluded that the detected pertur-
bations on TEC variations during these periods might not be
related to seismic activity. The Dst value exceeds the lower
boundary value (i.e.,−20 (nT)) at 08:00 UTC 1 day before
the earthquake, and then gradually decreases and reaches the

minimum value of−76.5 (nT) at earthquake time. The un-
usual variations of Dst values are seen up to 1 day after
the earthquake. This study examines the TEC variations dur-
ing the period of the Tohoku earthquake to find the preseis-
mic anomalies in low geomagnetic activities (Kp< 2.5 and
Dst> −20 nt).

Figure 1c shows the variations of solar radio flux (F10.7)
during the period of 1 February to 21 March 2011. F10.7
is often expressed in SFU or solar flux units. The F10.7
value gradually increases from about 14 days before the
earthquake and reaches the maximum value of 164.30 (SFU)
on 8 March 2011, which is 3 days before the event. High
levels of sunspot activity lead to improved signal propaga-
tion on higher frequency bands, although they also increase
the levels of solar noise and ionospheric disturbances. Af-
ter four years without any X-flares, the sun produced two
of the powerful blasts in less than one month: one tak-
ing place on 19 February 2011, and the other taking place
on 9 March 2011. 9 March ended with a powerful solar
flare. Earth-orbiting satellites detected an X1.5-class explo-
sion from behemoth sunspot 1166 around 23:23 UTC. In ad-
dition, on 10 March 2011 around 06:30 UTC, a coronal mass
ejection (CME) struck the magnetic field of the Earth. This

Ann. Geophys., 31, 173–186, 2013 www.ann-geophys.net/31/173/2013/
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M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection 177

Fig. 2. Variations of the observed (green curve) and predicted (blue curve) TEC values on days selected as testing set at different universal
times. The x-axis represents the day relative to the Tohoku earthquake day.

was a result of an M3 flare that took place on 7 March 2011,
which released the fastest CME since September 2005 (http:
//spaceweather.com/).

Figure 1d shows TEC variations derived from GPS sta-
tions close to the epicenter. By visual inspection (without
performing analysis), unusual TEC values are clearly seen
around the earthquake day, especially between 9 days before
to 8 days after the earthquake.

To implement the SVM method, training, validating and
testing data were initially set respectively to 40 %, 20 % and
40 % of all TEC data. Green and blue curves in Figs. 2a
through l represent the observed and the predicted TEC val-
ues using SVM, respectively, during the days selected as
the testing set. It can be seen that the differences between
these two values reach the noticeable values 6 days before
the earthquake at 02:00 UTC, 1 day prior to the earthquake
at 08:00, 12:00 and 16:00 UTC and also on earthquake day
at 06:00, 08:00, 10:00, 12:00 and 14:00 UTC.

Figures 3a through l represent the differences between the
observed and the predicted TEC values during the testing
data. Figures 3c, d, e, f and h clearly show the unusual values
1 day prior to earthquake and also on earthquake day.

Figures 3c and e indicate that the differences values
exceeded the upper bound on earthquake date at 06:00
and 10:00 UTC, respectively. The difference value exceeds
the higher bound (µ + 1.5× σ) on earthquake time (i.e.,

06:00 UTC) with the value of 43 % of the higher bound. In
other words, on these hours, the SVM was not able to predict
the TEC values based on the model deduced from the train-
ing data. Therefore, the observed values at mentioned hours
could be considered as earthquake anomaly.

Figure 4a represents the differences between the observed
and the predicted TEC values during the days selected as test-
ing set. The high difference value at earthquake time is de-
tected by visual inspection of the Fig. 4a. Figure 4b shows
the DTEC values obtained fromDx =

x−µ
σ

, wherex, µ, σ

andDx are the parameter value, mean value, standard devi-
ation and differential ofx, respectively. According to this, if
the absolute value ofDx were greater thank, (|Dx| > k), the
behavior of the relevant parameter (x) is regarded as anoma-
lous. In Fig. 4c, anomalous TEC values are only depicted
at times when|DTEC| > 2.0. The DTEC value exceeds the
upper bound with the value of 13.0 % and 12.37 %, 6 days
before the earthquake at 03:00 UTC, and also the day of the
earthquake at 10:00 UTC, respectively. It had also reached to
its maximum value (i.e., 42.28 %) at 06:00 UTC on earth-
quake time (Fig. 4c). Then, to distinguish pre-earthquake
anomalies from the other anomalies related to the geomag-
netic activities, the four conditions of|DTEC| > 2.0, Kp<

2.5, Dst> −20 nt and F10.7< 100 (SFU) are jointly used,
using AND operator to construct the anomaly map (Fig. 4d).
It is seen that except the anomaly detected 6 days before

www.ann-geophys.net/31/173/2013/ Ann. Geophys., 31, 173–186, 2013
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178 M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection

Fig. 3.Variations of the differences between the observed and the predicted values of TEC on days selected as testing set at different universal
times. The red horizontal lines indicate the upper and lower bounds (µ ± 1.5× σ). The green horizontal line indicates the mean value (µ).
The x-axis represents the day relative to the Tohoku earthquake day.

