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Abstract. The finite Larmor radius (FLR)-Landau fluid
model, which extends the usual anisotropic magnetohydro-
dynamics to magnetized collisionless plasmas by retaining
linear Landau damping and finite Larmor radius corrections
down to the sub-ionic scales in the quasi-transverse direc-
tions, is used to study the non-resonant heating of the plasma
by randomly driven Alfv́en waves. One-dimensional numer-
ical simulations, free from any artificial dissipation, are used
to analyze the influence on the thermal dynamics, of the beta
parameter and of the separation between the driving and the
ion scales. While the gyrotropic heat fluxes play a dominant
role when the plasma is driven at large scales, leading to a
parallel heating of the ions by Landau damping, a different
regime develops when the driving acts at scales comparable
to the ion Larmor radius. Perpendicular heating and paral-
lel cooling of the ions are then observed, an effect that is
mostly due to the work of the non-gyrotropic pressure force
and that can be viewed as the fluid signature of the so-called
stochastic heating. A partial characterization of the plasma
by global quantities (such as the magnetic compressibility
and the density-magnetic field correlations that provide in-
formation on the dominant type of waves) is also presented.
The enhancement of the parallel electron heating by a higher
level of fast magnetosonic waves is in particular pointed out.

Keywords. Interplanetary physics (solar wind plasma)

1 Introduction

It is now well established that, in the solar wind, the pro-
tons are subject to a significant heating in the direction per-
pendicular to the ambient magnetic field and are, in some
regions, cooled in the parallel direction at a rate compara-
ble to that of the perpendicular heating rate (Hellinger et al.,

2013, and references therein). A natural source of energy for
this effect originates from waves and turbulence. Perpendic-
ular heating can result from cyclotron resonance in particular
near the solar corona, but such a process cannot be efficient
in the regions of the solar wind where the dynamics at the ion
scales can, as confirmed by recent measurements (Sahraoui
et al., 2010; Roberts et al., 2013), be mostly described in
terms of waves propagating in directions nearly perpendic-
ular to the background magnetic field. The frequencies of
these waves in the solar wind frame are much smaller than
the proton gyrofrequency, and, in such a regime, the plasma
heating is supposed to originate from the non-resonant ac-
tion of low-frequency modes such as kinetic Alfvén waves
(KAWs) (Wang et al., 2006; Chandran et al., 2010; Nariyuki
et al., 2010, and reference therein). In this regime, the so-
called stochastic heating resulting from particle acceleration
due to electric field fluctuations at the scale of the ion Lar-
mor radius indeed breaks the conservation of the magnetic
moment and leads to an increase of the perpendicular temper-
ature of the plasma (Wu and Yoon, 2007; Bourouaine et al.,
2008). This effect was studied by considering the dynamics
of particles propagating in the electromagnetic field associ-
ated with KAWs, in the absence of any feedback (Chandran
et al., 2010). It was in particular noticed that, if an efficient
action of a few individual Alfv́en waves required unrealis-
tically large amplitudes, a relatively weak level of Alfvénic
fluctuations with a broad spectrum extending to the ion scale
would provide an efficient effect (Lu and Chen, 2010).

The fully nonlinear dynamics is captured by particles in
cell (PIC) simulations, but such simulations are computation-
ally demanding, as a huge number of quasi-particles per cell
is to be retained in order to maintain a low numerical noise.
It turns out that plasma heating can also be addressed using a
fluid approach, provided it retains low-frequency kinetic ef-
fects (Landau damping and finite Larmor radius corrections)

Published by Copernicus Publications on behalf of the European Geosciences Union.



1196 D. Laveder et al.: Non-resonant anisotropic heating

for scales comparable to the ion Larmor radius and below.
Such a description is provided by the so-called finite Larmor
radius (FLR)-Landau fluid model (Passot and Sulem, 2007;
Passot et al., 2012) that, within a self-consistent approach,
can reproduce both heating and cooling processes, depend-
ing on the plasma parameters. As a first step, the problem
is here addressed in one space dimension with the numer-
ical code previously used to simulate the development of
mirror modes and their feedback action on the temperature-
anisotropy growth, which constrains the system to remain
close to the instability threshold (Laveder et al., 2011). This
one-dimensional setting enables us to address in detail the
basic mechanisms at the origin of the non-resonant heating
processes due to the waves and to their interaction with the
particles, while the heating by current sheets and reconnec-
tion events (Karimabadi et al., 2013), also present in a turbu-
lent flow, requires three-dimensional simulations.

The paper is organized as follows. Section 2 provides a
brief description of the FLR-Landau fluid model. Section 3
specifies the conditions of the simulations together with a
convenient framework to estimate plasma heating. Section 4
describes the thermal dynamics of the ions in both parallel
and perpendicular directions when the beta parameter and
the separation between the driving and ion scales are var-
ied. Section 5 analyzes the relative importance of the various
heating mechanisms, depending on the parameters. Charac-
terization of the plasma by global quantities sensitive to the
various kinds of waves is presented in Sect. 6 where the influ-
ence of the level of fast magnetosonic waves on the (parallel)
electron heating is also discussed. Section 7 provides a few
concluding remarks.

