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Abstract. Estimating the geoeffectiveness of solar events is
of significant importance for space weather modelling and
prediction. This paper describes the development of a neu-
ral network-based model for estimating the probability oc-
currence of geomagnetic storms following halo coronal mass
ejection (CME) and related interplanetary (IP) events. This
model incorporates both solar and IP variable inputs that
characterize geoeffective halo CMEs. Solar inputs include
numeric values of the halo CME angular width (AW), the
CME speed (Vcme), and the comprehensive flare index (cfi),
which represents the flaring activity associated with halo
CMEs. IP parameters used as inputs are the numeric peak
values of the solar wind speed (Vsw) and the southward Z-
component of the interplanetary magnetic field (IMF) orBs.
IP inputs were considered within a 5-day time window af-
ter a halo CME eruption. The neural network (NN) model
training and testing data sets were constructed based on 1202
halo CMEs (both full and partial halo and their properties)
observed between 1997 and 2006. The performance of the
developed NN model was tested using a validation data set
(not part of the training data set) covering the years 2000
and 2005. Under the condition of halo CME occurrence,
this model could capture 100 % of the subsequent intense
geomagnetic storms (Dst≤ −100 nT). For moderate storms
(−100< Dst≤ −50), the model is successful up to 75 %.
This model’s estimate of the storm occurrence rate from halo
CMEs is estimated at a probability of 86 %.

Keywords. Magnetospheric physics (Solar wind-
magnetosphere interactions)

1 Introduction

Explosive events occurring on the Sun are the main causes
of space weather affecting space- and ground-based technol-
ogy as well as life on Earth in a number of ways (e.g.Siscoe
and Schwenn, 2006). The predictability of space weather is
therefore one way to minimize its effects. However, space
weather prediction is still relatively inaccurate given that the
underlying physics of the main drivers (e.g. CMEs and as-
sociated X-ray flares is not yet sufficiently well understood)
(Schwenn et al., 2005).

Geomagnetic storms (GMS) represent typical features of
space weather. They occur as a result of the energy trans-
fer from the solar wind (SW) to the Earth’s magnetosphere
via magnetic reconnection. The main solar sources of GMS
are (a) the CMEs from the Sun (Gopalswamy et al., 2007),
and (b) the corotating interaction regions (CIRs) that result
from the interaction between the fast and slow SW originat-
ing from coronal holes (Zhang et al., 2007). The two phe-
nomena evolve into geoeffective conditions in the SW pro-
ducing moderate to intense GMS when there is an enhanced
and long lasting IMF in the southward direction (Richard-
son et al., 2002; Richardson, 2006; Gonzalez et al., 2004).
However, despite the prominent role played by CMEs in pro-
ducing GMS, their prediction cannot only be based on CME
observations. As noted byWang et al.(2002), the properties
of CMEs that lead to magnetic storms are still a subject of
intense research. Hence, improving the prediction of GMS
requires an identification of key solar and IP geoeffective pa-
rameters of CMEs (Srivastava, 2005).

Currently, magnetic storm prediction models include sta-
tistical, empirical and physics-based methods. However,
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despite previous attempted theoretical models to forecast the
magnetic storm occurrence (Dryer, 1998; Dryer et al., 2004),
physics-based models are still difficult to achieve. This is
due to the complex, non-linear chaotic system of the solar-
terrestrial interaction, with its physics still to be well under-
stood (Fox and Murdin, 2001; Schwenn et al., 2005). Space
weather forecasters often prefer empirical approaches based
on observable data (Kim et al., 2010). Various functional re-
lationships have been proposed for magnetic storm predic-
tions. An algorithm for predicting the disturbance storm time
(Dst) index from SW and the IMF parameters was first pro-
posed byBurton et al.(1975). Empirical models for pre-
dicting GMS using CME-associated parameters at the Sun
have been developed, including a recent work byKim et al.
(2010). Other authors prefer statistical methods, e.g.Srivas-
tava(2005), who used a combination of solar and IP proper-
ties of geoeffective CMEs in a logistic regression model to
predict the occurrence of intense GMS.

Empirical methods also include NN methods that are
input-output models and have proven to be efficient in cap-
turing the linear as well as the non-linear processes (Kamide
et al., 1998). NN techniques have been described by various
authors to be suitable for predicting transient solar-terrestrial
phenomena (Lundstedt et al., 2005; Pallocchia et al., 2006;
Woolley et al., 2010). A very well-designed and trained net-
work can improve a theoretical model by performing gen-
eralization rather than simply curve fitting. By changing the
NN input values, it is possible to investigate the functional
relationship between the input and the output and therefore,
be able to derive what the network has learned (Lundstedt,
1997). NN models for predicting magnetic storms using SW
data as inputs have been developed (Lundstedt and Wintoft,
1994), with the ability to estimate the level of geomagnetic
disturbances as measured by the Dst index. In particular, the
use of Elman NN-based algorithms has achieved improved
Dst forecasts (Lundstedt et al., 2002). In a NN-based model
developed byValach et al.(2009), geoeffective solar events
such as solar X-ray flares (XRAs) and solar radio bursts
(RSPs) were used to predict the subsequent GMS. In order
to improve GMS forecasts,Dryer et al.(2004) suggested that
models should include both solar and near-Earth conditions.

