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Abstract. In this study we implement a data assimilation tool
using a 3-D radiation belt model and an ensemble Kalman fil-
ter approach. High time and space reanalysis of the electron
radiation belt fluxes is obtained over the time period 5 Oc-
tober to 25 October 1990 by combining sparse observations
with the Salammb̂o 3-D model in an optimal way. The con-
vergence of the ensemble Kalman filter is analyzed carefully.
The risk of using a biased physical model is discussed and
relative consequences are highlighted. Finally, a validation
against CRRES data and major improvements compared to
pure physics based model are presented.

Keywords. Magnetospheric physics (Energetic particles,
trapped; Storms and substorms) – Space plasma physics (Nu-
merical simulation studies)

1 Introduction

The natural energetic electron environment in the Earth’s ra-
diation belts is of general importance as dynamic variations
in this environment can impact space hardware and con-
tribute significantly to background signals in a range of other
instruments flying in that region. The most dramatic changes
in the relativistic electron populations occur during enhanced
periods of geomagnetic activity (Baker et al., 1982, 1990,
1994, 1997). As early as 1966, Williams related periodic in-
creases in the trapped relativistic electron populations to in-
creases in the solar wind kinetic energy density. But Reeves
et al. (2003) have found that geomagnetic storms can either
increase or decrease the fluxes of relativistic electrons in the
radiation belts: half of all storms increased the flux of rel-
ativistic electrons, one quarter decreased the flux and one
quarter produced little or no changes in the fluxes. Never-
theless, persistent two or three orders of magnitude flux in-

tensifications of electrons with energy in the range of 0.001–
10 MeV occur regularly.

These observations clearly demonstrate that the relative
importance of all competing physical processes involved in
the radiation belt dynamics changes from storm to storm
and the net result on particle distribution might then be very
different. Several mechanisms and models have been pro-
posed for the electron radiation belts dynamics (see reviews
from Friedel et al., 2002; Millan and Thorne, 2007; Bortnik
and Thorne, 2007; Shprits et al., 2008a, b). Radial diffusion
driven by ULF waves is one important mechanism for elec-
tron acceleration (Schulz and Lanzerotti, 1974; Brautigam
and Albert, 2000; Miyoshi et al., 2003) but is balanced by
localized electron acceleration due to resonant interactions
with whistler mode chorus waves (Horne and Thorne, 1998;
Summers et al., 1998; Meredith et al., 2002; Horne et al.,
2005; Thorne et al., 2005; Varotsou et al., 2005, 2008; Shprits
et al., 2006a, 2009; Li et al., 2007; Albert, 2007, 2008; Xiao
et al., 2010). Even if the key physical processes that gov-
ern the dynamics of radiation belts are identified today, their
temporal evolution (dynamics) and balancing is not well un-
derstood. These are the main limitations of the current pure
physics-based models of radiation belt dynamics.

The most common practice is to deduce empirical for-
mulae of physical processes amplitudes versus one or more
proxies like Kp, Dst, solar wind parameters from statisti-
cal studies (e.g. Brautigam and Albert, 2000; Meredith et
al., 2003b, 2007, 2009). On one hand, this introduces er-
rors in the system, which becomes even more important for
high magnetic activity conditions for which statistics are usu-
ally poor. On the other hand, past observational studies use
data from single or limited multiple points in space and have
only been able to rigorously distinguish between possible ac-
celeration processes in one or two cases (e.g. Chen et al.,
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2007). Indeed, these studies are limited due to poor cover-
age of measurements (Friedel et al., 2000). To have a good
representation of what really happens during magnetically
active periods, several spacecrafts have to be at the “right
location” at the “right time”, which is rarely the case. In
the recent years, to promote progress in this area, data as-
similation tools have been developed. They allow combining
sparse and inaccurate space borne observations with physics-
based dynamic models in an optimal way. Data assimilation
techniques range from “simple” (like direct assimilation, e.g.
Bourdarie et al., 2005; Maget et al., 2007) to extremely com-
plex with prohibitive computation times (like Kalman fil-
ters, Kalman, 1960; Kalman and Bucy, 1961). They have
already been proven as a valuable tool able to guide “the
best” estimate of the state of a complex system in the fields
of oceanography (Evensen, 1994), ecological systems (Eknes
and Evensen, 2001), meteorology (Houtekamer, 1998), iono-
sphere (Schunk et al., 2004) and radiation belts (Kondrashov,
2007).