2 The FLR-Landau fluid model

It is well known that the magnetohydrodynamic (MHD) and
bifluid descriptions are poorly adapted to the solar wind due
to its collisionless character. These models in particular over-
estimate the compressibility, and, as recently shown inHu-
nana et al.(2011), Passot et al.(2012), andHunana et al.
(2013), pressure anisotropy and Landau resonance need to
be retained even at large scales. Furthermore, permitting the
development of anisotropic pressure may lead to the onset of
micro-instabilities that are arrested at small scales by finite
Larmor radius (FLR) contributions. In order to cope with this
situation, the FLR-Landau fluid model was developed (Pas-
sot and Sulem, 2007; Passot et al., 2012), which extends the
anisotropic MHD into a fluid description that accurately re-
produces the linear kinetic theory, provided no ion-cyclotron
resonance is encountered. It in particular captures the dynam-
ics of quasi-transverse sub-ionic modes that are character-
ized by low frequencies compared with the gyrofrequency.
This approach thus appears suitable for a magnetized plasma
where the presence of the guide field prescribes a strong
anisotropy of the energy transfer.

The FLR-Landau fluid model is constructed by deriving
from the Vlasov–Maxwell system a moment hierarchy that
starts with equations for the plasma densityρ and for the
ion velocity u where, for the sake of simplicity, the elec-
tric field is expressed by the generalized Ohm’s law, ob-
tained after neglecting electron inertia. The ion pressure ten-
sor includes both gyrotropic and non-gyrotropic contribu-
tionspi = p⊥ i I+(p‖ i−p⊥ i)τ+5i with τ = b̂⊗b̂ (̂b = b/|b|

is the unit vector the direction of the local magnetic field).
Differently, as we do not address the dynamics at the elec-
tron scale, the non-gyrotropic contribution is neglected in the
electron pressure tensorpe = p⊥eI + (p‖e−p⊥e)̂b ⊗ b̂. The
equations governing the gyrotropic pressures and heat fluxes
q⊥r andq‖r of each particle speciesr are given inPassot and
Sulem(2007) andPassot et al.(2012). The model involves
the gyrotropic fourth-rank velocity cumulants and also the
non-gyrotropic contributions to all the retained moments,
which are estimated in a way that fits the low-frequency lin-
ear kinetic theory near an equilibrium state characterized by
the instantaneous mean pressures and temperatures of the
plasma. Explicit expressions of the various contributions in
the present setup where the space variations only take place
in a direction making a prescribed angle with the ambient
magnetic field are given inBorgogno et al.(2007) andCam-
poreale et al.(2010). The lack of space does not enable us to
provide a comprehensive description of the model. We never-
theless briefly mention that the starting point to close the hi-
erarchy and to estimate the non-gyrotropic contributions con-
sists in deriving the low-frequency kinetic expressions of the
various moments that typically depend on electromagnetic
field components and involve the plasma dispersion function
(which is nonlocal both in space and time). These various ex-
pressions are then expressed in terms of other fluid moments
in such a way as to minimize the occurrence of the plasma
dispersion function (which is nonlocal in time and thus not
suitable for addressing initial value problems). The latter is
otherwise replaced by suitable Padé approximants, thus lead-
ing to local-in-time expressions involving in some places a
Hilbert transform with respect to the longitudinal space co-
ordinate, which appears as the signature of Landau damping
within a fluid description.

3 Measuring the plasma heating

In order to mimic the energy injection near the ion gyroscale,
due to the solar-wind Alfv́en-wave cascade, and to study the
resulting heating of the plasma, the FLR-Landau-fluid equa-
tions are supplemented by a random driving acting on the
velocity componentuy perpendicular to the plane defined
by the ambient magnetic field and the direction of propaga-
tion. This forcing is centered about a scalelf with Fourier
coefficients of fixed amplitudes and random phases chosen
independently at each time step. The driving is only active
when the energy per unit length of the perpendicular kinetic
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and magnetic fluctuations (which are mostly associated with
Alfv én waves)EM =

1
2〈ρu2

y〉 +
1
2〈b2

y〉 remains below a fixed
threshold, chosen to ensure a prescribed fluctuation level.
Driving the velocity field only has the advantage of not di-
rectly affecting the space-averaged magnetic moment per

unit massµ⊥ = 〈
p⊥i

|b|
〉 that obeys

dµ⊥
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= 〈
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|b|2
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In the parallel direction, we similarly defineµ‖ = 〈
|b|

2p‖i

ρ2
〉

that obeys

dµ‖

dt
= −〈

2p‖i
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− ∇ · pe

)]
〉
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3
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]
〉. (2)

Note thatµ⊥ andµ‖ differ from the space-averaged adiabatic
invariants of the CGL theory (Chew et al., 1956) by aρ factor
in the denominator.

