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Abstract. The nonlinear autoregressive moving average with
exogenous inputs (NARMAX) system identification tech-
nique is applied to various aspects of the magnetospheres dy-
namics. It is shown, from an example system, how the inputs
to a system can be found from the error reduction ratio (ERR)
analysis, a key concept of the NARMAX approach. The ap-
plication of the NARMAX approach to the Dst (disturbance
storm time) index and the electron fluxes at geostationary
Earth orbit (GEO) are reviewed, revealing new insight into
the physics of the system. The review of studies into the Dst
index illustrate how the NARMAX approach is able to find
a coupling function for the Dst index from data, which was
then analytically justified from first principles. While the re-
view of the electron flux demonstrates how NARMAX is able
to reveal new insight into the physics of the acceleration and
loss processes within the radiation belt.

Keywords. Magnetospheric Physics (Solar wind–
magnetosphere interactions)

1 Introduction

The standard approach to the study of physical systems is to
build a mathematical model of the processes involved from
first principles and then conjugate these models into dynami-
cal equations that govern how the physical object will evolve
over time. However, with our present level of knowledge,
there are many complex systems that we are not able to
deduce a model from first principles. For example, the hu-
man brain and other biological systems are many years away
from being understood in a manner in which a model can be

derived from first principles. For such systems, there may be
many possible external influences but only one or two that ac-
tually control how it will evolve over time, i.e, the number of
degrees of freedom is not known. However, it is known they
evolve under some external influences, these can be consid-
ered as the inputs to the system. Measurements of the how
the system responds to these inputs can also be assumed to
represent the state, which can be considered the output of
the system. From the input–output data, system identification
techniques can be employed to automatically determine dy-
namical equations that govern the evolution of the complex
physical system.

The methods of system identification require the mapping
of the inputs to the output, which can be achieved by us-
ing a number of different approaches. One of the most well
known techniques is neural networks (NN) (McCulloch and
Pitts, 1943). A neural network consists of multiple intercon-
nected mathematical neurons, forming a network. There are
many different topologies that the network can take, the most
popular and most implemented network is the multi-layer
perceptron (Rumelhart and MacClelland, 1986). It is a feed-
forward network, starting from an input layer, through one or
more hidden layers containing the neurons, each with activa-
tion function, connected by weights and ending at the out-
put. This makes it very difficult to understand how the inputs
are coupled within the network. Herein lies the major prob-
lem of NN: they are not physically interpretable. The non-
linear autoregressive moving average with exogenous inputs
(NARMAX) technique (Leontaritis and Billings, 1985a, b) is
a similar technique to NN but more useful, in that the algo-
rithm can return a physically interpretable polynomial. The
NARMAX model can be represented by the equation:
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y(t) = F [y(t − 1), ...,y(t − ny),

u1(t − 1), ...,u1(t − nu1), ...,

um(t − 1), ...,um(t − num), ...,

e(t − 1), ...,e(t − ne)] + e(t). (1)

Here, the output at timet can be represented as a func-
tion, F , of the previous values of inputsu(t), outputy(t)

and noisee(t), whereny , nu1, ..., num , ne are the maximum
time lags of the output, them inputs of the system and the
noise respectively. The functionF can be set to a polyno-
mial with a specified degree of nonlinearity, where the mono-
mials will be the cross-coupled lagged inputs, outputs and
noise. As the number of inputs, lags and degree of nonlinear-
ity increase, the number of possible monomials will increase
drastically. However, most of these monomials will have no
physical meaning for the system, so an algorithm needs to
search these cross-coupled combinations for the terms with
the most significance. This is the first stage of the NAR-
MAX methodology, called model structure detection, and is
achieved by the orthogonal least squares–error reduction ra-
tio (OLS–ERR) algorithm. The second stage of estimating
the coefficients for each of the terms identified by structure
detection is also encompassed by this algorithm, while the fi-
nal stage validates the model by exploiting both dynamic and
statistical approaches (Billings and Voon, 1986; Billings and
Zhu, 1989).

In Sect.2, a brief description of the NARMAX algorithm
is given, along with the definition of the ERR. Section3 em-
ploys an example system to show that the ERR is able to
find the inputs of the system, while the correlation function,
which is often used in the search for inputs, cannot. In Sect.4
the studies of the Dst index, using the NARMAX approach,
are reviewed, while Sect.5 reviews the NARMAX studies of
the electron flux.