Naehr and Toffoletto (2005) as well as Shprits et al. (2007)
illustrated using synthetic data how a Kalman filter may
be applied successfully to radiation belt forecasts. More re-
cently, the applicability of data assimilation techniques to
the radiation belts has been proven despite the uncertainties
that are difficult to assess. A validation study by compar-
ing reanalysis from two independent data sources (Ni et al.,
2009a), as well as sensitivity studies according to the mag-
netic field model being used (Ni et al., 2009b) and to the
assumed boundary conditions (Daae et al., 2011), have been
achieved. In the radiation belt domain, data assimilation tools
being developed so far rely on simple physical models. They
are in most cases 1-D, i.e. according toL∗, where only radial
diffusion is considered (Naehr and Toffoletto, 2005; Koller
et al., 2007; Kondrashov et al., 2007). In Koller et al. (2007)
and Shprits et al. (2007), data assimilation with a 1-D phys-
ical model has been used to study radial profiles of phase
space density. In the present paper, we describe a data assim-
ilation tool based on the 3-D Salammbô code (Varotsou et al.,
2005, 2008) and an ensemble Kalman filter (Evensen, 1994).

In Sect. 2, we describe the physical model used here
to estimate the electron radiation belt variability. Section 3
presents in-situ data being assimilated and reference data
used to validate the simulations. Section 4 describes the
methodology for assimilating data. Data assimilation results
and associated discussion are presented in Sect. 5. We sum-
marize our findings and conclude in Sect. 6.

2 Physical model

In any data assimilation tool, a physics-based model is neces-
sary to provide a temporal and spatial estimate of the state of
the system under study. Salammbô is a set of codes devoted
to the understanding of radiation belt creation and dynamics

which occur during magnetic activity periods (Beutier and
Boscher, 1995; Bourdarie at al., 1996; Varotsou et al., 2005).

The classical Fokker-Planck diffusion equation for elec-
tron radiation belts in the 3-D phase space is presented in
Eq. (1). It is written in terms of the particle energy (E), sine
of the equatorial pitch angle of particles (y) andL, the Roed-
erer parameter (Schulz and Lanzerotti, 1974; Shprits et al.,
2008b), so this version is a real 2-D in space, for which the
results are averaged on the longitude (local time)
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whereT (y) is a function corresponding to the bounce fre-
quency and can be found in Schulz and Lanzerotti (1974),a

is the Jacobian fromJ1 andJ2 (the first two adiabatic invari-
ants) toE andy, andf the phase space density (PSD).

In the Salammb̂o code, the diffusion processes acting on
particles are modelled by their respective diffusion coeffi-
cients (radial, energy, pitch angle and energy-pitch angle dif-
fusion). The non diffusive energy losses are described by
friction terms. The mixed terms are ignored in this prelimi-
nary study. On one hand, Albert and Young (2005) indicated
that mixed terms are negligible at higher pitch-angles (which
is the majority of radiation belt electrons), but on the other
hand, Subbotin et al. (2010) showed that for the long term
simulations mixed terms can significantly contribute to the
radiation belt dynamics even for near equatorially mirroring
pitch-angle particles. Most probably, the uncertainties in cur-
rent wave models introduce bigger errors than the neglect of
the mixed diffusion as suggested by Subbotin et al. (2011).