For this study, a combination of solar and IP properties of
halo CMEs is used in a NN model to predict the probability
of GMS occurrence following halo CMEs. Unlike the work
by Srivastava(2005) that produced the intense and super-
intense storm prediction model, the present NN model at-
tempts to also explore the predictability of moderate storms
(−100 nT< Dst≤ −50 nT). Note that input parameters used
are directly associated with halo CMEs, and therefore, the
developed model cannot predict the probability occurrence of
GMS that are non-CME-driven such as those caused by the
CIRs. In developing the NN model described in this paper,
a procedure was followed similar to the one used byMcK-
innell et al.(2010) for predicting the probability of spread-F
occurrence over Brazil.

2 Data: determination of input and output parameters

2.1 Halo CMEs

The Solar and Heliospheric Observatory/Large Angle Spec-
trometric Coronagraph (SOHO/LASCO) (Bruckner et al.,
1995) has been detecting the occurrence of CMEs on the Sun
for more than a decade. Halo CMEs are those that appear to
surround the occulting disk of the observing coronagraphs.
It has been observed that halo CMEs originating from the
visible solar disc and that are Earth-directed have the high-
est probability to impact the Earth’s magnetosphere (Webb
et al., 2000), and hence are useful for the prediction of GMS.
In their study,Webb et al.(2000) andCyr et al.(2000) used
140◦ and 120◦ respectively as a threshold apparent angular
width (AW) to define halo CMEs, while a study byWang
et al.(2002) considered a halo CME as the one with an appar-
ent AW greater than 130◦. In this study, we considered halo
CMEs as categorized byGopalswamy et al.(2007), where
full halo CMEs (F-type) have an apparent sky plane AW of
360◦, while partial halos (P-type) are those with an apparent
AW in the range 120◦ ≤ W ≤ 360◦.

During the first 11-year period of solar cycle (SC) 23 (from
January 1996 to December 2006), the LASCO/SOHO cata-
log list indicates 393 full halo CMEs, representing 3.4 % of
all 11683 CMEs recorded. During the same period, the num-
ber of partial halo CMEs was 840. Hence, in total, LASCO
observed 1233 (10.5 %) halo CMEs. A correlation coefficient
of 0.75 was found between full halo CMEs occurrence rate
per year and the occurrence rate of geomagnetic disturbances
(disturbed day frequency per year with Dst≤ −50 nT) from
1996 to 2006. However, not all halo CMEs are associated
with GMS, and some non-halo CMEs can also cause intense
GMS if they arrive at Earth with an enhanced southward
component of the magnetic field with high speed (Gopal-
swamy et al., 2007). A number of GMS events have been
identified without any link to frontside halo CMEs (Schwenn
et al., 2005), and various studies, such as an analysis byCane
and Richardson(2003), have suggested that about half of the
observed halo CMEs are not geoeffective. Indeed, both in-
tense and moderate GMS can also be caused by CIRs result-
ing from the interaction between fast and slow SW in the IP
medium (Richardson et al., 2006; Zhang et al., 2007). For
the model developed in this study, we used halo CME (AW
values of CMEs) data from the LASCO/SOHO catalog list
(available online at:http://cdaw.gsfc.nasa.gov/CMElist).

2.2 Halo CME geoeffective properties: solar input
parameters

In addition to the AW, the CME speed represents another
important property of geoeffective CMEs. Halo CMEs
have generally higher speed than the mean SW speed
(470 km s−1) and are useful parameters to predict the
intensity of GMS (Srivastava, 2005). For this study, the
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CME linear speed measured in the LASCO-C2 field of view
has been used. Another solar input used is the cfi expressing
the flare activity association with CMEs. In their analysis,
Wang et al. (2002) found that geoeffective halo CMEs
were mostly associated with flare activity. Furthermore,
Srivastava and Venkatakrischnan(2004) observed that fast
and full halo CMEs associated with large flares drive large
geomagnetic disturbances. For our NN model, we used the
cfi index as an input quantifying the halo CME association
with solar flares. The minimum flare activity corresponds
to 0 as a value of cfi, and the highest value of cfi (144)
observed in SC 23 occurred during theHalloween eventon
28 October 2003. The cfi data archive used is available on
the websitefttp://www.ngdc.noaa.gov/STP/SOLARDATA/
SOLAR FLARES/FLARESINDEX/Solar Cycle/23/daily.
plt.

2.3 IP input parameters

In the IP medium, CMEs are manifested as shocks and in-
terplanetary coronal mass ejection (ICME) structures, which
couple to the magnetosphere to drive moderate to major
storms (Webb, 2000; Echer et al., 2008). In situ observations
of plasma and magnetic field properties are used to iden-
tify the arrival of ICMEs near Earth. Occurrence of shock
waves and possible associated ICMEs can be characterized
by a simultaneous increase of the SW speed, density, abnor-
mal proton temperature as well as an increase in magnetic
field magnitude. Plasma and magnetic field signatures indi-
cating the presence of ICMEs are fully described inCane and
Richardson(2003) andSchwenn et al.(2005). As indicated
by Gonzalez and Tsurutani(1987), the intensity of the storm
following the passage of shock-ICME structures is well cor-
related with two parameters namely: (1) the IMF negative
Bz-component (Bs) and (2) the electric field convected by the
SW,Ey = V Bs, whereV is the SW velocity. Recent findings
have also confirmed that the convective electric field has the
best correlation with the Dst index (Echer et al., 2008).