2 The NARMAX algorithm

In the case of a polynomial basis,F [·] represents a linear-
in-the-parameters polynomial model. The terms of this poly-
nomial model are comprised of all the possible cross-coupled
combinations of the components to the predetermined power.
Thus, Eq. (1) becomes

y =

M∑
i=1

piθi + e, (2)

wherey is the output time series vector,θi is the coefficient
of the ith time series monomial vectorpi andM is the to-
tal number of monomials. The OLS–ERR utilises the Gram-
Schmidt procedure so that each of the of the monomial time
vectors,pi , are made orthogonal to each other. So, orthogo-
nalising Eq. (2) results in

y =

M∑
i=1

wigi + e, (3)

wherewi is theith orthogonalised monomial time series vec-
tor andgi is the coefficient. By orthogonalising the mono-
mials, the multiplication between different orthogonalised
monomials,wi , will result in zero, e.g.wT

i wj = 0, where
i 6= j . This allows for the separation of each monomial’s
contribution to the explained output variance. Multiplying
Eq. (3) by yT leads to

yT y =

M∑
i=1

wi
T gi

M∑
j=1

wT
j gj +

M∑
i=1

wi
T gie

+eT
M∑

j=1

wT
j gj + eT e, (4)

wherewT
k e = 0 andeT wk = 0 assuming all stochastic pro-

cesses are ergodic, and the noise of the system is zero mean
and uncorrelated with the monomials;eT e is the variance of
the noise,σ 2

e ; and allwT
i wj = 0 for i 6= j . This yields

yT y =

M∑
i=1

wT
i wig

2
i + σ 2

e , (5)

where eachwT
i wig

2
i represents the monomial’s contribution

to the outputs dependent variable variance. Thus, the ERR
for theith monomial is defined as

ERRi =
wT

i wig
2
i

yT y
(6)

and represents the percentage of total output dependent vari-
able variance attributed to each monomial. Therefore, each
of the many monomials can be quantified and the monomi-
als with the highest ERR are selected for the model struc-
ture, concluding the first stage of the NARMAX methodol-
ogy. The coefficient,θ , for each of the selected monomials
can then be calculated from the orthogonalised monomials
by employing a least squares method, completing the second
stage of the methodology and resulting in the model.

The NARMAX methodology is highly versatile and is cur-
rently employed in many different fields, ranging from bi-
ological systems to financial systems. Therefore, the NAR-
MAX is a very powerful technique and ideal for scientific
fields such as space physics since it is possible to, in some
sense, reverse engineer the results to gain physical under-
standing about the system and the processes involved.

In the field of space physics, the magnetosphere is a highly
complex system, with many processes taking place on spa-
tial scales from metres to tens of kilometres. In many cases,
it is not known what parameters influence a certain state of
the magnetosphere, out of the many possible parameters that
act upon it. To solve this problem, the structure detection
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stage of the NARMAX algorithm, where the ERR analysis
is applied, can be used to search through many combinations
of many different parameters to find the terms that have the
most significance on the system. The term with the higher
ERR accounts for a larger amount of the output variance and
is therefore a more appropriate term.

In the past, the correlation function has been employed to
find the combination of solar wind parameters that most in-
fluence certain aspects of the magnetosphere (Newell et al.,
2007). However, applying the correlation function to a non-
linear system, such as the terrestrial magnetosphere, may
lead to ambiguous results. (Boynton et al., 2011b) illustrated
a simple example of this, using a simple quadratic equation
were the outputy is equal to the square of the of a zero mean
input x, y = x2. even thoughx is the input the correlation
between betweeny andx will be zero. Therefore, the linear
correlation function should not be applied to nonlinear sys-
tems.

3 The ERR analysis

An artificial system was created to show that the ERR is able
to identify the inputs. This system is represented by

y(t) = −0.25u(t) + 0.2w(t − 2) − 0.3q(t − 1)

+0.07pr2(t − 3) − 0.04q3(t − 2) + e(t), (7)

where the outputy at timet is a function of the inputsp, q,
r, u andw, and the noisee. Here,e was a zero mean signal to
simulate the noise. However, in the real case of obtaining the
model structure there will be many possible inputs, so, more
inputs,s, v andx, were included in the search, which like
the other inputs were just random signals. It must be noted
that each of the inputs and noise signal all had 1000 data
points. Also, since the degree of nonlinearity or the maxi-
mum lags of the system are not known either, these were both
set to be four. Therefore, the algorithm would search through
four lags, plus the current time (t , t − 1, ...,t − 4), and every
combination of the inputs to the power of four, resulting in
a total of 135 750 terms to search. Table1 shows the terms
with the five highest ERR. The ERR analysis has found all
the model’s terms, linear and nonlinear, from Eq. (7), with
r2p(t − 3) accounting for the most output variance.

On the other hand, if the correlation function is employed
to find the model structure, the results will be misleading.
To demonstrate this fact, the 135 750 terms that the ERR
searched through were correlated with the output. Table2
shows the terms with the five highest correlations with the
output. Theq(t − 1) term is involved in all five of the terms,
which on its own accounted for the second highest ERR.
However, according to the correlation function, the lags ofv,
which is not even included Eq. (7), also have a large influence
on the output. The correlation function does not even recog-
nise any of the other terms included in Eq. (7) and, therefore,
it is highly unreliable.

Table 1.ERR test results for the example system.

Term ERR (%)

r(t − 3)r(t − 3)p(t − 3) 39.0
q(t − 1) 35.8
u(t) 12.2
w(t − 2) 10.3
q(t − 2)q(t − 2)q(t − 2) 2.58

This example demonstrates the power of using the NAR-
MAX ERR data analysis technique over more simple tech-
niques such as the correlation function. The ERR identified
all the terms in Eq. (7), while the correlation function could
only obtain one of the terms in Eq. (7) out of the terms with
the highest five correlations. This emphasises that for non-
linear systems, only methods that are designed to account for
nonlinearities should be applied, otherwise the results can be
misleading.