At low L∗ values (L∗ < 2), scattering by the upper atmo-
sphere, described by Mass Spectrometer Incoherent Scatter
(MSIS) 86 model (Hedin, 1987), is the predominant loss pro-
cess. At higherL∗ values, in the plasmasphere, wave-particle
interactions give rise to pitch angle diffusion that also leads
to particle losses. The waves considered here are Hiss, VLF
transmitters and whistlers from Abel and Thorne (1998). In
the outer belt, two major processes are in competition. The
first one is radial diffusion driven by magnetic and electric
field fluctuations in the inner magnetosphere (Schulz and
Lanzerotti, 1974). Radial diffusion transports particles across
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magnetic fields lines, changing their energy in the same time
due to the conservation of the particle’s relativistic mag-
netic moment (i.e. the first adiabatic invariant). Their energy
increases when they are transported inward and decreases
when they are transported outward (the direction of the dif-
fusion depends on the PSD gradient). The second process
consists of an “internal source” of relativistic electrons out-
side the plasmasphere. Summers et al. (1998) and Horne and
Thorne (1998) identified whistler mode chorus as a possible
agent for leading to substantial energy and pitch angle diffu-
sion for relativistic electrons, even beyond geostationary or-
bit. During moderate magnetic activity, the local acceleration
timescale becomes faster than the radial diffusion one and
electrons can be energized. Chorus wave interactions with
electrons modelled by the PADIE code (Glauert and Horne,
2005) are considered here, in the same form as in Varotsou
et al. (2005). The diffusion coefficients were related to mag-
netic activity by constructing a statistical wave model where
equatorial values (−15◦ < λm < 15◦) of fpe/fce and wave
intensityB2

wavemeasured by CRRES were parameterized for
Kp < 2, 2≤ Kp ≤ 3, 3≤ Kp ≤ 4, 4≤ Kp ≤ 5, 5≤ Kp ≤ 6 and
Kp ≥ 6 betweenL = 1 to 6.6, with a resolution of 0.1 L and
1 h in MLT (Meredith et al., 2003b). The coefficient values
from the matrix given by the PADIE code were interpolated
to energy, pitch angle andL values corresponding to the
Salammb̂o grid and tofpe/fce values corresponding to the
ones given from the statistical wave model (CRRES data).
For a given energy,L, pitch angle and Kp, the diffusion coef-
ficients were calculated in each MLT bin according tofpe/fce
andB2

wave. Finally, for introduction in the Salammbô code,
we calculated the coefficients’ drift average by summing val-
ues over all MLT and dividing by the number of MLT bins.
Since electron-chorus interactions are most efficient for low
fpe/fce and high wave intensities (Meredith et al., 2003b),
they were only included in the model outside the plasmas-
phere. Note that the absence of chorus wave at high latitude
in our model may lead the Salammbô code to overestimate
fluxes for high latitude mirroring electrons. Future studies
will mostly concentre on improving wave models (wave am-
plitude and propagation angle) to reduce uncertainties on as-
sociated diffusion coefficients.

To reconstruct the radiation belt dynamics, the planetary
disturbance index Kp is used to:

– parameterize the intensity of radial diffusion according
to Brautigam and Albert (2000)

Dm
LL

= 100.506Kp−9.325L10 (day−1); (2)

– parameterize chorus wave intensity according to the sta-
tistical study performed by Meredith et al. (2003b), the
same CRRES wave amplitude database was binned ac-
cording to 6 Kp index classes instead of Ae index and
provided by N. Meredith;
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Fig. 1. Distribution of the optimal time step that can be used in the
Salammb̂o code. The statistic has been performed over more than
one solar cycle, from 1990 to 2005.

– and also locate the plasmapause using the parameteriza-
tion of Carpenter and Anderson (1992)

LPP = 5.6− 0.46Kpmax (3)

where Kpmax is the maximum Kp value over the preced-
ing 24 h.

The three-dimensional grid is very similar to the one de-
scribed in Subbotin and Shprits (2009). The domain covers
1 < L∗ < 8, 1 keV< E < 10 MeV, 2◦ < αeq < 90◦ and the
grid resolution is 25× 25× 25.