For the NN model developed in this study, halo CMEs
(AW ≥ 120◦), CME speed (Vcme), cfi as well as IP peak val-
ues of negativeBz and SW speed (Vsw) were used as NN nu-
meric input (as shown in Table 1). The peak values (Vsw,Bs)
correspond to the maxima recorded during the time period
of ICME passage. SW data are provided by the OMNI-
2 data set and available online (http://www.nssdc.gsfc.nasa/
omniweb.html).

Shocks and ICME events that trigger SW geoeffective
conditions are observed in situ by the Solar Wind Electron
Proton Monitor (SWEPAM) and the Magnetic Field Experi-
ment (MAG) instruments on board the Advanced Composite
Explorer (ACE) spacecraft (Stone et al., 1998). The listing of
ICMEs byRichardson and Cane(2008) and associated prop-
erties are available on the websitehttp://www.ssg.sr.unh.edu/
mag/ace/ACElists/ICMEtable.html.
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Fig. 1. Plot showing the variation of the IMF total fieldBt, the SW
densityN (solid lines), theBz component of the IMF and the SW
velocity V (dashed lines), following the passage of an ICME, ob-
served by the WIND spacecraft on 15/16 July 2000. The vertical
solid dashed line labels the shock ahead of the ICME. This ICME
event has also been reported inMesserotti et al.(2009).

Figure 1 shows measured IP disturbances associated with
the shock (and driver ICME) arrival at 1 AU on 15 July 2000,
driving a storm on 16 July 2000 with peak minimum Dst
reaching−301 nT. This storm was driven by a very fast
(1674 km s−1) full halo CME on 14 July at 10:54 UT and
was associated with anX5.7 flare (cfi = 59.13) originating
at N22W07. In the IP medium,Bs reached a peak value of
49.4 nT, and 1040 km s−1 was the maximum SW during the
passage of ICME. Note that this event corresponds to the so-
lar explosive event that triggered a radiation storm around
Earth nicknamed theBastille event.

2.4 Geomagnetic response

There are various indices that indicate the level of geomag-
netic disturbance. For this study, the disturbance storm time
(Dst) was preferred since it is the widely used index for mea-
suring the intensity of geomagnetic storms (Zhang et al.,
2007). The Dst indicates the average change in the horizon-
tal component of the Earth’s magnetic field measured at four
low latitude stations (seehttp://swdcwww.kugi.kyoto-u.ac.
jp/dstdir/dst2/onDstindex.htmlfor more details).

When the ICME structure in the IP medium presents an in-
tensified southward component of the IMF (Bz), it reconnects
with the Earth’s magnetic field. This magnetosphere–solar
wind coupling induces the build-up of the ring current (Gon-
zalez et al., 1994; Gopalswamy, 2009), and therefore, the Dst
index variation is a response to the build-up and decay of the
ring current. Based on the minimum Dst values,Loewe and
Prölss (1997) classify weak GMS (−30 to −50 nT), mod-
erate (−50 to−100 nT), intense (−100 to−200 nT), severe
(−200 to−350 nT) and great (< −350 nT).
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Table 1.Characteristics of the NN input and output parameters.

Model parameter type Parameter name Variable type Measure Value

Inputs CME AW Numeric ≥ 120◦ –
CME speed Numeric Value in km s−1 –

cfi Numeric – –
Vsw Numeric Value in km s−1 –
Bs Numeric Value in nT –

Outputs No storm occurrence Binary Dst> −50 nT 0
Storm occurrence Binary Dst≤ −50 nT 1J. Uwamahoro et al.: Estimating the geoeffectiveness of halo CMEs from associated solar and IP parameters using neural networks 5

Input
Neurons

Hidden
Neurons

Output
Neuron

AW

cfi

Vsw

Bs

Vcme

Storm occurrence

Yes : P> = 0.5

No : P <  0.5

Fig. 2. A simplified illustration of the three layered FFNN architecture as developed and used in this study.
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tal number of isolated GMS events (around 225 investigated,363

including about 90 intense storms (Echer et al., 2008)). The364

reason is that there were many cases where one isolated storm365

was common to more than one halo CME.366

367

Table 3 shows 43 (five of the 48 listed had no halo CME back-368

ground in the time window) halo CME driven storm events as369

well as their solar and IP characteristics as considered forthe370

validation data set. Note that Table 3 is simplified and doesn’t371

indicate many cases where more than one halo CME was the372

source of one geomagnetic storm. A good example is a storm373

of the 24 August 2005 with peak minimumDst of −216 nT.374

Although one full halo CME is indicated in Table 3 (event375

number 44) as the storm driver, there were actually two high376

speed (V > 1000 Km/s) full halo CMEs which were proba-377

ble sources of the storm. In fact, the two halo CMEs involved378

were all frontsided, associated with M-class solar flares and379

were followed by an ICME also observed on 24 August 2005.380
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input events made of AW=360; withV cme of 1194 Km/s382
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on the same day, therefore had the same value of cfi which384