4 The Dst index

The Dst (disturbance storm time) index is widely employed
for studying the disturbances associated with geomagnetic
storms and many attempts at modelling the dynamics of the
Dst index have been made. The magnetosphere system, in-
cluding the Dst index, is known to be a low dimensional sys-
tem (Sharma, 1995; Valdivia et al., 1996; Klimas et al., 1996)
and evolve under the influence of the solar wind. However,
the question “what combination of solar wind parameters
control the evolution of the Dst index?” still has no definitive
answer, despite the quest for a solar wind–magnetosphere
coupling function being the subject of many studies. One of
the first attempts to model the Dst index was byBurton et al.
(1975), where they used two inputs, the solar wind veloc-
ity V multiplied by the southward IMF (interplanetary mag-
netic field )Bs (Bs = 0 for Bz ≥ 0 andBs = −Bz for Bz < 0)
and the square root of the solar wind dynamic pressurep.
The aim ofPerreault and Akasofu(1978) was to find a so-
lar wind–magnetosphere coupling function by estimating the
interplanetary flux in terms of the Poynting flux,V B2. An
important observation in this study was that the they found
evidence for small geomagnetic activity even when the IMF
was orientated northward. As such, to account for the im-
portance of the IMF orientation, instead of employing a rec-
tifier that allows only negative values ofBz (Burton et al.,
1975), they used a function of the IMF clock angle sin4(θ/2)

whereθ = tan−1(By/Bz). Therefore, the resulting coupling
function wasV B2sin4(θ/2). Kan and Lee(1979) justified
the clock angle function analytically by deriving the power
delivered by the solar wind from the field line reconnection
geometry. There are many other coupling functions that have
been derived, using different methods for obtaining a cou-
pling function, such as correlation (Newell et al., 2007) or
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Table 2.Correlation test results for the example system.

Term Correlation (%)

v(t − 4)q(t − 1) 60.5
v(t − 3)q(t − 1) 60.4
q(t − 1) 60.4
v(t − 1)q(t − 1) 60.3
v(t − 2)q(t − 1) 60.2

trial and error (Temerin and Li, 2006), which can be found in
the study byBoynton et al.(2011b).

The physical interpretability of the NARMAX algorithm
has been used in the past to study the Dst index. A NAR-
MAX model was derived using an input ofV Bs in the study
by Boaghe et al.(2001). Then by mapping this model into
the frequency domain to produce a generalised frequency re-
sponse function, the dominant nonlinear characteristics were
studied, revealing the existence of energy storage processes
that involve multi-wave coupling. A similar study was per-
formed byBalikhin et al.(2001), which focused on the pro-
cesses of energy loading for the Dst index. They concluded
that there was no evidence for models that assume a time
delay storage of energy. However, these studies never used
the NARMAX algorithm to combine solar wind parameters
into a solar wind coupling function and instead usedV Bs as
the sole input.Boynton et al.(2011b) employed the NAR-
MAX ERR algorithm ability to search through and assess
many combinations of solar wind parameters to obtain the
most appropriate solar wind–Dst index coupling function.

4.1 NARMAX ERR derived solar wind–Dst coupling
function

The aim of the study byBoynton et al.(2011b) was to de-
rive a solar wind–Dst index coupling function that could be
used as an input to model the Dst index. To do this, they
utilised the structure detection stage of the NARMAX algo-
rithm to combine solar wind parameters and find the most
appropriate function with the highest ERR. As with the ex-
ample from Sect.3, there are many possible solar wind pa-
rameters that can influence the Dst index. Therefore,Boyn-
ton et al.(2011b) used a wide range of solar wind parameters
as inputs. These inputs ranged from basic parameters, such as
V , p, densityn, IMF componentsBx , By , Bz and the tangen-

tial IMF BT =

√
B2

y + B2
z , to nonlinear functions of the pa-

rameters, likeV 4/3, p1/2, n1/6, Bs, sin4(θ/2) and sin6(θ/2).
Due to the large number of parameters, four ERR analysis
tests were carried out to narrow down what parameters had
the most control over the Dst index. Table3 displays Table 4
from Boynton et al.(2011b), where they used a fourth degree
of nonlinearity, 5 time lags and inputs:V , V 4/3, p1/2, n1/6,
Bs, BT , sin4(θ/2) and sin6(θ/2).

Table 3.Solar wind-Dst index coupling functions assembled by the
ERR algorithm.