The numerical scheme used to solve Eq. (1) is ex-
plicit finite difference. For stability condition the Courant-
Friedrichs-Lewy (CFL) condition has been implemented in
the same way as in Albert et al. (2009) (see Eq. 9). A lim-
itation of 0.1 has been used instead of 0.5, which aims at
improving the stability of the code since the CFL condition
is only a necessary condition. The upper bound of the time
step from the CFL condition has been computed considering
all diffusion coefficients part of the Salammbô code (some of
which are static, others depend on Kp and others depends on
Kp and on the maximum of Kp over the last 24 h – via the
plasmapause location) over the time period 1990 to 2005.
Therefore from time to time a lot of combinations may ex-
ist. Figure 1 presents the statistical distribution of this upper
limit then obtained over more than a solar cycle. It shows that
the upper time step is always greater than 1 s. To corroborate
those results, three runs are performed with 3 different time
steps, 0.1 s, 1 s and 10 s, during the 10 October 1990 storm.
To measure the performance of the code, the 1s run is con-
sidered as the reference one. Then the mean ratio over the
full simulation grid of the PSD deduced to the “reference”
PSD is computed. Figure 2 presents the evolution of this ra-
tio for a 10 s time step simulation in blue and 0.1 s time step
simulation in red. While there is no difference between a sim-
ulation performed with a 1 s or a 0.1 s time step, the deviation
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Fig. 2.Mean ratio over the full simulation grid of the PSD deduced
at 0.1 or 10 s time step to the “reference” PSD performed at 1s time
step.

between the 10 s time step and 1s time step keeps on increas-
ing. In other words, the convergence is guaranteed for a 1 s
time step but is not for the 10 s one. From this analysis, the
time step is set to 1 s in the Salammbô code in order to ensure
the stability of the explicit finite difference scheme.

3 The data set

The way in situ data are pre-processed is described by Friedel
et al. (2005). To obtain data that is as reliable as possible,
contamination, saturation, and background issues are treated
and removed from the data. GOES proton fluxes are used as
references to detect when data are contaminated by other par-
ticle species (i.e. ions). Then, using CRRES measurements
as the “gold” standard, since it was the last scientific mission
dedicated to the analysis of the Earth’s environment, the dif-
ferent detectors and satellites are cross-calibrated. Even if the
main artefact/bad data are filtered through pre-processing,
the data set must be intercalibrated to insure consistency, es-
pecially for reanalysis purpose (see Friedel et al., 2005).

In the present study we concentrate on the magnetic storm
of 10 October 1990 and the simulation covers the time range
from 5 October to 25 October 1990. This storm is a ref-
erence one, because (1) it occurs during CRRES satellite
life, (2) Brautigam and Albert (2000) found clear evidences
that the PSD peaks inside geosynchronous orbit (i.e. indi-
cating “local acceleration” by chorus wave-particle interac-
tion), and (3) it has been intensively studied (see for example
Brautigam and Albert, 2000; Meredith et al., 2003a; Iles et
al., 2006).

The electron flux measurements from the LANL-GPS
NS18/BDD2 and the LANL-GEO 1989-046/SOPA are as-
similated while flux measurements from CRRES/MEA and
CRRES/HEEF are kept for results validation. Figure 3 in-
dicates the three spacecraft orbits. The dark blue envelope
indicates the spatial outer boundary of the simulation do-
main and the light blue indicates the magnetic equator in an

Fig. 3.Orbits along with data sets are considered for the simulation
as of 5 October 1990. Data assimilated are taken along LANL GPS
NS18 (red) and LANL GEO 1989046 (yellow). Test data set is
taken along CRRES spacecraft (green).

IGRF+Olson-Pfitzer quiet magnetic field model. The elec-
tron LANL GPS NS18/BDD2 measurements are omnidirec-
tional integral fluxes; 4 channels are available (>0.28 MeV,
>0.41 MeV, 0.75 MeV and>1.3 MeV). The electron LANL
GEO 1989-046/SOPA measurements are omnidirectional
differential fluxes; 9 channels are available ranging from
50 keV to 1.5 MeV. CRRES/MEA data measurements are
available as unidirectional differential fluxes; 17 channels
are available from 111 keV to 1.5 MeV. CRRES/HEEF data
measurements are composed of 8 unidirectional integrated
channels ranging from>300 keV to>1.05 MeV and 11 uni-
directional differential channels ranging from 0.65 MeV to
7.5 MeV. In the case of CRRES satellite unidirectional data
have been integrated in pitch-angle to provide omnidirec-
tional fluxes according to:

Jomni = 2π

180∫
0

J (α)sin(α)dα, (4)

and only the omnidirectional differential channels deduced
from CRRES original measurements are used in the follow-
ing study.