Fig. 4. (a)Differences between the observed and the predicted values of TEC.(b) DTEC variations.(c) Detected anomalies without consid-
ering the geomagnetic indices.(d) Detected anomalies with considering the geomagnetic indices.

the earthquake at 03:00 UTC, the other detected anomalies
in Fig. 4c have been masked by high geomagnetic activities.

3.2 Haiti earthquake

Figure 5a shows the variations of Kp geomagnetic index
during the period of 1 December 2009 to 16 January 2010,
which is around the Haiti earthquake date. Figure 5b shows

Ann. Geophys., 31, 173–186, 2013 www.ann-geophys.net/31/173/2013/
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Fig. 5.Data of the Haiti earthquake showing variations of(a) Kp geomagnetic index,(b) Dst geomagnetic index and(c) TEC.

Fig. 6. Variations of the observed (green curve) and predicted (blue curve) TEC values on days selected as testing set at different universal
times. The x-axis represents the day relative to the Haiti earthquake day.

variations of Dst geomagnetic index also in the same pe-
riod. The unusual Kp and Dst values are observed from 10 to
11 days before the earthquake. Figure 5a and b illustrate quiet
geomagnetic conditions around the earthquake day. Figure 5c
shows TEC variations derived from GPS stations close to

the epicenter. By visual inspection, unusual TEC values are
clearly seen around the earthquake day.

When implementing the SVM method, it can be seen that
the differences between the observed and predicted TEC
values during the testing set reach the unusual values 1, 2
and 3 days before the earthquake (Figs. 6 and 7). The high

www.ann-geophys.net/31/173/2013/ Ann. Geophys., 31, 173–186, 2013
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Fig. 7.Variations of the differences between the observed and the predicted values of TEC on days selected as testing set at different universal
times. The x-axis represents the day relative to the Haiti earthquake day.

Fig. 8. (a)Differences between the observed and the predicted values of TEC.(b) DTEC variations.(c) Detected anomalies without consid-
ering the geomagnetic indices.(d) Detected anomalies with considering the geomagnetic indices.

difference values are detected at 20:00 and 22:00 UTC 1 day
before the event (Fig. 8a and b). In Fig. 8c anomalous TEC
values are only depicted at times when|DTEC| > 1.5. The
TEC value exceeds the higher bound (µ±1.5×σ) 1 day prior
to the earthquake at 20:00 UTC with the value of 44 % of the
higher bound. It had also reached to its maximum value (i.e.,

1.62 times the higher bound) 1 day before the earthquake at
22:00 UTC (Fig. 8c). The DTEC value also exceeds the upper
bound with the value of 18.5 % 3 days before the earthquake
at 10:00 UTC (Fig. 8c). Due to the quiet geomagnetic condi-
tions around the earthquake date, the Fig. 8d represents the
anomalies same as those seen in Fig. 8c.

Ann. Geophys., 31, 173–186, 2013 www.ann-geophys.net/31/173/2013/
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Fig. 9.Data of the Samoa earthquake showing variations of(a) Kp geomagnetic index,(b) Dst geomagnetic index and(c) TEC.

Fig. 10.Variations of the observed (green curve) and predicted (blue curve) TEC values on days selected as testing set at different universal
times. The x-axis represents the day relative to the Samoa earthquake day.

3.3 Samoa earthquake

Figure 9c illustrates the TEC values from 28 July to 7 Octo-
ber 2009 (i.e., around the Samoa earthquake date) measured
using GPS ground stations close to the epicenter. By visual
inspection of TEC variations, perturbations can be seen near
to the earthquake date. But to distinguish earthquake pertur-

bations from solar and magnetic disturbances, variations of
Dst and Kp indices during the same time interval were incor-
porated. Figures 9a and b illustrate, respectively, the varia-
tions of Kp and Dst indices that were relatively quiet during
days prior to the earthquake.