Coupling Function ERR (%)

p1/2V 4/3BT sin6(θ/2)(t − 1) 5.46
p1/2V 2BT sin6(θ/2)(t − 1) 3.18
n1/6V 2BT sin4(θ/2)(t − 1) 3.15

Dst(t − 2) 2.96
p1/2V BT sin6(θ/2)(t − 1) 2.77

The results from the table show that the coupling function
should consist of density (given thatp =

1
2nV 2), velocity,

tangential IMF and clock angle function, since these param-
eters appear in four of the top five functions with the highest
ERR. Therefore, according to the results ofBoynton et al.
(2011b), the most appropriate coupling functions should be
of the form:

nαV βB
γ

T sinδ

(
θ

2

)
. (8)

From their results, they concluded thatα should have a value
between 1/6 and 1/2,γ should be equal to 1 andδ equal to 6.
The value forβ is the most inconclusive but should be in the
range of 2–3.

In this study,Boynton et al.(2011b) analysed a number
of clock angle functions. These included the purely south-
ward component fromBs; sin4(θ/2), which was pioneered
by Perreault and Akasofu(1978) and justified byKan and
Lee(1979); and sin6(θ/2). These functions are very similar
and only significantly differ when the clock angle is directed
east or west. One of the most interesting results of this study
was that the sin6(θ/2) function was continuously selected by
the algorithm as the most appropriate function for explaining
the dependent variable variance of the Dst index, throughout
each of the ERR analysis tests.

4.2 Analytical explanation for the coupling function

Since the results of NARMAX can be reverse engineered to
gain physical understanding about the system, the coupling
function byBoynton et al.(2011b) should be related to the
interaction between the solar wind and the magnetosphere.
One of the main conclusions ofBoynton et al.(2011b) was
that sin6(θ/2) was the most appropriate function for the IMF
clock angle. The sin6(θ/2) IMF clock angle function goes
against what is seen in most studies, where either sin4(θ/2)

or the southward component were employed.Burton et al.
(1975) empirically deduced the southward component of the
IMF from scatter plots of the dawn to dusk component of
the electric field against the ring current injection rate. They
found that positive electric fields had a linear relationship
with injection rate, which correspond to a southward IMF.
While for negative dawn–dusk electric fields, which was
analogous to a northward IMF, the injection rate was close
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to zero. Therefore, they concluded that the southward com-
ponent was the function of the clock angle. For the sin4(θ/2)

function,Perreault and Akasofu(1978) fitted a function that
could account for the small amount of geomagnetic activity
observed when the IMF was slightly positive. This was then
analytically derived byKan and Lee(1979) from the geo-
metric relationship between the electric and magnetic fields.
The motivation for the study byBalikhin et al.(2010) was to
understand why the ERR analysis resulted in sin6(θ/2) when
most other studies and models preferred to use the southward
component or sin4(θ/2) (Amariutei and Ganushkina, 2012;
Boaghe et al., 2001; Akasofu, 1979).

Balikhin et al.(2010) revisited the arguments byKan and
Lee(1979) that deduced the sin4(θ/2) factor from first prin-
ciples to determine why the results ofBoynton et al.(2011b)
were different. LikeKan and Lee(1979), Balikhin et al.
(2010) started from the dayside reconnection electric field
derived bySonnerup(1974):

Er = VMSBMSsin

(
θ

2

)
, (9)

where the subscript MS indicates the magnetosheath veloc-
ity and magnetic field values. The reconnection electric field
is assumed to be the only component of the magnetosheath
electric field that is able to penetrate into the magnetosphere.
The potential difference,8M , across the polar cap can then
be calculated from the perpendicular reconnection electric
field:

Er⊥ = Er sin

(
θ

2

)
= VMSBMSsin2

(
θ

2

)
(10)

multiplied by the length of the X-linel0, which is assumed
to be constant, projected along the electric field. In Fig.1,
the length of the X-line projected along the electric field is
the linex3x2, which will be l0sin(θ/2). Therefore, the cross-
polar cap potential:

8M = VMSBMSsin2
(

θ

2

)
l0sin

(
θ

2

)
, (11)

8M = VMSBMSsin3
(

θ

2

)
l0 . (12)

The total power produced by the solar wind dynamo was then
obtained by the square of the cross-polar cap potential di-
vided by the resistance,R, assuming magnetic flux conser-
vation so thatVMSBMS = V B:

P =
82

m

R
=

V 2B2

R
sin6(θ/2)l0 , (13)

thus resulting in a theoretical explanation of the NAR-
MAX results byBoynton et al.(2011b), which yielded the
sin6(θ/2) factor as the most appropriate clock angle factor.

Equations (12) and (13) differ from the Kan and Lee equa-
tions for the potential and power. WhenKan and Lee(1979)
calculated the cross-polar cap potential they failed to account

Fig. 1.The components of the reconnection electric field, where the
line x1x2 is the length of the X line,l0.

for the fact that the potential should be calculated over the
length in which the electric field is projected. In their calcula-
tion, they multiplied the perpendicular reconnection electric
field by the entire length of the X line, linex1x2 in Fig. 1.
Consequently, their expression for the cross-polar cap poten-
tial missed a factor of sin(θ/2) and their expression for the
power, which resulted in sin4(θ/2), is also incorrect. There-
fore, the application of the NARMAX ERR analysis found
the correct solution and thus allowed for the amendment of a
mistake made in the method byKan and Lee(1979).