4 Data assimilation using an ensemble Kalman filter

Data assimilation scheme provides a framework which al-
lows for optimal combination of model prediction and sparse
data accounting for model and data errors. One of its major
advantages is the estimate of the uncertainties of the nowcast
at each time step. Two approaches for filtered data assimi-
lation are available (see Bertino, 2001; Evensen, 2007, and
references therein for more details):

– In the sequential methods, new observations are se-
quentially assimilated into the model when they become
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Fig. 4.A schematic view of a sequential data assimilation approach where IPODE is the Ionising Particle ONERA DatabasE and Salammbô
3-D the radiation belt physical model.

available. The assimilation process is derived from the
theory of statistical estimation: the error statistics are
used to calculate a variance minimizing estimate when-
ever measurements are available (Daley, 1991). This
is typically what is performed in the Kalman filter
(Kalman, 1960) and all its children.

– The variational inverse methods, contrary to the se-
quential methods which update the model solution ev-
ery time observations are available, seek an estimate
in space and time where the estimate at a particular
time is dependent on both past and future measurements
(Evensen, 2007). These methods are derived from the
theory of optimal control where one seeks the estimate
by minimizing the error terms in the form of a weak
constraint penalty function. The 4D-VAR method (Le
Dimet and Talagrand, 1986) is the most popular for-
mulation of these methods and is used in meteorolog-
ical operational prediction centers. Similarities exist be-
tween the analysis step in the variational and sequen-
tial methods. The 3D-VAR method (Le Dimet and Tala-
grand, 1986) was developed prior to 4D-VAR and does
not account for the temporal origin of observations. In
this case, the analysis step becomes equivalent to the
Kalman filter’s one, both corresponding to the best lin-
ear unbiased estimator (Lorenc, 1986).

In our work, our choice has been to implement a sequen-
tial data assimilation scheme based on the Kalman filter
(Kalman, 1960) because it better fits Salammbô’s framework.
Such an approach can be decomposed into two main phases
synthesized on Fig. 4:

– Forecast phase is a temporal propagation of the sys-
tem performed with the physical model accounting for
model uncertainties.

– Analysis phase is where data assimilation method com-
bines numerical model predictions and sparse data
available at the time of the analysis phase, in a way

which minimizes mean-squared errors. The update is
weighted, global to the system and optimal.

The data assimilation scheme adopted assumes that data as
well as model are unbiased. Such schemes are the so-called
bias-blind schemes (Dee, 2005). An overview of the Kalman
filter formalism applied to radiation belts can be found in
Shprits et al. (2007) and detailed descriptions in references
therein. In our case, the state vector is a vector of PSD at var-
iousL∗, energy and sine of equatorial pitch-angle of electron.
Its size,n, is 253 elements.

Such a Kalman filter is known to be very efficient for
small linear systems. Unfortunately when the system size in-
creases, the propagation in time of the error covariance ma-
trix (n×n) quickly becomes expensive to compute. In 1994,
Evensen (1994) introduced the idea to approximate a distri-
bution by a Monte-Carlo sampling. Of course, the larger the
number of sampling, the better the model distribution will be
represented. The error of the distribution sampling decreases
according to 1/

√
m wherem is the number of samples. The

corresponding data assimilation scheme is known as an En-
semble Kalman Filter (EnKF in the following). A schematic
view of the equivalence between the Kalman filter and the
EnKF is given in Fig. 5.

In the following, bold symbols refer to a matrix and “ˆ”
indicates it is an approximate.

4.1 Initialisation

Instead of propagating in time the initial state vector,X0,
and the corresponding initial error covariance matrix,P0,
Evensen (1994) states that it is equivalent to propagate an en-
semble of state vectors sampled according to an initial multi-
normal distributionN (X0,P0). Assuming an initial state
vector with dimensionn and consideringm the number of
members in the ensemble (i.e. the number of samples), we
define the initial ensemble matrixA0 with dimensionn×m:

A0 =

(
X1

0, · · · ,Xm
0

)
, (5)

www.ann-geophys.net/30/929/2012/ Ann. Geophys., 30, 929–943, 2012
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where theXi
0 (i ∈ [1,m]) are them initial state vectors repre-

senting the initial distribution of the PSD and its dispersion.
The average initial state vector is then defined by

〈X0〉ensemble= Ā0 =
1

m

m∑
i=1

Xi
0 (6)

and the initial error covariance matrix (here namely the en-
semble covariance matrix) by

P̂0 =
1

m − 1

(
A0 − Ā0

)
·
(
A0 − Ā0

)T
. (7)

Note that ifm tends to infinity, then of course〈X0〉ensemble=

X0 andP̂0 = P0.