was 10.31. The last two NN inputs are in situ measured peak385

values ofBs andV sw (38.3 nT and 710 Km/s respectively)386

identified in a window of at least five days after halo CME387

occurrence.388
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The outputs corresponding to the two input events described390

above were represented by a binary value of 1 because there391

was storm occurrence (Dst ≤ −50 nT). In case where halo392

CMEs were not followed by a storm (Dst > −50 nT), the393

corresponding output events were represented by a binary394

value of 0. We notice that the output of the NN model after395

training is a numerical value ranging between 0 and 1. The396

input and output parameters are shown in Table 1 and Figure397

2. Therefore, the model developed behaves like a function398

that estimates the probability of storm occurrence and can be399

written as400

P = f(AWcme, Vcme, cfi, Bs, Vsw) (3)

For this NN model, we followed the example as in Srivastava401

(2005) and considered0.5 as a threshold value (probability)402

for determining the prediction output classification. There-403

fore, any prediction output with value≥ 0.5 was considered404

likelihood of occurrence of a storm event following a halo405

CME eruption.406

3.2 NN optimization407

The network was repeatedly trained by changing the num-408

ber of iterations and by systematically varying the number409

of nodes in the hidden layer. During the training process, the410

mean square error variation of the testing pattern was moni-411

tored in order to stop the training at the right time and avoid412

overtraining. The best NN architecture was obtained by con-413

sidering the minimum root mean square error (RMSE) value414

computed over the entire validation set using;415

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Pobs − Ppred)2, (4)

wherePobs (e.g. 0 or 1) andPpred represent the observed and416

predicted probability values respectively andN represents417

the number of data points in the validation data set. The vali-418

dation dataset was made of 267Pobs, including 118 ones and419

Fig. 2.A simplified illustration of the three-layered FFNN architecture as developed and used in this study.

For simplicity, in this analysis we followed the classifica-
tion by Gopalswamy et al.(2007) to categorize two kinds of
events: moderate storms (−100 nT< Dst≤ −50 nT) and in-
tense storms Dst≤ −100 nT. As shown in Table 1, the storm
occurrence (a row of NN outputs before training) is repre-
sented by binary values: 1 in the case of a moderate to intense
storm occurrence (Dst≤ −50 nT) and 0 in the presence of a
minor (or absence of a) storm (Dst> −50 nT). GMS events
are defined here as storms periods with Dst≤ −50 nT, which
may last from a few hours to a couple of days.

3 Neural networks

In this work, NNs have been used as a tool in the devel-
opment of a model to predict the probability of GMS oc-
currence from the observed solar and IP properties of halo
CMEs. In summary, a NN is an assembly of interconnected
computing elements called units or neurons. For the model
developed in this work, we used a three-layered feed forward
artificial NN. Feed forward neural networks (FFNN) repre-

sent the simplest and most popular type of NN, which has
been widely used with success in the prediction of various
solar-terrestrial time series (Lundstedt and Wintoft, 1994;
Macpherson et al., 1995; Conway, 1998; Uwamahoro et al.,
2009). In a FFNN arrangement, neurons (units) between lay-
ers are connected in a forward direction. Neurons in a given
layer do not connect to each other and do not take inputs from
subsequent layers. The input units, which are set to the pre-
vious values of the time series, send the signals to the hidden
units. These hidden units process the received information
and pass the results to the output units, which produce the
final response to the input signals.

Figure 2 illustrates the three-layered NN architecture used
in the work presented in this paper. In a three-layered FFNN
with d input neurons, one hidden layer ofM neurons and
one output neuron, the output of the network, can be written
in the form (Bishop, 1995):

yk = g

(
M∑

j=0

wkjg

(
d∑

i=0

wjixi

))
, (1)
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wherewji andwkj represent the weights from the input to
hidden layer and hidden to the output layer, respectively.M

and d represent the number of hidden and input units, re-
spectively, andxi represents the input vectors used. The let-
terg represents the non-linear activation function. Activation
functions are needed to introduce the non-linearity into the
network. In this work, a logistic sigmoid activation function
used for both hidden and output neurons is given by the rela-
tion

g(a) =
1

1+ exp(−a)
. (2)

The above function is a monotonically increasing function,
which is defined for all real numbers. Such activation func-
tions on the network outputs play an important role in al-
lowing the outputs to be given a probabilistic interpretation
(Bishop, 1995). Indeed, NNs provide an estimate of the pos-
terior probabilities using the least squares optimization and
are sensitive to sample size. A larger database provides better
estimates (Richard and Lippmann, 1991; Hung et al., 1996).
During the training process, inputs are shown to the net to-
gether with the corresponding known outputs. If there exists
a relation between the input and the output, the net learns by
adjusting the weights until an optimum set of weights that
minimizes the network error is found and the network then
converges.