In the right-hand side (r.h.s.) of the above equations, the
first term originates from the Hall term (including the elec-
tron pressure gradient). The other contributions involve the
gyrotropic (q‖i andq⊥i) and non-gyrotropic components (S

‖

⊥i
andS⊥

⊥i) of the parallel and perpendicular heat flux vectors,
and the non-gyrotropic pressure5i (seePassot and Sulem,
2007, or Passot et al., 2012, for precise definitions of the no-
tations). Since the evolution ofµ⊥ is only due to the Hall
effect and to the non-gyrotropic pressures and heat fluxes,
this quantity is conserved in the limit where the system is
driven at scales much larger than the ion scales. Differently,
the evolution ofµ‖ is sensitive to the parallel and perpendic-
ular gyrotropic fluxes that remain relevant in the large-scale
limit.

As seen in the following, the usefulness ofµ⊥ andµ‖ is
due to the fact that their time evolutions are very similar to
those of the space-averaged perpendicular and parallel ion
temperaturesT ⊥i andT ‖i , which obey (n denotes the number
density)

d

dt
T ⊥i = 〈T⊥i b̂ · ∇u · b̂〉

−〈
1

n
[2q⊥i(∇ · b̂) + (̂b · ∇)q⊥i − q‖i b̂ · ∇b̂ · b̂]〉

−〈
1

n
[∇ · S⊥

⊥i − b̂ · ∇b̂ · S
‖

⊥i]〉

−
1

2
〈
1

n

[(
tr(5 · ∇u)S − (5 · ∇u)S : τ + 5 :

dτ

dt

)]
〉, (3)

d

dt
T ‖i = 〈T ‖i∇ · u〉 − 2〈T ‖i b̂ · ∇u · b̂〉

+〈
1

n
[2q‖i b̂ · ∇b̂ · b̂]〉 − 〈

1

n
[∇ · S

‖

⊥p − 2̂b · ∇b̂ · S
‖

⊥i]〉

−〈
1

n
[(5 · ∇u)S : τ − 5 :

dτ

dt
]〉. (4)

It is noticeable that the equations forµ⊥ andµ‖ involve the
Hall term, while the equations for the temperatures include
mechanical terms associated with the work of the gyrotropic
pressure force. By simple inspection, there is no clear evi-
dence thatT ⊥i remains constant when the dynamics is con-
centrated at large scales. Consideringµ⊥ andµ‖ as a surro-
gate of the temperatures thus offers a better insight into the
physical processes relevant for the heating of the plasma.

Note that, in the above temperature equations and also to
leading order in theµ equations, the non-gyrotropic pressure
and Hall contributions that arise in equations for the parallel
quantities also occur with an opposite sign in the equations
for the perpendicular ones. The latter also include a contribu-
tion involving tr(5·∇u)S that turns out to be always positive
in our simulations and thus heats the plasma.

In the numerical code, the FLR-Landau fluid equations are
written using units based on the magnitudeB0 of the am-
bient field, the Alfv́en velocityvA , the ion inertial length
di = vA/� (where� is the ion gyrofrequency), together with
the uniform initial ion densityρ0 and parallel pressurep‖i0.
Integration is performed using a spectral method with an ef-
fective resolution of 256 grid points (after a partial dealiasing
where the nonlinear terms are evaluated with twice the num-
ber of Fourier modes), in a periodic domain along a direc-
tion making an angle of 80◦ with the ambient magnetic field.
The injection scalelf is associated with the Fourier mode
of index 4. Changinglf is thus performed by changing the
size of the integration domain. The driving term is turned on
and off in order to maintain the transverse energy per unit
lengthEM close to 0.016, leading to a root mean square am-
plitude of the transverse magnetic field and velocity fluctua-
tions of about 12 %. The initial ion and electron temperatures
are taken isotropic and equal. The time discretization is made
using a third-order Runge–Kutta scheme with a time step1t

ranging between 5× 10−5 and 2× 10−3 (in �−1 units). We
explored different regimes by varying the ion parallel beta
β = 8πp‖i0/B2

0 and the ratio between the driving scalelf
and either the ion inertial lengthdi or the ion Larmor radius

www.ann-geophys.net/31/1195/2013/ Ann. Geophys., 31, 1195–1204, 2013
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Fig. 1. Parameter plane (di/lf ,β) where the various colors refer

to the series of runs discussed in the text. This plane is divided

in two regions displaying a different heating dynamics: in region

A, ion parallel heating dominates, while in region B, perpendicular

heating and parallel cooling take place.

4 Evolution of the temperatures

Figure 2 displays the time evolution of the mean tempera-265

tures T ‖i and T⊥i, and of the corresponding µ‖ and µ⊥, in

the case of simulations performed with β=0.3 but decreas-

ing driving scales di/lf = 0.020 (left panel), 0.080 (middle

panel) and 0.16 (right panel). These runs belong to the series

of simulations indicated by blue points in Fig. 1 and dis-270

play three typical thermal behaviors of the plasma: in the left

panel, T ‖i increases while T⊥i stays almost constant; in the

middle panel, both temperatures increase possibly at differ-

ent rates that vary in time; in the right panel, T⊥i increases

while T ‖i decreases, leading eventually to the development275

of mirror instability.