4.2 Prediction phase

As shown in Fig. 6, each member is propagated forward
in time (the forecast) with the physics-based model (i.e.

Salammb̂o 3-D) according to:

Xf
k = M k−1X

f
k−1 , (8)

whereM is the matrix of the numerical model, superscript
“f” refers to forecast and subscript “k” indicates the time
step. Suppose the true state of the radiation belt is known
at time stepk − 1, then because the model is not perfect the
forecast at time stepk is no longer the true state but only the
best estimate we can have. Then the true state at time stepk

can be expressed as:

Xt
k = M k−1X

t
k−1 + εM

k−1 , (9)

whereεM
k−1 should be the true model error vector, “t” super-

script refers to true state and “M” superscript refers to model.
However, it can be only approximated by the known a priori
model error and can be represented by a model covariance
matrix,Qk =

〈
(εM

k · (εM
k )T )

〉
.

In the EnKF, model uncertainties can be sampled with a
Monte-Carlo run within m samples (the number of members)
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according to a multinormal lawN(0,Qk). Thus the model
covariance matrix is never computed but is implicitly given
by the members’ dispersion in the ensemble. It is however
possible to approximate the error covariance matrix of the
forecast at time stepk, Pf

k, according to Eq. (7).

4.3 Analysis phase

Let us denoteOk, the vector ofq observations available
at timek and their associated observational error vectorεo

k

where superscript “o” refers to observations. The observa-
tional error can be represented by an observational error co-
variance matrix:

Rk =

〈(
εo

k ·
(
εo

k

)T
)〉

. (10)

In the EnKF, the observational errors can be sampled with
a Monte-Carlo run within m samples (the number of mem-
bers) according to a multinormal lawN (Ok,Rk). A pertur-
bation matrix with dimensionq × m is then obtained (Ek =(
ε

o,1
k , · · · ,ε

o,m
k

)
). The observational error covariance matrix

can be then approximated by:

R̂k=

1

m − 1

(
Ek · Ek

T
)
. (11)

Note that ifm tends to infinity, then of coursêRk = Rk .
The standard Kalman gain matrix can then be approxi-

mated by:

K̂k = P̂
f
k · HT

k ·

[
Hk · P̂

f
k · HT

k + R̂k

]−1
, (12)

where the observational matrixHk maps the true space on to
the observed space.

From the approximated gain, the analysis step in the EnKF
consists of the following updates performed on each of the
model state ensemble members:

Xa
k = Xf

k + K̂ k ·

[
Ok − Hk · Xf

k

]
, (13)

where “a” superscript refers to analysis.
Indeed, the analysis phase statistically determines a new

set of state vectors where the dispersion is reduced as
schematically represented in Fig. 6.

In practice, it is not necessary to store in full the matri-
ces shown above when implementing the EnKF. The main
difference with the Kalman filter can be summarized by the
propagation of an×m matrix instead of an×n. The runtime
is thus much faster for very large systems. For a detailed de-
scription of the EnKF algorithm see, for example, Evensen
(2004).

4.4 Limitation of bias-blind data assimilation tools

One of the major hypotheses of traditional data assimilation
tools assumes that model and data are not biased; these are

the bias-blind data assimilation schemes (Dee, 2005). From
the model point of view, this can be difficult to ensure. Under
this assumption, one must make sure that all physical pro-
cesses playing a major role on trapped particles are included.
This suggests that a too simple model like a 1-D model in
which only radial diffusion is accounted for cannot be con-
sidered as a non-biased model to reproduced trapped electron
dynamics. However, even a more sophisticated model such as
a 3-D model does not guarantee that it is not biased. To ef-
fectively remove those discrepancies during the data assimi-
lation process, one requires bias-aware assimilation methods
which incorporate specific assumptions about the source and
nature of (some of) the biases in the system, and are specifi-
cally designed to estimate and correct those biases (Dee and
Todling, 2000; Evensen, 2003; Dee, 2005).