4.3 NARMAX Dst Model

Using the coupling function with the highest ERR in Table3,
Boynton et al.(2011a) derived a model of the Dst index that
could estimate the following hours value. They analysed the
model’s performance, using data from the start of 1998 to the
end of 2008, with three criteria: the correlation coefficient,
the normalised root mean square error (NRMSE) and the co-
herency function. The model estimated Dst was shown to
have a high correlation and a low NRMSE, however, their ob-
jectives were to identify a model that could forecast the onset,
magnitude and duration of magnetic storms. They used the
coherency function to illustrate how well the model achieved
these goals, since it is able to determine the frequency depen-
dencies between the measured and estimated Dst. The figures
displayed that the model had a high coherency for the fre-
quencies of a magnetic storm but did not perform as well for
the higher frequencies.Boynton et al.(2011a) then compared
the performance of their model to other Dst models that used
a similar criteria, illustrating that the model using the NAR-
MAX ERR derived coupling function had a higher correla-
tion than the models employingV Bs as the input. Figure2
shows the model predicted output in blue and the measured
Dst index in red for the period between March and May 2000.
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4.4 Summary

The application of the NARMAX ERR approach to the Dst
index has proved to be very successful in the studies by
Boynton et al.(2011b), Balikhin et al.(2010) andBoynton
et al.(2011a). In summary,Boynton et al.(2011b) was able
to automatically derive a combination of solar wind param-
eters to form a coupling function by utilising the structure
detection stage of the NARMAX ERR algorithm. This cou-
pling function was then justified from first principles byBa-
likhin et al. (2010), where they derived the relationship of
the solar wind power from the reconnection geometry. Fi-
nally, the NARMAX deduced coupling function was shown
to give a better model performance than the commonly used
V Bs function.

5 Electron fluxes at GEO

The radiation belts are a very hazardous environment for
satellites and humans that transit the region. High relativis-
tic electron fluxes within the radiation belts significantly in-
crease the probability of detrimental effects to the onboard
satellite systems and can even lead to permanent hardware
damage. As such, the study of radiation belts is highly impor-
tant for modern technological systems that require satellites.
Although the radiation belts were discovered by very first
in situ measurements (Van Allen, 1959), due to their com-
plexity, we are not able to deduce the mathematical model
from first principles with our current level of knowledge.
The mechanisms behind the acceleration and loss of ener-
getic particles need to be understood in order to have a com-
plete model of the radiation belts. At present, there are two
main theories on acceleration. One based on radial diffusion
(Falthammar, 1968; Schulz and Lanzerotti, 1974), where due
to the earthward diffusion of an initial seed population, the
particles are accelerated by the conservation of the first and
the second adiabatic invariants. The second theory is local
diffusion (Temerin et al., 1994; Reeves et al., 2009), where
particles are accelerated by interacting with waves within the
radiation belt (e.g. chorus, magnetosonic, etc). The losses of
particles within the radiation belts can be caused by mag-
netopause shadowing (Onsager et al., 2007; Ohtani et al.,
2009; Matsumura et al., 2011), where the magnetopause is
compressed to within the radiation belts, and can also be at-
tributed to waves that cause losses (Loto’aniu et al., 2010).

Numerous studies have focused on obtaining the solar
wind parameters that cause the acceleration and loss of the
energetic particles within the radiation belts.Paulikas and
Blake(1979) compared the daily averaged, 27 day averaged
and 6 months averaged> 0.7, > 1.55 and> 3.9 MeV elec-
tron fluxes at geostationary Earth orbit (GEO) with the so-
lar wind velocity, IMF components and sector polarity. They
found that the solar wind velocity exhibited a strong cor-
relation for all the energy ranges studied. Recently, these
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Fig. 2. The model predicted output in blue and the measured Dst
index in red between March and May 2000.

results were revisited byReeves et al.(2011). They anal-
ysed the long-term relationship between electron fluxes at
GEO and solar wind velocity with the aid of scatter plots.
These showed a much more complex relationship than the
one suggested byPaulikas and Blake(1979), where, instead,
the fluxes exhibited a triangular distribution with the velocity.
On average the higher fluxes are a result of higher velocities
and show a velocity dependant lower limit, but have an up-
per limit that is autonomous of the velocity. This complex
triangular relationship between the electron flux and velocity
motivatedBoynton et al.(2013) andBalikhin et al.(2011) to
investigate the solar wind parameters that control the evolu-
tion of electron fluxes at GEO using the ERR analysis.

5.1 ERR Analysis of electron fluxes at GEO

Boynton et al.(2013) employed the structure detection stage
of the NARMAX algorithm to determine the solar wind pa-
rameters that control 14 different energies of the electron flux
at GEO, ranging from 24.1 keV to 3.5 MeV. Similar toBoyn-
ton et al.(2011b), many different solar wind parameters were
used as inputs to the algorithm, since it is not fully known
what parameters influence the fluxes. These parameters in-
cluded the solar wind velocity, density and pressure, north–
south IMF component and values based on the daily variation
of the north–south IMF component; these were the fraction
of time in each day that the IMF had a southward orienta-
tion, the average southward IMF (Bs) within each day and
the variance ofBz for each day. Table4 displays the results
from Boynton et al.(2013), employing a NARMAX algo-
rithm that used a second degree nonlinearity and 5 time lags.