As previously announced, in all the simulations the mean

temperatures and the corresponding µ’s display the same

global behavior (an effect analyzed in Appendix A), up to

a possible shift originating from a brief early-time tempera-280

ture oscillation, especially in the case of a large-scale driv-

ing. Furthermore, and in particular in the latter regime, the

temperatures display oscillations with a frequency match-

ing the Alfvén wave frequency at the driving scale lf , that

are smoothed out at the level of the µ’s. When measuring285

the different terms in the r.h.s. of Eq. (3)-(4), it turns out

that these oscillations are mostly due to the term propor-

tional to b̂ ·∇u · b̂, and in particular to its leading contribu-

tion b̂z(∂zuy )̂by which involves the driven velocity compo-

nent uy. These oscillations are however not relevant for the290

plasma heating, on long time scales. In the following, we

thus concentrate on the µ’s that display simpler properties.

The evolution of µ⊥ results only from small-scale contri-

butions, namely the Hall term, the non-gyrotropic pressure

tensor (often referred to as FLRs for shortness in the follow-295

ing) and also the non-gyrotropic heat fluxes which turn out

to be always subdominant and will thus be ignored in the fol-

lowing discussions. As a consequence, in simulations where

injection takes place at large enough scales (a regime similar

to that of Fig. 2, left), µ⊥ is conserved. Differently, when the300

driving acts at smaller scales, the Hall term and FLR contri-

butions break the conservation of the perpendicular moment

(middle and right panels) which then increases in time. The

evolution of µ‖ is in contrast sensitive to the parallel and per-

pendicular gyrotropic heat fluxes that remain significant at305

large scales and lead to a parallel heating of the ions by Lan-

dau damping (Fig. 2, left and middle). Note that, in the right

panel of Fig. 2, the enhancement of the heating and cooling

processes shortly before the plasma becomes mirror unstable

which, in the present simulation, occurs at t≈ 1200. Further-310

more, the thermal dynamics is significantly slower when the

scale separation is larger.

Another important parameter that affects the ion heating

is β. When considering the influence of this parameter for a

fixed scale separation, it is important to specify whether the315

prescribed quantity is the ratio of the injection scale to the

ion inertial length or the ion Larmor radius. In the former

case (di/lf = 0.080), Fig. 3 displays, for β = 0.1, (black),

β=0.3 (blue), β=0.6 (green), and β=2.4 (red), the varia-

tion of µ⊥ (top panel) and µ‖ (bottom panel). These simu-320

lations belong to the series indicated by green points in Fig.

1. At β =0.1, the perpendicular heating is very weak. It is

significantly enhanced when β is increased, while the paral-

lel heating rate decreases and even becomes negative at large

enough β. It follows that increasing β while keeping con-325

stant the ratio di/lf is qualitatively similar to decreasing the

driving scale at fixed β.

Since the evolution of the µ’s is influenced by non-

gyrotropic contributions for which the relevant scale is the

ion Larmor radius, we consider the evolution of µ‖ and µ⊥ at330

fixed rL/lf , with the series of runs indicated by red (rL/lf =
0.35), orange (rL/lf = 0.080) and violet (rL/lf = 0.062)

points in Fig. 1. Figure 4 displays the time variation of

µ‖ and µ⊥ for rL/lf = 0.35 (top panel) and rL/lf = 0.080
(bottom panel), when β takes the values 0.075 (black), 0.15335

(magenta), 0.3 (blue), 1.2 (green) and 2.4 (red). The parallel

quantities are indicated by dashed lines and the perpendicu-

lar ones by solid lines. In all these simulations, we observe

perpendicular heating and parallel cooling, which eventually

leads to mirror instability. Especially in the top panel corre-340

sponding the smaller injection scale, the parallel cooling is

rather weak and it does not vary significantly from one run

to the other, while the efficiency of the perpendicular heating

decreases when increasing β. A similar variation is observed

in the particle simulations reported in Chandran et al. (2010).345

This contrasts with the simulations characterized by a fixed

ratio di/lf , for which the effect of changing β is just oppo-

Fig. 1. Parameter plane(di/lf ,β) where the various colors refer to
the series of runs discussed in the text. This plane is divided into two
regions displaying a different heating dynamics: in region A, ion
parallel heating dominates, while in region B, perpendicular heating
and parallel cooling take place.

rL = di
√

β. Note that, in the case of one-dimensional simula-
tions, the injection scale has a deep influence on the thermal
dynamics, as the energy hardly cascades to small scales. Fig-
ure1 provides an overview of the selected simulations in the
parameter plane (di/lf , β), which turns out to be divided into
two regions where the ion heating displays significantly dif-
ferent properties. The various colors refer to specific series
of runs discussed in the following. All the simulations were
performed without any artificial dissipation.

4 Evolution of the temperatures

Figure 2 displays the time evolution of the mean tempera-
turesT ‖i andT ⊥i , and of the correspondingµ‖ andµ⊥, in
the case of simulations performed withβ = 0.3 but decreas-
ing driving scalesdi/lf = 0.020 (left panel), 0.080 (middle
panel) and 0.16 (right panel). These runs belong to the se-
ries of simulations indicated by blue points in Fig.1 and dis-
play three typical thermal behaviors of the plasma: in the left
panel,T ‖i increases whileT ⊥i stays almost constant; in the
middle panel, both temperatures increase possibly at differ-
ent rates that vary in time; in the right panel,T ⊥i increases
while T ‖i decreases, leading eventually to the development
of mirror instability.