In a Kalman filter or an EnKF, each cell of the domain
is linked to all others via the covariance matrix which itself
relies on the accuracy of the physical modelling. Thus, dur-
ing the analysis phase the update is propagated throughout
the entire domain via the covariance matrix. In Sect. 5.2, one
of the identical-twin experiments is performed with a biased
model and consequences of the use of a bias blind assimila-
tion scheme are then discussed on the overall estimates of the
EnKF.

In our particular case, a 3-D radiation belt model, the
Salammb̂o code, will be used for the prediction phase. The
model is now mature enough (see Varotsou et al., 2005, 2008)
to assume that the all set of dominant physical processes are
accounted for. Nevertheless, the chorus wave-particle inter-
action coefficients from Glauert and Horne (2005) are limited
to electron energies less than 3 MeV and forL∗ range less
than 6.6. As a result the model is biased for energies greater
than 3 MeV at allL∗ and at all energies forL∗ values greater
than 6.6. Another source of bias comes from the absence of
chorus wave in our model for magnetic latitude below−15◦

and above 15◦. As a result the model is biased for electron
with low pitch-angle. Because of the 3-D nature of the model,
it is assumed that PSD are symmetric in local time. This is al-
most true for relativistic electrons but this hypothesis is bro-
ken at low energy and preferentially at large L shells. To find
out more accurately the energy limit below which this hy-
pothesis is no longer true, a statistical study combining all
LANL-GEO/MPA and LANL-GEO/SOPA data over more
than two solar cycles has been performed in a similar way
as Korth et al. (1999). Maps in an energy versus local time
for two magnetic activity index, Kp = 1 and Kp = 6, are pro-
vided in Figs. 7 and 8. It is clear that for low or high magnetic
activity, the particle distributions are local time dependent for
energies below 50 keV and peaks in the midnight-dawn sec-
tor due to storm-substorm particle injections. At Kp = 6, this
asymmetry is still pronounced at 100 keV and is very weak
for energies above 300 keV. Note that the local time depen-
dence seen at 300 keV and above is due to day-night asym-
metry of the magnetic field and cannot be attributed to night
side particle injections. From this statistical study, it turns
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Fig. 7. Average electron flux at geostationary orbit in term of energy and local time map for two magnetic activity index (left, Kp = 1 and
right, Kp = 6).
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Fig. 8.Average electron flux at geostationary orbit for 1 keV, 50 keV, 100 keV, 310 keV and 1 MeV versus local time for two magnetic activity
index, Kp = 1 and Kp = 6.

out that the 3-D physical model, Salammbô 3-D, is biased
for energies below 300 keV.

Finally, in the current study a low resolution grid (25×

25×25) is used. As a result the steep gradients of the PSD ob-
served close to the loss cone cannot be accurately predicted
by the model. To speed up the resolution scheme the inter-
polation had to be set to linear in log(f ) − log(E) space to
apply radial diffusion at constantM,K in theE,y space.

4.5 Settings for the EnKF

In the standard formulation of the Kalman filter, the model
and observational error covariances matricesQ and R are
assumed to be known. This rarely happens in practice and
usually some simple approximations are made. In the current
study, it is assumed that:

– The error distribution of logarithm of observations is
Gaussian with a standard deviation of 0.3. Friedel et
al. (2005) found that comparing different satellite mea-
surements of the same parameter against one another
indicates discrepancies on the order of 2 in most cases.
This value corresponds to the 1 sigma of the data error
distribution adopted in the current study.

– The error distribution of logarithm of the initial state
is Gaussian with a standard deviation of 0.3. The ini-
tial state is extracted from the run described in Maget
et al. (2007) on 5 October 1990 at 00:00 UT where di-
rect data insertion was performed. It is then natural to
assume the same error distribution for the initial state
than in the data being used (see above). Bourdarie et
al. (2005) found that performance of direct data inser-
tion in the Salammb̂o code was within a factor 2–3
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Table 1.Time average of the root mean square deviation of the log-
arithm of phase space densities averaged over the entire simulation
domain (E, αeq, L∗) versus the size of the ensemble.