Before training, the data set is generally split randomly
into training and testing data sets in order to avoid the
training results becoming biased towards a particular sec-
tion of the database. For the NN trained while developing
this model, data were split into 70 % for the training set
and 30 % for the testing set. In order to determine how the
NN has learned the behaviour in the input-output patterns,
a validation data set consisting of the data not involved in
the network training process was selected. Given that input
variables have different numerical ranges (negatives values
of Bz, small values of cfi, values of AW and SW speed in
hundreds, CME speed in thousands), they were first normal-
ized through weight initialization. Next, a suitable (optimal)
learning parameter was selected by repeatedly trying differ-
ent values. For the development and the training process of
this model, we used the Stuttgart Neural Network Simula-
tor (SNNS), developed by the Institute for Parallel and Dis-
tributed High Performance Systems, University of Tübingen,
and the Wilhem-Schickard-Institute for Computer Science in
Germany (http:www.ra.cs.uni-tuebingen.de/SNNS/). Details
about the SNNS can be found inZell et al.(1998).

3.1 NN model development: input/output data
preparation

The first step in developing this model was to prepare the
database for the NN training based on the criteria that halo
CMEs were, or were not, followed by a storm (Dst≤ −50 nT
or Dst> −50 nT) within a 5-day window from the launch

Table 2. Determination of an optimum NN architecture over the
validation data set. Optimized NN architectures are highlighted for
3 and 5 inputs, respectively.

Inputs NN architecture RMSE

3 input: AW,V ,cfi 3:3:1 0.51261
3:4:1 0.51377
3:5:1 0.51471
3:6:1 0.51553

5 input: AW,V ,cfi
Vsw, Bs 5:5:1 0.3225

5:6:1 0.3396
5:7:1 0.3366
5.8:1 0.3376

of a halo CME. Halo CME (and associated solar and IP pa-
rameters) data covering the period from September 1997 to
December 2006 were used in the model. This is the period
corresponding to the availability of ICMEs and related shock
structures (see the listing byRichardson and Cane, 2008).
Note that there were missing CME data records for July, Au-
gust and September 1998 as well as January 1999. In total,
1202 halo CMEs and associated geoeffective properties were
included in the training, testing and validation of the NN
model. The data covering 6 months in 2000 and 12 months
in 2005 were set aside as the validation data set and were not
used in the training. These unseen data provide an indication
of the model’s ability to predict the output in a general way.

Note that a positive response (code 1) was assigned as out-
put for all inputs (described above) that were followed by
GMS events within a 5-day window. Therefore, the number
of input events that were associated with a positive response
in the one column of output data set is actually larger than
the total number of isolated GMS events (around 225 investi-
gated, including about 90 intense storms (Echer et al., 2008)).
The reason is that there were many cases where one isolated
storm was common to more than one halo CME.

Table 3 shows 43 (five of the 48 listed had no halo CME
background in the time window) halo CME driven storm
events as well as their solar and IP characteristics as consid-
ered for the validation data set. Note that Table 3 is simplified
and does not indicate many cases where more than one halo
CME was the source of one geomagnetic storm. A good ex-
ample is a storm of the 24 August 2005 with peak minimum
Dst of −216 nT. Although one full halo CME is indicated
in Table 3 (event number 44) as the storm driver, there were
actually two high speed (V > 1000 km s−1) full halo CMEs
that were probable sources of the storm. In fact, the two halo
CMEs involved were all frontsided, associated with M-class
solar flares and were followed by an ICME also observed
on 24 August 2005. Therefore, for this particular example,
there were two rows of input events made of AW = 360: with
Vcmeof 1194 km s−1 and 2379 km s−1, respectively. The two

www.ann-geophys.net/30/963/2012/ Ann. Geophys., 30, 963–972, 2012

http:www.ra.cs.uni-tuebingen.de/SNNS/


968 J. Uwamahoro et al.: Estimating the geoeffectiveness of halo CMEs

Table 3.Magnetic storm events and associated halo CME characteristics used for the validation data set. Only 43 of the 48 storm events were
halo CME-driven. FH and PH in column 4 indicate full and partial halo CME respectively.

No. event Date/time Dst (min.) [nT] Halo CMEs [FH or PH]Vcme [km s−1] X-Ray flare

1 08/06/00 – 19:00 −90 FH: 06/06 [15:54] 1119 X2.3
2 26/06/00 –17:00 −76 PH: 25/06 [07:54] 1617 M1.9
3 16/07/00 – 00:00 −301 FH: 14/07 [10:54] 1674 X5.7
4 20/07/00 – 09:00 −93 – – –
5 23/07/00 – 22:00 −68 PH: 22/07 [11:54] 1230 M3.7
6 29/07/00 – 11:00 −71 FH: 25/07 [03:30] 528 M8.0
7 06/08/00 – 05:00 −56 PH: 03/08 [8:30] 896 C1.4
8 11/08/00 – 06:00 −106 PH: 08/08 [15:54] 867 C1.4
9 12/08/00 – 09:00 −235 FH: 09/08 [16:30] 702 C2.3