As previously announced, in all the simulations the mean
temperatures and the correspondingµ values display the
same global behavior (an effect analyzed in Appendix A),
up to a possible shift originating from a brief early-time tem-
perature oscillation, especially in the case of a large-scale
driving. Furthermore, and in particular in the latter regime,
the temperatures display oscillations with a frequency match-
ing the Alfvén wave frequency at the driving scalelf , which

are smoothed out at the level of theµ’s. When measuring
the different terms in the r.h.s. of Eqs. (3)–(4), it turns out
that these oscillations are mostly due to the term propor-
tional to b̂ · ∇u · b̂, and in particular to its leading contribu-
tion b̂z(∂zuy)̂by, which involves the driven velocity compo-
nentuy. These oscillations are however not relevant for the
plasma heating, on long time scales. In the following, we thus
concentrate on theµ’s that display simpler properties.

The evolution ofµ⊥ results only from small-scale contri-
butions, namely the Hall term, the non-gyrotropic pressure
tensor (often referred to as FLRs for shortness in the follow-
ing) and also the non-gyrotropic heat fluxes, which turn out
to be always subdominant and will thus be ignored in the fol-
lowing discussions. As a consequence, in simulations where
injection takes place at large enough scales (a regime similar
to that of Fig.2, left), µ⊥ is conserved. Differently, when the
driving acts at smaller scales, the Hall term and FLR contri-
butions break the conservation of the perpendicular moment
(middle and right panels), which then increases in time. The
evolution ofµ‖ is in contrast sensitive to the parallel and per-
pendicular gyrotropic heat fluxes that remain significant at
large scales and lead to a parallel heating of the ions by Lan-
dau damping (Fig.2, left and middle). Note that in the right
panel of Fig.2, the enhancement of the heating and cooling
processes shortly before the plasma becomes mirror unsta-
ble, which, in the present simulation, occurs att ≈ 1200. Fur-
thermore, the thermal dynamics is significantly slower when
the scale separation is larger.

Another important parameter that affects the ion heating
is β. When considering the influence of this parameter for
a fixed scale separation, it is important to specify whether
the prescribed quantity is the ratio of the injection scale to
the ion inertial length or to the ion Larmor radius. In the for-
mer case (di/lf = 0.080), Fig.3 displays, forβ = 0.1 (black),
β = 0.3 (blue),β = 0.6 (green), andβ = 2.4 (red), the varia-
tion of µ⊥ (top panel) andµ‖ (bottom panel). These simula-
tions belong to the series indicated by green points in Fig.1.
At β = 0.1, the perpendicular heating is very weak. It is sig-
nificantly enhanced whenβ is increased, while the parallel
heating rate decreases and even becomes negative at large
enoughβ. It follows that increasingβ while keeping con-
stant the ratiodi/lf is qualitatively similar to decreasing the
driving scale at fixedβ.

Since the evolution of theµ’s is influenced by non-
gyrotropic contributions for which the relevant scale is the
ion Larmor radius, we consider the evolution ofµ‖ and
µ⊥ at fixed rL/lf , with the series of runs indicated by red
(rL/lf = 0.35), orange (rL/lf = 0.080) and violet (rL/lf =

0.062) points in Fig.1. Figure4 displays the time variation
of µ‖ andµ⊥ for rL/lf = 0.35 (top panel) andrL/lf = 0.080
(bottom panel), whenβ takes the values 0.075 (black), 0.15
(magenta), 0.3 (blue), 1.2 (green) and 2.4 (red). The parallel
quantities are indicated by dashed lines and the perpendicu-
lar ones by solid lines. In all these simulations, we observe
perpendicular heating and parallel cooling, which eventually
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Fig. 2.Time variation ofµ⊥ (red) andT ⊥ (magenta), and also ofµ‖ (blue) andT ‖ (cyan), at fixedβ = 0.3 and three scale separations (from
the blue series of Fig.1) di/lf = 0.020 (left),di/lf = 0.080 (middle), anddi/lf = 0.16 (right).
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Fig. 3. Time variation ofµ⊥ (top panel) andµ‖ (bottom panel),
for a fixed ratiodi/lf = 0.080 and (green series of Fig.1) β = 0.1
(black),β = 0.3 (blue),β = 0.6 (green), andβ = 2.4 (red).

leads to mirror instability. Especially in the top panel corre-
sponding to the smaller injection scale, the parallel cooling
is rather weak and it does not vary significantly from one run
to the other, while the efficiency of the perpendicular heating
decreases when increasingβ. A similar variation is observed
in the particle simulations reported inChandran et al.(2010).
This contrasts with the simulations characterized by a fixed
ratiodi/lf , for which the effect of changingβ is just the oppo-
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Fig. 4. Time variation ofµ⊥ (solid lines) andµ‖ (dashed lines),
when fixingrL/lf and changingβ. Top:rL/lf = 0.35 (red series of
Fig.1) with β = 0.075 (black),β = 0.3 (blue),β = 1.2 (green), and
β = 2.4 (red). Bottom:rL/lf = 0.087 (orange series of Fig.1) with
β = 0.15 (magenta),β = 0.3 (blue),β = 1.2 (green), andβ = 2.4
(red).

site. We observe in the bottom panel a conspicuous enhance-
ment of the heating when approaching the mirror threshold
(for the run corresponding to the magenta curve, the mirror
instability occurs att ≈ 730).
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Fig. 5. Time evolution of the r.h.s. (black) of the equation forµ‖ together with the various contributions: gyrotropic heat fluxes (blue), Hall
effect (green), non-gyrotropic pressure (red), for the same simulations as in Fig.2: β = 0.3 anddi/lf = 0.020 (left),di/lf = 0.080 (middle),
anddi/lf = 0.16 (right)

.