There are two interesting results from the analysis by
Boynton et al.(2013). The first is that the solar wind den-
sity accounts for the majority of the variance for the energy
range between 1.8 and 3.5 MeV and has an increasing in-
fluence on the fluxes from 925 keV. The other result is that
as the energy of the electron flux increases, the time for the
solar wind velocity to have an influence on the flux also in-
creases. For 24.1–90 keV, the current day’s velocity has the
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Table 4. Results of the NARMAX analysis, showing top 3 terms in the order of ERR for the electron fluxes ranging from 24.1 keV to
3.5 MeV.

Energy 1st Term ERR(%) 2nd Term ERR(%) 3rd Term ERR (%)

24.1 keV V (t) 96.9 V 2(t) 2.82 n(t) 0.08
31.7 keV V (t) 96.9 V 2(t) 2.83 n(t) 0.07
41.6 keV V (t) 97.0 V 2(t) 2.82 n(t) 0.05
62.5 keV V (t) 97.0 V 2(t) 2.80 n(t) 0.04
90.0 keV V (t) 97.0 V 2(t) 2.77 nV (t) 0.03
127.5 keV V (t) 74.8 V (t − 1) 22.3 V 2(t) 2.08
172.5 keV V (t − 1) 65.7 V (t) 31.6 V 2(t − 1) 1.74
270 keV V (t − 1) 97.4 V 2(t) 2.34 Bz(t − 1) 0.02
407.5 keV V (t − 1) 84.1 V (t − 2) 13.7 V 2(t − 1) 1.63
625 keV V (t − 1) 75.9 V (t − 2) 22.3 V 2(t − 2) 0.61
925 keV V (t − 2) 96.2 n(t) 0.28 V (t − 4) 0.24
1.3 MeV V 2(t − 2) 76.5 nV (t − 1) 2.21 n(t)V (t) 1.90
2.0 MeV n(t − 1) 53.7 nV (t − 1) 13.6 n2(t − 1) 5.55
1.8–3.5 MeV n(t − 1) 51.5 n2(t − 1) 15.1 V 2(t − 2) 6.13

most influence on the electron flux, but at 127.5 keV the ve-
locity of the previous day starts to effect the fluxes, having
an ERR of 22 %. The ERR for the previous days velocity in-
creases to 66 % for the higher energy of 172.5 keV electrons.
This trend continues to 1.3 MeV electron fluxes, where the
velocity recorded two days in the past is the controlling term.

5.2 Solar wind density

The relationship between the solar wind density, solar wind
velocity and 1.8–3.5 MeV electron flux was investigated by
Balikhin et al. (2011) to explain why the NARMAX ERR
analysis resulted in the density having the most influence
on the flux and not the velocity. They started by illustrat-
ing the relationship simply, via scatter plots of the density
and velocity and showed that the high electron fluxes, above
100.5 (cm2 s sr keV)−1, only occurred at at low densities, ir-
respective of the velocity value.Balikhin et al.(2011) then
split scatter plots of velocity and electron flux into to six
density ranges to examine how the distribution changed as
the density is altered. They found that, for a fixed density, the
electron flux increases with velocity until saturation, where
the electron flux attains its maximum value. The velocity at
which the saturation takes place and the maximum value of
the flux decreases with increasing density. They concluded
that the reason for the anti-correlation between density and
electron flux could be because the growth rates of waves in
local-wave particle interactions are effected by increases in
density, thus, interfering with the acceleration of elections or
causing the electrons to precipitate.Aryan et al.(2013) esti-
mate the saturation velocity at different densities less than
6 cm−3 statistically by using the reverse arrangement test.
They showed that there is a distinct anti-correlation between
the saturation velocity of the electrons at GEO and solar wind
density.