10 29/08/00 – 06:00 −60 PH: 25/08 [14:54] 518 M1.4
11 02/09/00 – 14:00 −57 PH: 01/09 [04:06] 603 C1.1
12 12/09/00 – 19:00 −73 PH:09/09 [08:56] 554 M1.6
13 16/09/00 – 23:00 −68 FH:12/09 [11:54] 1550 M1.0
14 18/09/00 – 23:00 −201 FH: 16/09 [05:18] 1215 M5.9
15 26/09/00 – 02:00 −55 FH: 25/09 [02:50] 587 M1.8
16 30/09/00 – 14:00 −76 PH: 27/09 [01:50] 820 C5.2
17 05/10/00 – 13:00 −182 FH: 02/10 [20:26] 569 C8.4
18 14/10/00 – 14:00 −107 PH: 11/10 [06:50] 799 C2.3
19 29/10/00 – 03:00 −127 FH: 25/10 [ 08:26] 770 C4.0
20 07/11/00 – 21:00 −159 FH: 03/11 [18:26] 291 C3.2
21 10/11/00 – 12:00 −96 FH: 08/11 [04:50] 474 –
22 29/11/00 – 13:00 −119 FH: 25/11 [01:31] 2519 M8.2
23 23/12/00 – 04:00 −62 PH: 20/12 [21:30] 609 C3.5
24 01/01/05 – 19:00 −57 FH: 30/12 [20:30] 832 B2.8
25 08/01/05 – 02:00 −96 FH: 05/01 [15:30] 735 –
26 12/01/05 – 10:00 −57 PH: 09/01 [09:06] 870 M2.4
27 18/01/05 – 08:00 −121 FH: 15/01 [06:30] 2049 M8.6
28 22/01/05 – 06:00 −105 FH: 19/01 [08:29] 2020 X1.3
29 07/02/05 – 21:00 −62 PH: 05/02 [13:31] 711 –
30 18/02/05 – 02:00 −86 FH: 17/02 [00:06] 1135 –
31 06/03/05 – 16:00 −65 – – –
32 05/04/05 – 05:00 −85 PH: 04/04 [11:06] 421 –
33 12/04/05 – 05:00 −70 PH: 09/04 [08:26] 329 B2.6
34 08/05/05 – 18:00 −127 FH: 05/05 [20:30] 1180 C7.8
35 15/05/05 – 08:00 −263 FH: 13/05 [17:12] 1689 M8.0
36 20/05/05 – 08:00 −103 PH: 17/05 [03:06] 449 M1.8
37 30/05/05 – 13:00 −138 FH: 26/05 [15:06] 586 B7.5
38 13/06/05 – 00:00 −106 PH: 08/06 [07:48] 179 –
39 15/06/05 – 12:00 −54 – – –
40 23/06/05 – 10:00 −97 – – –
41 09/07/05 – 18:00 −60 FH: 05/07 [15:30] 772 C1.3
42 10/07/05 – 20:00 −94 FH: 09/07 [22:30] 1540 M2.8
43 18/07/05 – 06:00 −76 FH: 14/07 [10:54] 2115 X1.2
44 24/08/05 – 11:00 −216 FH: 22/08 [17:30] 2378 M5.6
45 31/08/05 – 19:00 −131 FH: 29/08 [10:54] 1600 –
46 11/09/05 – 09:00 −147 FH: 09/09 [19:48] 2693 X6.2
47 15/09/05 – 16:00 −86 FH: 13/09 [20:00] 1866 X1.5
48 31/10/05 – 19:00 −75 – – –

halo CMEs occurred on the same day, and therefore had the
same value of cfi, which was 10.31. The last two NN inputs
are in situ measured peak values ofBs andVsw (38.3 nT and

710 km s−1, respectively) identified in a window of at least
five days after halo CME occurrence.

The outputs corresponding to the two input events de-
scribed above were represented by a binary value of 1,
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because there was storm occurrence (Dst≤ −50 nT). In
cases where halo CMEs were not followed by a storm (Dst>

−50 nT), the corresponding output events were represented
by a binary value of 0. We notice that the output of the NN
model after training is a numerical value ranging between 0
and 1. The input and output parameters are shown in Table 1
and Fig. 2. Therefore, the model developed behaves like a
function that estimates the probability of storm occurrence
and can be written as

P = f (AWcme,Vcme,cfi,Bs,Vsw). (3)

For this NN model, we followed the example as inSrivastava
(2005) and considered 0.5 as a threshold value (probability)
for determining the prediction output classification. There-
fore, any prediction output with value≥0.5 was considered
likelihood of occurrence of a storm event following a halo
CME eruption.

3.2 NN optimization

The network was repeatedly trained by changing the num-
ber of iterations and by systematically varying the number
of nodes in the hidden layer. During the training process, the
mean square error variation of the testing pattern was moni-
tored in order to stop the training at the right time and avoid
overtraining. The best NN architecture was obtained by con-
sidering the minimum root mean square error (RMSE) value
computed over the entire validation set:

RMSE=

√√√√ 1

N

N∑
i=1

(
Pobs− Ppred

)2
, (4)

wherePobs (e.g. 0 or 1) andPpred represent the observed and
predicted probability values respectively andN represents
the number of data points in the validation data set. The vali-
dation data set was made of 267Pobs, including 118 ones and
149 zeros. Note that the same optimisation criteria were used
to determine a suitable input space for the model (as shown
in Table 2). An optimized NN architecture was reached af-
ter 400 iterations using 0.005 as the learning rate. In order to
be able to evaluate the prediction performance of the model
on the training data set, we also computed the least RMSE
over the training data set, which was 0.3422 (not shown in
Table 2).