To summarize, the(di/lf,β) plane displayed in Fig.1 can
be divided into two regions. Although a sharp boundary can
hardly be specified, an approximate separatrix can empiri-
cally be defined. The region denoted by “A” is characterized
by a parallel ion heating and a weak to moderate perpendic-
ular one, while in region B the plasma is subject to a strong
perpendicular heating and to a parallel cooling, leading to
mirror instability. Close to this separatrix, the system may
hesitate between these two possible outcomes, and runs char-
acterized by identical initial conditions and a driving corre-
sponding to different realizations of the same random forcing
can display different global evolutions.

5 The heating mechanisms

5.1 The transition from parallel heating to cooling

The dynamics is simple when the forcing is applied at very
large scales (especially at lowβ), as in this case only the
heat fluxes are relevant and the only measurable effect is a
growth ofµ‖ at a rate that is smaller when the injection scale
is larger. It is thus of interest to examine the transition from
parallel heating to cooling at the level of the individual terms
contributing to the r.h.s. of Eq. (2), when gradually increas-
ing the ratiodi/lf and/orβ. In Fig. 5, the contributions (sub-
ject to a suitable running average in order to suppress fast
oscillations) of the FLRs (red), the Hall term (green) and the
heat fluxes (blue) are plotted forβ = 0.3 and the same three
different ratiosdi/lf = 0.020, 0.080 and 0.16, as in Fig.2.
While at the largest injection scale (left panel) the heat flux
(which is positive) is larger than the two other contributions,
in the middle and right panels it has almost the same magni-
tude as the Hall effect (which is negative), so as to compen-
sate it almost exactly. This compensation appears to be quite
generic in regimes of intermediatedi/lf and β. Thus, the
transition from heating at large injection scales to cooling at
small injection scales is governed by the FLRs, despite their
relative subdominance. The increased perpendicular heating

associated with this transition can be understood by notic-
ing that the Hall term and the FLRs that contribute toµ⊥

act with an opposite sign in the equation forµ‖ while, when
not subdominant, the extra FLR term tr(5i · ∇ui)

s (which is
positive) leads to perpendicular heating.

A similar behavior is observed when, for intermediate in-
jection scales (e.g.,di/lf = 0.080), the value ofβ is increased
from β < 1 to β > 1. This transition is exemplified in Fig.6
for β = 0.1 (bottom) andβ = 2.4 (top). The smallβ regime
is qualitatively similar to a large-scale injection case (parallel
heating), while at highβ, the FLRs are dominant (and nega-
tive) in theµ‖ equation as in the small-scale injection case.
On top of that, the Hall term tends to cool forβ < 1 and to
heat forβ > 1 (a somewhat general property at any scale).

5.2 The various FLR contributions

We observed that the work of the non-gyrotropic pressure
force (referred to as FLRs) plays a main role in the above
transition. For example in the conditions of Fig.5, the transi-
tion from the middle to the right panel can be sketched as
follows. For the parallel quantities, the middle panel cor-
responds to a positive contribution of(5i · ∇ui)

s
: τ and a

negligible5i :
dτ
dt

, while in the right panel,5i :
dτ
dt

becomes
strongly negative and(5i ·∇ui)

s
: τ subdominant. In general,

in the B region of Fig.1, 5i :
dτ
dt

is dominant and negative,
while in the A region,(5i · ∇ui)

s
: τ is dominant and pos-

itive. For the perpendicular quantities, decreasing the injec-
tion scales enhances the importance of the term tr(5i ·∇ui)

s ,
thus promoting strong heating, while in the A region, this
term is almost compensated by(5i · ∇ui)

s
: τ , making the

heating very mild.
The role of the FLRs is central to triggering the emergence

of mirror instability in the B region, and a sophisticated mod-
elization of these quantities at small scales, as performed in
the present FLR-Landau fluid model, turns out to be crucial
to achieve such a result. It is in particular not captured when
using classical large-scale FLR modeling (not shown).
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Fig. 6. Time evolution of the terms entering the r.h.s. of the equa-
tion for µ‖, for two runs of Fig.3, with di/lf = 0.080 andβ = 2.4
(top) andβ = 0.1 (bottom). Same color code as in Fig.5, i.e., black:
total r.h.s.; blue: gyrotropic heat fluxes; green: Hall effect; red: non-
gyrotropic pressure.