Using SVM method, unusual behaviors are seen in TEC
variations when the difference between the observed and

www.ann-geophys.net/31/173/2013/ Ann. Geophys., 31, 173–186, 2013



182 M. Akhoondzadeh: Support vector machines for TEC seismo-ionospheric anomalies detection

Fig. 11. (a) Differences between the observed and the predicted values of TEC.(b) DTEC variations.(c) Detected anomalies without
considering the geomagnetic indices.(d) Detected anomalies with considering the geomagnetic indices.

Fig. 12.Data of the one year before the Samoa earthquake showing variations of(a) Kp geomagnetic index,(b) Dst geomagnetic index and
(c) TEC.

the predicted TEC values reaches maximum value (i.e.,
87.7 TECU) at 12:00 UTC 5 days before the earthquake and
exceeds the higher bound of the order of 215 % (Figs. 10f
and 11a). Figures 11b and c illustrate that the DTEC changes
have exceeded the maximum threshold at 18:00 UTC 1 day
before the earthquake by the order of 41 %. Then, anoma-
lous TEC is only depicted during quiet geomagnetic con-
ditions, when|DTEC| > 1.5, Kp< 2.5 and Dst> −20 (nT).
Figure 11d indicates that the mentioned prominent anomalies
have occurred during a period of low geomagnetic activities.

To perform null-hypothesis tests, the same period of data
from the previous year in the case of Samoa Islands has

been considered. Figure 12c illustrates the TEC values from
28 July to 7 October 2008 (i.e., about 1 year before the
Samoa earthquake). To isolate earthquake perturbations from
solar and magnetic disturbances, variations of Dst and Kp
indices during the same time interval were incorporated
(Figs. 12a and b).

Figure 13 represents the results of SVM analysis for about
one year before the Samoa earthquake (29 September 2009)
from 28 July to 7 October 2008. Figures 13 and 14 (a, b
and c) represent the anomalous TEC variations during 10 to
15 days before the earthquake, but Fig. 14d indicates that the
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Fig. 13.Variations of the observed (green curve) and predicted (blue curve) TEC values on days selected as testing set at different universal
times. The x-axis represents the day relative to the Samoa earthquake day but for the one year before the Samoa earthquake.

Fig. 14. (a) Differences between the observed and the predicted values of TEC.(b) DTEC variations.(c) Detected anomalies without
considering the geomagnetic indices.(d) Detected anomalies with considering the geomagnetic indices.

observed anomalies are most likely related to the high geo-
magnetic activities.

4 Discussions

Already, concerning Tohoku, Haiti and Samoa earthquakes,
four anomaly detection methods including mean, median,
wavelet and Kalman filter have been evaluated by the author
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Fig. 15. Result of analysis for the Tohoku earthquake showing detected TEC anomaly using methods(a) mean,(b) median,(c) wavelet
transform and(d) Kalman filter during quiet geomagnetic conditions. The x-axis represents the day relative to the Tohoku earthquake day.

to detect the anomalous TEC variations (Akhoondzadeh and
Saradjian, 2011; Akhoondzadeh, 2012).

Figure 15a shows detected TEC anomalies using mean
method based on:|DTEC| > 2.0, Kp< 2.5 and Dst> −20 nt
around the Tohoku earthquake date. The TEC value exceeds
the higher bound (µ + 2.0× σ) 3 days prior to the Tohoku
earthquake at 04:00 UTC with the value of 7.26 % of the
higher bound. It had also been reached to its maximum value
(i.e., 37.81 %) at 06:00 UTC on the same date. After execut-
ing the median method, Fig. 15b shows the TEC anomaly
map during quiet geomagnetic conditions. In other words,
anomalous TEC values are only depicted at times when
|DTEC| > 1.5, Kp< 2.5 and Dst> −20 (nT). Figure 15b il-
lustrates an increase (67.29 %) in TEC is clearly observed at
06:00 UTC 3 days before the earthquake. Variations of TEC
values clearly exceed the higher boundM+1.5×IQR (Where
M and IQR are median value and interquartile range, respec-
tively) of the order of 32.07 % at 06:00 LT 2 days before
earthquake. By applying Daubechies 1-D wavelet transform,
Figure 15c shows TEC anomalies detected using wavelet
transformation from 8 days before to 7 days after the earth-
quake. The peak of anomaly reaches up to 25.80 % above the
threshold value at earthquake time. Figure 15d shows the dif-
ferences between the predicted TEC values using Kalman fil-
ter method and observed TEC values during the 14 days be-
fore to 10 days after the earthquake. Based on quiet geomag-
netic conditions (Kp< 2.5 and Dst> −20 nt), an unusual in-
crease of TEC (112.33 % above the threshold value) can be
seen at 08:00 UTC 3 days before the earthquake (Fig. 15d).
Figure 15d also illustrates an increase of 15.75 % from the
normal state 3 days before the earthquake at 06:00 UTC
(Akhoondzadeh, 2012).