4 Results and discussion

The optimum network architecture was found to be that with
5 inputs (i.e. Eq. 3) using 5 hidden nodes (configuration:
5:5:1). The network with only three solar input parameters
was found to perform poorly when tested on the validation
data set (as shown in Table 2). This indicates the importance
of considering IP parameters (Bs andVsw) for improving the
prediction performance of the model.

Figure 3a–d is just an example to illustrate the model es-
timate of the probability, by which halo CMEs might be fol-
lowed by a storm. The x-axes indicate days in a month for
which there were one or multiple halo CMEs, and the y-
axes indicate the predicted value expressing the probability
of halo CMEs to be geoeffective. All the predicted values
above 0.5 indicate a correct prediction of GMS occurrence
(following a halo CME). The maximum in each of the four
cases presented in Fig. 3 indicates the probability by which
a particular storm is predicted by the model. Note that not
all halo CMEs are indicated on the plots for representation
purposes due to the fact that some dates had multiple halo
CMEs, while no halo CMEs were observed for other days.
Here, four typical examples are described, for all of which
the model demonstrates a very high probability (P w 1) of
storm occurrence.

There were two intense storms that occurred on the 11 and
12 August 2000 reaching the Dst peak minima of−106 nT
and −235 nT, respectively. As shown in Fig. 3a, the two
storms were correctly predicted with more than 0.95 prob-
ability and were expected from the three halo CMEs that oc-
curred on 8, 9 and 10 August 2000, respectively. The most
probable cause of the 12 August 2000 storm (−235 nT) was
a full halo CME which occurred on 9 August 2000 (see the
arrow in the plot), indicated as number 9 in Table 3. Like in
many observed moderate storm cases, this model fails to cor-
rectly predict the storm of 29 August 2000 (Dst =−60 nT)
expected from a series of partial halo CMEs that occurred on
25–28 August 2000.

The example in Fig. 3b shows how the model cor-
rectly predicts the two storms of 16 and 18 Septem-
ber 2000, respectively. The 16 September 2000 moderate
storm (Dst =−68 nT) was expected from the fast and full
halo CME of 12 September 2000. A strong storm that oc-
curred on 18 September 2000 (with Dst peak minimum of
−201 nT) is correctly predicted by the model and was ex-
pected from two halo CMEs (shown by an arrow in Fig. 3b),
which occurred on 15 and 16 September 2000, respectively.
However, it is most likely that this storm was caused by the
very fast full halo CME of 16 September (see event num-
ber 14, Table 3) or its interaction with the partial halo CME
of 15 September 2000. Prior to the 18 September 2000 mag-
netic storm, there was an ICME first observed on 17 Septem-
ber at 21:00 UT.

Figure 3c shows that the NN model correctly predicts the
15 May 2005 great magnetic storm (with Dst peak minimum
of −263 nT). This storm was expected from a very fast and
powerful flare-associated full halo CME of 13 May 2005 (as
shown by the arrow in Fig. 3c and row number 35 in Table 3).
Similarly, Fig. 3d illustrates clearly the correct prediction of
the 24 August 2005 strong magnetic storm (with a Dst peak
minimum of −216 nT). This storm was expected from two
fast full halo CMEs, which occurred on 22 August 2005. The
very fast halo CME (V = 2378 km s−1), which might have
been the most probable cause of the storm, is number 44 in
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Table 4.Prediction performance of the NN model on both the training and validation data sets.

Data set Storm category Observed Correct predictions False alarms

Training Intense storms 53 51 [96 %]
Moderate storms 59 42 [71 %]

Total 112 93 [83 %] 32

Validation Intense storms 19 19 [100 %]
Moderate storms 24 18 [75 %]

Total 43 37 [86 %] 8
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Fig. 3. Illustration of the prediction performance of the model on
some storms in the validation data set. All predictions above a 0.5
probability value indicate a successful prediction (of storm occur-
rence), where the predicted value can be interpreted as the proba-
bility by which a particular halo CME may be followed by a storm.
Example events described in the text are indicated by the arrows.

Table 3, and its predicted geoeffectiveness is represented by
the arrow in Fig. 3d.