As mentioned byAryan et al.(2013), a possible explana-
tion for the density dependance could be magnetopause shad-
owing, since a high solar wind dynamic pressure, which is a
function of density, can compress the dayside magnetopause
to within the gyroradii of the electrons observed at GEO.
Therefore, a high density could lead to the drift loss of elec-
trons to the magnetopause. However, although the dynamic
pressure was one of the inputs to the NARMAX algorithm,
it was the density that had the highest ERR. So, why did the
density have the highest ERR and not the pressure?Boynton
et al.(2013) inspected the data to answer this question. They
found a case where the electron flux decreased with no sig-
nificant increase in pressure but a relatively large increase in
density. Figure3 has the same time period as Fig. 5 in the
study byBoynton et al.(2013) and displays the daily aver-
aged 1.8–3.5 MeV electron flux in the top panel a, 1 min solar
wind velocity in panel b, 1 min solar wind density in panel c,
the dynamic pressure in panel d and the magnetopause loca-
tion, according to the model byShue et al.(1997), in panel e
with a black dashed line indicating GEO. Here, the electron
flux data, from the Los Alamos National Laboratory (LANL)
satellites, were only released in daily averaged format. How-
ever, since important information can be lost by daily aver-
aging, the 1 min data is shown for the solar wind parame-
ters and the estimated magnetopause position. For example,
any magnetopause shadowing occurring within the day may
be lost by averaging the data, thus indicating that no drift
loss should occur, even though magnetopause shadowing is
clearly shown in the 1 min data. An event in the electron flux
can be seen in Fig.3, with an increase of fluxes taking place
between 7 and 12 November 2000, coinciding with a coro-
tating interaction region, which can be seen by the increase
of solar wind velocity for several days. After this, the fluxes
plateau for 5 days before decreasing back to the initial levels.
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Fig. 3. The daily averaged 1.8–3.5 MeV electron flux(a), 1 min so-
lar wind velocity (b), 1 min solar wind density(c), the dynamic
pressure(d) and the magnetopause location(e) according to the
model byShue et al.(1997). Starting on 7 November 2000 and end-
ing on 23 November 2000, the same time period as Fig. 5 in the
study byBoynton et al.(2013).

On 18 November 2000, Fig.3 shows a steep decrease in elec-
tron fluxes. Meanwhile, the pressure increase is negligible
in comparison to the increase on 10 November 2000 due to
the lower solar wind velocity. However, the increase in den-
sity is large in comparison to the other increases in density.
Also, according to the model ofShue et al.(1997) for the
magnetopause location, during 18 November 2000 the mag-
netopause is always located beyond 9RE , well beyond the
gyroradii of the electrons at GEO. With this evidence,Boyn-
ton et al.(2013) concluded that the loss of electrons is likely
caused by density enhancement, at least in some cases, and
that this could be due to the high densities resulting in waves
that cause losses (Loto’aniu et al., 2010). It should be noted
that during 10 November 2000, theShue et al.(1997) model
shows the magnetopause within GEO for a short period of
the day, which corresponds to a decrease in flux.

These studies of the solar density influence on the electron
flux at GEO illustrate how the NARMAX algorithm can indi-
cate new paths of research by finding the significant param-
eters of a system. However, there is still much to understand
in the relationship between the electron flux and solar wind

density, therefore, more in depth investigations into how the
increases in density lead to the depletion of electrons at GEO
are needed.

5.3 Solar wind velocity time lag

The second interesting result of the ERR analysis on the elec-
tron fluxes was that the time for the solar wind velocity to
have an influence on the electron flux increased with the en-
ergy of the electrons. Although this had been observed be-
fore (Li et al., 2005), the NARMAX results allowed for the
quantification of the lag vs. the energy.Balikhin et al.(2012)
aimed to find the relationship between time lag and energy by
solving the energy diffusion equation (Horne et al., 2005):

∂F

∂t
=

∂

∂E

[
A(E)D

∂

∂E

[
F

A(E)

]]
−

F

τL

(14)

whereF is a distribution function,t is the time,E is the
kinetic energy,A is defined as

A = (E + E0)(E + 2E0)
1
2 E

1
2 , (15)

DEE is the bounce-averaged energy diffusion coefficient,τL
is the effective timescale for losses to the atmosphere andE0
is the rest energy of the electron.Horne et al.(2005) showed
that the distribution functionF(E,αeq) depends upon energy
and the equatorial pitch angle,αeq, and is related to the fluxes
J (E,αeq) by

F(E,αeq) =
E + E0

c(E + 2E0)
1
2 E

1
2

J (E,αeq). (16)

Therefore, from Eqs. (14) and (16), Balikhin et al.(2012)
estimated the upper limit of the timescale for the increase in
electron flux as a function of energy. They assumed the en-
ergy diffusion coefficientD to be constant, the losses to be
negligible (τL → ∞) and three cases forA: Case 1E � E0;
Case 2E ≈ E0 → E−E0 � E0; and Case 3E � E0. Case 1
returnsA = E

1/2
0 ; in Case 2,A = E0

0 = 1; and for Case 3,
A = E2. For the second case, IfA = 1, then the solution
is the standard diffusion equation with constant coefficients;
therefore, any changes in energy will be proportional to the
square root of time. Thus,Balikhin et al.(2012) only solved
for cases 1 and 3. For the sub-relativistic case (Case 1),

F = KE(t + t0)
−5/4exp

(
−

E2

4DE2
0(t + t0))

)
; (17)

while for the highly relativistic case (Case 3),

F = KE2(t + t0)
−3/2exp

(
−

E2

4DE2
0(t + t0)

)
, (18)

whereK is a constant andt0 is the initial conditions for the
time. Balikhin et al.(2012) noted that for these solutions to
be valid, the seed population energies must be much lower
than the energies being evaluated.
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Fig. 4. Plots of the electron distribution with respect to energy and
time from Eqs. (17) and (18), normalised between 0 and 1 for each
time bin.