When driving the system at scales of the order of the ion
Larmor radius where stochastic heating is supposed to be
most efficient, the FLRs account for most of the perpen-
dicular heating and parallel cooling of the plasma. To study
this regime, we performed several series of simulations in
which we kept constant the ratiorL/lf by varying simulta-
neouslydi/lf andβ. The dynamics turns out to be simpler
when the driving scales approach the Larmor radius, e.g.,
for rL/lf = 0.35 (red series in Fig.1). In this case, we plot
in Figs. 7 and 8 for two values ofβ the time variation of
the r.h.s. (black lines) of Eqs. (1) and (2) for µ⊥ (top) and
µ‖ (bottom) respectively, together with that of both the total
FLRs (orange) and their individual contributions involving
tr(5i ·∇ui)

s (red),(5i ·∇ui)
s
: τ (green) and5i :

dτ
dt

(blue).
For the sake of clarity, a running average is performed on 50
time units. At smallβ (e.g.,β = 0.075, Fig.7), the term in
tr(5i ·∇ui)

s that arises only in the perpendicular equation is
dominant and prescribes the growth ofµ⊥. The main contri-
bution to this term originates from5yz∂zuy, which involves
the forced velocity component. This perpendicular ion heat-
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Fig. 7. Time evolution of the total r.h.s. and of the detailed contri-
butions to the non-gyrotropic pressure in the equation forµ⊥ (top)
andµ‖ (bottom) for one of the runs presented in the top panel of
Fig. 4, i.e.,β = 0.075 anddi/lf = 1.27. Black: total r.h.s.; orange:
sum of all the non-gyrotropic pressure contributions; red: term in-
volving tr(5i · ∇ui)

s ; green: term involving(5i · ∇ui)
s
: τ ; blue:

term involving5i :
dτ
dt

.

ing is in particular consistent with the small-beta stochastic
heating simulations ofChandran et al.(2010). Moreover, the
term in 5i :

dτ
dt

(which almost coincides with the contribu-

tion 5yzb̂z
db̂y
dt

) accounts for essentially all the variations of
µ‖. In this small-beta regime, we observe that|uy| � |by|.

At larger β (e.g., β = 2.4, Fig. 8), the FLRs contribute
to most of the variations ofµ⊥ and µ‖, but the perpen-
dicular heating now results from the two terms mentioned
above, which contribute by a comparable amount. A small
but measurable contribution to the heating also originates
from the Hall term. In this regime, the magnitude ofuy and
by are comparable. A similar pattern appears when the ratio
rL/lf is decreased as in the orange (rL/lf = 0.087) and violet
(rL/lf = 0.062) series of Fig.1, with an increasing impor-
tance of the Hall term and heat flux contributions.
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i.e.,β = 2.4 anddi/lf = 0.23. The same color code is used: black:
total r.h.s.; orange: sum of all the non-gyrotropic pressure contri-
butions; red: term involving tr(5i · ∇ui)
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: τ ; blue: term involving5i :
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.

6 Dominant modes and electron heating

In order to relate the thermal dynamics of the plasma to
its global properties and in particular to the dominant type
of waves that are present, it is of interest to consider the
evolution of quantities such as the magnetic compressibil-
ity χ = 〈̃b2

z〉/〈̃b
2
z + b2

⊥
〉 (where a tilde indicates fluctuations

about the mean value) and the correlation between the fluc-
tuations of the density and of the square magnetic field am-

plitudeφ = 〈ρ̃ (̃b2
z + b2

y)〉/

√
〈ρ̃2〉〈(̃b2

z + b2
y)

2〉, when varying

the parameters.
In general,χ increases from the A to the B region of the

perpendicular plane, indicating the presence in the latter re-
gion of a significant amount of mirror modes even before
they become unstable. It in particular rapidly increases when,
in the conditions of Fig.2 (right), the perpendicular heat-
ing and parallel cooling undergo a strong enhancement at the
moment when the mirror instability develops. This strength-
ening is related to an increase of the FLRs and in particular of
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Fig. 9. Time evolution of the electron parallel temperature (top) for
two runs (red or black lines) with the same parametersβ = 0.4, and
di/lf = 0.080 (black point in the transition zone between the A and

B regions in Fig.1) for which the quantity
√

〈u2
x〉 (bottom), which

measures the level of fast magnetosonic waves, has a significantly
different magnitude.

the element5yz that includes a term proportional to the tem-
perature anisotropy (Passot and Sulem, 2007; Passot et al.,
2012). Simulations performed with initially anisotropic ion
temperatures (T⊥ > T‖) indeed show an enhancement of the
perpendicular heating (not shown).

For what concerns the correlationφ, it is negative in all
the simulations, indicating that the magnetosonic modes are
preferentially slow, except when the injection takes place at
very large scales (β = 0.3,di/lf = 0.020) for whichφ is pos-
itive, indicating the dominance of fast magnetosonic waves in
this case.