The average value of correct predictions (observed storm
responses and predicted withP ≥ 0.5) calculated over the
whole validation data set was found to be 0.87. This can be
considered as the NN model approximated probability, by
which a storm occurrence can be predicted as a result of
a halo CME event. The performance of the developed NN
model was tested on 43 CME-driven GMS (listed in Table 3)
by calculating the percentage of correctly predicted storms
for both the validation and training data sets:

PE

OE
× 100 (5)

wherePE is the number of correctly predicted GMS and
OE is the total number of observed GMS. Table 2 shows
the RMSE values computed over the validation set, indicat-
ing that the model produces a lower estimate of storms oc-
currence when only three solar inputs were used. With three

solar inputs, the NN model could estimate 52 % and 41.6 %
of the observed intense and moderate storms, respectively.
The results presented in Table 4 summarise the prediction
performance of the NN model using 5 inputs (solar and IP
combined), tested on both the training and the validation data
sets. As indicated in Table 4, the NN model predicts 100 % of
intense storms and 75 % of moderate storms. The overall NN
model prediction ability of GMS (Dst< −50 nT) based on
the observed halo CME was estimated at 86 %. The number
of GMS predicted by the NN model, but not observed (false
alarms), is also indicated in Table 4 for both the validation (8
events) and the training (32 events) data sets.

The results obtained demonstrate the ability of the NN
model to produce a good estimate of the probability occur-
rence of intense storms compared to moderate storms. This
difference in performance is related to the characteristics of
inputs. Observations of the data indicate that intense storms
are generally preceded by full halo CMEs (AW = 360◦), high
values of CME speed and cfi as well as high peak values
of Bs andVsw compared to those associated with moderate
GMS. On the other hand, previous studies have indicated that
partial halo CMEs produce mostly moderate storms and the
majority of them are less energetic (have lower speed). Note
that moderate storms are often driven by the non-halo CMEs
or CIRs that have not been considered in this study (also dis-
cussed in the earlier section).

We would like to emphasize that the results presented in
this study only serve as an indication that solar and IP param-
eter characteristics of geoeffective halo CMEs can be used in
a NN to estimate the probability occurrence of the subse-
quent GMS. The estimated geoeffectiveness of solar events
(halo CMEs in this case) can be compared to other predic-
tions from various analyses.Valach et al.(2009) used a com-
bination of X-ray flares (XRAs) and solar radio burst (RSPs)
as input to the NN model and obtained a 48 % successful
forecast for severe geomagnetic response. The NN model de-
scribed in this paper shows an improved performance with
an accuracy of 86 % in the prediction of GMS. On the other
hand, this compares favourably to the 77.7 % obtained bySri-
vastava(2005) using the logistic regression model. The pre-
diction performance of the NN model described in this pa-
per is unique, as it also attempted to estimate the probability
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occurrence of moderate storms, which have not been consid-
ered in previous studies.

5 Summary

Predicting the occurrence of GMS on the basis of CME ob-
servations only is challenging and can sometimes lead to
false alarms. In this study, a combination of solar and IP pa-
rameters has been used as inputs in a NN model with abil-
ity to estimate the probability occurrence of GMS result-
ing from halo CMEs. The results obtained indicate that the
model performs well in estimating the occurrence of intense
GMS as compared to moderate storms. In addition, this study
shows that IP input parameters characterizing geoeffective
halo CMEs and related ICME structures (i.e. increased peak
values ofBs andVsw) contribute significantly in improving
the predictability of GMS occurrence, confirming what is
already known about the SW control of GMS phenomena.
It was observed that the use of solar inputs only leads to a
less accurate performance. However, such a model with only
solar inputs is very useful for space weather, as the model
provides a long warning time (1 to 4 days) compared to the
NN model combining solar and IP inputs. The NN model de-
scribed in this paper will contribute towards improving real-
time space weather predictions. Locally, the model devel-
oped will be applied by the SANSA Space Weather Regional
Warning Center (RWC) to improve various space weather
models that involve consideration of storm conditions.
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Tübingen, Germany and the European Particle Research Lab,
CERN, Geneva, Switzerland, 1998.

Zhang, J., Richardson, I. G., Webb, D. F., Gopalswamy, N., Hut-
tunen, E., Kasper, J. C., Nitta, N. V., Poomvises, W., Thomp-
son, B. J., Wu, C. C., Yashiro, S., and Zhukov, A. N.: Solar
and interplanetary sources of major geomagnetic storms (Dst≤

−50 nT) during 1996–2005, J. Geophys. Res., 112, A10102,
doi:10.1029/2007JA012321, 2007.

Ann. Geophys., 30, 963–972, 2012 www.ann-geophys.net/30/963/2012/

http://dx.doi.org/10.1007/s00585-994-0019-2
http://dx.doi.org/10.1029/2002GL016151
http://dx.doi.org/10.5194/angeo-23-1505-2005
http://dx.doi.org/10.5194/angeo-24-989-2006
http://dx.doi.org/10.5194/angeo-24-989-2006
http://dx.doi.org/10.1029/2005JA011476
http://dx.doi.org/10.1029/2001JA000504
http://dx.doi.org/10.5194/angeo-23-1033-2005
http://dx.doi.org/10.5194/angeo-23-1033-2005
http://dx.doi.org/10.5194/angeo-23-2969-2005
http://dx.doi.org/10.1029/2003JA010175
http://dx.doi.org/10.1029/2008SW000421
http://dx.doi.org/10.1029/2002JA009244
http://dx.doi.org/10.1002/fld.2117
http://dx.doi.org/10.1029/2007JA012321