Figure4 is the log–log plot of the energy distributions for
cases 1 and 3 as a function of energy and time, calculated
from Eqs. (17) and (18). The distribution is normalised be-
tween 0 and 1 for each time bin to show the maximum of
the distribution more clearly. As such, the gradients of these
log–log energy distribution plots reveal the timescale for the
increase in electron flux as a function of energy according
to theory, which can then be compared to the lag vs. energy
relationship found from the NARMAX results. In the sub-
relativistic case the gradient is 0.4993, while it is 0.4996 in
the highly relativistic case. Here, the gradients were found
from the maximum of the distribution at each time, however,
it is the same for all levels of the distribution function, in-
cluding 10 % of the maximum thatBalikhin et al.(2012) il-
lustrated. Therefore, in all three cases ofA, changes in the
energy are proportional to the square root of time according
to Eqs. (14) and (16).

However, the NARMAX results ofBoynton et al.(2013),
which revealed the statistical relationship between electron
energy and velocity time lag does not concur with the so-
lution of the energy diffusion equation. Figure5 displays
the relationship that was found from the NARMAX analy-
sis, which can be compared to the gradients from the theory.
The gradient from Fig.5 is 1.05, which shows that the en-
ergy is proportional to the time delay not the square root.
Accordingly,Balikhin et al.(2012) concluded that the time
scaling of the solution of the energy diffusion equation is not
fast enough to explain the increase of fluxes at GEO. There-
fore, a purely local diffusion acceleration does not happen at
GEO and radial diffusion plays an equal or greater role in the
acceleration of electrons. Therefore, the interpretation of the
NARMAX results have helped in the understanding of the
electron acceleration mechanisms at GEO.
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Fig. 5.Figure 1 fromBoynton et al.(2013) displaying a log–log plot
of the energy of the electron flux against the effective time delay of
the solar wind velocity calculated from the NARMAX results. Also
shown is the line of best fit in red.

5.4 Summary

The NARMAX ERR analysis was applied to a range of elec-
tron flux energies byBoynton et al.(2013). From this anal-
ysis, there were two important results. The first was that the
solar wind density had a major role in controlling the 1.8–
3.5 MeV electron flux and the second was the quantification
of the relationship between the electron flux and the time de-
lay of the velocity.

The density relationship was confirmed by bothBalikhin
et al. (2011) and Aryan et al.(2013), where they found a
statistical anti-correlation between the velocity at which the
electron flux saturates and the density. Also,Boynton et al.
(2013) showed that the depletion of the electron flux was not
due to the increase in density causing magnetopause shad-
owing and, therefore, the decease in flux was most likely be-
cause of high densities resulting in waves that cause losses.

The energy diffusion equation was solved byBalikhin
et al.(2012) to investigate if the solution agreed with the re-
lationship between the electron flux energy and velocity time
lag obtained by NARMAX. They found that for the solu-
tion of Eqs. (17) and (18), the energy was proportional to the
square root of the time, which disagreed with the observed
results interpreted by NARMAX.

From these studies, two online NARMAX electron flux
models have been created for energies> 800 keV and>

2 MeV. With the identification of the main model parameters,
achieved byBoynton et al.(2013), a NARMAX model was
deduced, which uses real time data from the Advanced Com-
position Explorer (ACE) spacecraft to provide a 24 h ahead
forecast of the electron fluxes. These forecasts are available
athttp://www.ssg.group.shef.ac.uk/USSW/UOSSW.html.
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6 Conclusions

The NARMAX system identification technique has been
shown to not only provide excellent models but also reveal
insight into the physical processes of the system due to the
interpretability of the results. This paper has reviewed how
the NARMAX has been applied to the terrestrial magneto-
sphere, showing examples of how this approach can aid in
understanding the physics of the magnetosphere.

For the Dst index, the application of the NARMAX ap-
proach byBoynton et al.(2011b), automatically derived a
solar wind–magnetosphere coupling function from data, This
coupling function was justified analytically from the geom-
etry of dayside reconnection in the study byBalikhin et al.
(2010). These two studies show how the physically inter-
pretability of NARMAX can aid in the understanding of
dayside reconnection. As well as providing insight into the
physics,Boynton et al.(2011a) derived a NARMAX model
for the Dst index, which also evidenced the superiority of this
coupling function over others as an input for the Dst index.

The study of the electron fluxes at GEO, using the NAR-
MAX algorithm, by Boynton et al.(2013) revealed a rela-
tionship between the solar wind density and 1.8–3.5 MeV
electron flux, and quantified the timescale for the increase
in electron flux as a function of energy.Balikhin et al.(2011)
andAryan et al.(2013) confirmed the density had an anti-
correlation with the velocity at which the electron flux sat-
urates, whileBoynton et al.(2013) showed that the loss
of electrons, in some cases, is not due to the density in-
creases causing magnetopause shadowing.Balikhin et al.
(2012) solved the energy diffusion equation and found that
a change in energy of the electrons should be proportional
to the square root of the time taken for this change. How-
ever, they concluded that since this disagreed with the ob-
servations from the NARMAX analysis, then local diffusion
cannot be dominant at GEO.
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