The amount of energy associated with fast magnetosonic
modes can be estimated by the quantity

√
〈u2

x〉 (wherex is
the direction perpendicular to the ambient field in the plane
that also includes the direction of propagation). In all the per-
formed simulations, no clear correlation is observed between
the magnitude of

√
〈u2

x〉 and the characteristics of the ion
heating. Differently, this quantity has a direct relation with
the parallel electron heating (in the perpendicular direction,
the electron heating is negligible). To analyze this effect, it is
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convenient to consider two runs with identical initial param-
etersβ = 0.4 anddi/lf = 0.080 (black point in the transition
zone between the regions A and B of Fig.1), for which driv-
ing by different realizations of the same random forcing can
lead to the development of different levels of

√
〈u2

x〉 (Fig. 9,
bottom) and different growth rates of the (space-averaged)
parallel electron temperature (Fig.9, top). The larger

√
〈u2

x〉

is, the faster the temperature growth is.
Furthermore, the electron parallel heating turns out to be

strongly enhanced when at fixedβ the ratiodi/lf is increased.
As a typical example, forβ = 0.3 we obtained a temperature
growth rate that is almost 0 fordi/lf = 0.020, while it is 1×
10−4 for di/lf = 0.080, 3× 10−4 for di/lf = 0.11 and 5×
10−4 for di/lf = 0.16. When prescribing the scale separation
di/lf = 0.080 and varyingβ, the growth rate is mostly the
same (about 1× 10−4) for β = 0.1 and 0.3, and decreases to
about 3× 10−5 for β = 0.6, 1.2 and 2.4. This drastic change
of behavior appears to be related to the transition between
the A and B regions.

7 Conclusions

We show in this paper that the FLR-Landau fluid model al-
lows for a self-consistent study of the non-resonant plasma
heating due to random Alfv́en waves. A random driving that
mimics the energy injection by a turbulent cascade leads to
a perpendicular heating of the ions. Furthermore, the parallel
heating observed when the plasma is driven at large scale is
replaced by a parallel cooling when the driving acts at scales
comparable to the ion Larmor radius. Differently, the elec-
trons are always heated in the parallel direction by Landau
damping, through the gyrotropic heat fluxes at a rate that
rapidly increases with the level of fast magnetosonic waves.
An advantage of the present approach is the possibility to
discriminate between the various contributions and to iden-
tify the dominant effects. The main role of the non-gyrotropic
pressure on the ion thermal dynamics is in particular pointed
out.

The present study was performed in a one-dimensional
setting, along a direction quasi-transverse to the ambient
magnetic field. We concentrated on heating processes due
to KAWs, whose efficiency is related to the proximity of
the wavelengths to the ion Larmor radius. Other heating
processes, in addition to Landau and cyclotron resonances
(Marsch and Bourouaine, 2011), are based on the effect
of rapidly evolving small-scale structures such as currents
sheets (Markovskii and Vasquez, 2011; Servidio et al., 2012).
Forthcoming developments will concern the extension of
the present simulations to the fully three-dimensional FLR-
Landau fluid model, which permits the development of tur-
bulent cascades and thus provides a suitable tool to address
the heating problem in a fully turbulent regime.
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Fig. A1. For the same run as in Fig.5 (middle) (i.e.,β = 0.3 and
di/lf = 0.080), time evolution of the terms entering the r.h.s. of the
equation forµ⊥ andT ⊥ (top) andµ‖ andT ‖ (bottom). The color
code is blue for gyrotropic heat fluxes, and green for Hall effect in
theµ equations; magenta for mechanical contributions, and orange
for gyrotropic heat fluxes in the temperature equation. In the bot-
tom panel, the maroon curve is the same as the magenta one after
rescaling by a factor 2.25.

Appendix A

In order to interpret the similarity in the behaviors of the tem-
peratures and of theµ’s, announced in Sect. 2, we plot in
Fig. A1 the time evolution of the different terms appearing
in the right hand sides of Eqs. (1)–(4) for the same run as in
Fig. 2 (middle) for which the Hall contribution is relevant.
In general, all these terms have large oscillations that must
be averaged out in order to extract their secular effects that
are the only interesting issue for long-time plasma heating.
For this purpose, a running average over 500 time units was
applied to all the quantities. In the top panel that refers to the
perpendicular quantities, the magenta curve corresponds to
the mechanical term in the equation forT ⊥i and the green
one to the Hall term in the equation forµ⊥. These curves
follow each other quite accurately, indicating that the Hall
effect explicitly present in theµ⊥ equation has a counterpart
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in the secular evolution of the mechanical exchanges forT ⊥i .
The blue curve represents the gyrotropic flux term in theT ⊥i
representation, which turns out to be subdominant and is not
present in the equation forµ⊥. The non-gyrotropic pressure
contributions are almost identical, and the non-gyrotropic
fluxes turn out to be subdominant (not shown).

The situation is somewhat more complicated for parallel
quantities (bottom panel). Keeping the same color code as
above, the magenta line refers to the sum of the mechani-
cal terms in the equation forT ‖i , and the green one to the
Hall term in the equation forµ‖. It turns out that these quan-
tities match each other only after rescaling the former by
a factor empirically evaluated to 2.25 (maroon curve). The
same ratio appears when comparing the contributions of the
gyrotropic fluxes in both representations (orange and blue
curves). Despite the presence of this factor, the global evo-
lutions of T ‖i andµ‖ are essentially identical because, for
the parallel quantities, depending on the representation, the
mechanical or Hall contributions are just the opposite of the
heat fluxes, so they cancel out, causing the heating properties
to be governed by subdominant terms. The similar behavior
of T ‖i andµ‖ thus relies on this approximate balance.
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