The characteristics of the detected anomalies prior to the
Haiti and Samoa earthquakes using the median, wavelet and
Kalman filter methods can be found in Tables 2 and 3, re-
spectively (Akhoondzadeh and Saradjian, 2011). It can be
seen that there is good agreement between the anomalies de-
tected using the previous implemented methods and SVM.
In the case of the Haiti earthquake, each of the four methods
detected anomalous TEC variations from 1 to 3 days prior to
the earthquake. Also, by applying the four mentioned meth-
ods, the prominent unusual variations of TEC are seen 1 and
5 days before the Samoa earthquake.

5 Conclusions

Anomaly detection is extremely important for earthquake pa-
rameters estimation. In this paper an application of SVM in
the earthquake precursor’s domain has been developed. Con-
cerning the powerful Tohoku earthquake of 11 March 2011,
the results show that the difference between the predicted
value obtained from the SVM method and the observed value
reaches the maximum value at earthquake time during a pe-
riod of high geomagnetic activities. The SVM method de-
tected a considerable number of anomalous occurrences 1
and 2 days prior to the Haiti earthquake and also 1 and 5 days
before the Samoa earthquake in a period of low geomag-
netic activities. The SVM method could be a powerful tool
in modeling complex phenomena, such as earthquake precur-
sor time series, that we may not know what the underlying
data generating process is. Appropriate selection of the ap-
plied parameters such as the number of lagged observations
and inner parameters of the kernel function is another chal-
lenging task of the SVM modeling. In the domain of earth-
quake anomaly detection, SVMs could be a good candidate
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Table 2.Detected anomalies for the Haiti earthquake (12 January 2010) using the median/interquartile, wavelet and Kalman filter methods.
Day is relative to the earthquake day. Value calculated byp = ±100× (|Dx| − k) /k (Akhoondzadeh and Saradjian, 2011).

Median/interquartile Wavelet Kalman filter

Day Time Value % Day Time Value % Day Time Value %

3 5 40 4 17 7 8 5 13
3 19 8 4 19 2 8 7 31
2 17 7 3 15 4 5 17 4
2 19 114 3 17 15 4 9 4
1 3 39 3 19 17 4 13 56
1 5 67 2 17 7 4 17 23
1 7 90 2 19 9 3 7 31
1 15 49 2 15 9
1 17 87 2 17 17
1 19 3 2 17 9
0 1 67 1 3 12
0 3 55 1 5 41
0 5 20 1 7 31
0 7 30 1 9 12

1 11 5
1 17 4
1 19 59

Table 3. Detected anomalies for the Samoa earthquake (29 September 2009) using the median/interquartile, wavelet and Kalman filter
methods (Akhoondzadeh and Saradjian, 2011).

Median/interquartile Wavelet Kalman filter

Day Time Value % Day Time Value % Day Time Value %

4 9 8 8 13 13 7 17 64
4 13 15 6 19 1 5 15 171
2 3 7 5 13 15 4 11 48
2 5 36 5 19 1 4 13 49
2 9 12 4 13 15 2 9 57
1 1 25 1 13 8 2 11 53
1 3 140 0 13 8 1 3 30
1 5 84 1 5 12
1 7 10 1 17 32

because (1) it can model nonlinear relations in an efficient
and stable way, (2) a limited set of training points contribute
to the solution, and (3) the SVM is trained as a convex opti-
mization problem resulting in a global solution which yields
unique solutions. These advantages stem from the specific
formulation of a convex objective function with constraints
which is solved using Lagrange multipliers and have the
characteristics (Thissen et al., 2003). But the training time
in SVMs can be large for data sets containing many objects.
The best time of tuning can be selected based on an opti-
mization method such as genetic algorithms. In this study the
detected TEC anomalies using the SVM method were com-
pared to the previous results (Akhoondzadeh and Saradjian,
2011; Akhoondzadeh, 2012) obtained from mean, median,
wavelet and Kalman filter methods. The detected anomalies

using the SVM are similar to those detected using the previ-
ous methods. It should be noted that the training phase of the
SVM was not feasible with the large data set and therefore
in some cases, the SVM performed slightly worse than the
neural network (Thissen et al., 2003). Mattera and Haykin
(1999) have shown that, in contrast to other models, SVMs
perform efficiently due to the use of a nonlinear kernel com-
bined with the use of anε-insensitive band which to some
extent reduces the effect of the noise.
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