Ensemble size 50 80 100 200
Mean RMS 0.65 0.12 0.12 0.115

when comparing to test data sets. Again, a factor 2 cor-
responds to the 1 sigma of the initial state error distri-
bution adopted in the current study.

– Because in the Salammbô code the time dependent
physical processes (radial diffusion and chorus wave
particle interactions) are driven by the magnetic activ-
ity index Kp, the model errors can be modelled in a first
approximation by assuming a Gaussian distribution of
Kp with an average equal to the measured Kp and with
a standard deviation of 0.5. Maget et al. (2007) showed
that introducing mathematical error to radial diffusion
coefficients and chorus wave particle diffusion coeffi-
cients separately was equivalent as a first approximation
to add white noise to Kp index.

– the boundary condition atL∗ =Lmax is kept free. At
start time it is set to a kappa distribution (Christon et al.,
1991) given by the formula:

f (Lmax) = A

[
1+

E

kEo

]−k−1

, (14)

where we takeA = 1035 MeV−3 s−3, defined by exam-
ining a long period of LANL geosynchronous measure-
ments,E0 = 2 keV (plasma sheet characteristic energy),
defined by average LANL geosynchronous MPA (Mag-
netospheric Plasma Analyzer) data (Joseph Borovsky,
private communication, 2007) andk = 5, on the basis
of the work of Christon et al. (1988, 1991). Then the
boundary condition is updated by the EnKF during the
analysis phase. Between two updates the boundary con-
dition is kept constant.

In the analysis phase, predicted fluxes corresponding to each
available measurement are first computed from PSD pro-
vided by each member of the ensemble. Then, the innova-
tion is calculated according to the logarithm of predicted and
measured fluxes.

5 Results

5.1 Convergence of the ensemble Kalman filter

The convergence of the ensemble Kalman filter is theoret-
ically guaranteed if the number of members in the ensem-
ble is very large. In the literature one finds regularly that
the filter converges from 100 members (Evensen, 2004). To

verify if this generally adopted rule can be applied to radia-
tion belts science, the same simulation (see Sect. 3) has been
performed three times while the number of members has
been changed from 50 to 200. From 5 to 25 October 1990,
GPS-NS18/BDD2 and LANL-GEO-1989-046/SOPA data
are used to compute the innovation at each analysis phase,
which is performed every two minutes of the simulation. The
root mean square deviation (RMS in the following) of the
ensemble (i.e. the standard deviation of the logarithm of the
phase space densities of the ensemble members) has been
averaged over the entire domain (E, αeq, L∗) versus time for
each run and is plotted in Fig. 9. This RMS is a good mea-
sure of the robustness and convergence of the EnKF (Hamill
et al., 2001). At first glance the EnKF seems to behave in a
similar way if it is composed of 80, 100 or 200 members.
By cons, the one with 50 members differs from other sim-
ulations as soon as the magnetic storm develops (when Kp
index increases up to 6). Clearly, after the magnetic storm,
the EnKF with 50 members does not converge adequately. To
quantify the performance of the filter, the time-average over
the duration of the simulation of the RMS, defined above,
is computed (Table 1). It is clear this time that the overall
performance of the filter is significantly improved when the
number of members is greater than or equal to about 80.

In the following the number of members is set to 200.

5.2 Observing system assessment with identical-twin
experiments

One of the most widely used and reliable methods of assess-
ing a data assimilation scheme is that of the twin experi-
ments. The identical-twin experiments consist in a numeri-
cal procedure where synthetic data can be generated by the
model to which data assimilation is applied, subject to a spec-
ified stochastic forcing term. The data with assigned errors
are then evaluated for their effectiveness in obtaining opti-
mal state estimates. The convergence of the unassimilated
model fields from the second run towards those of the first
run (“true” state) can then be measured.

Two scenarios are implemented for a time period covering
the 10 October 1990 storm: (1) synthetic integral omnidirec-
tional fluxes every two minutes along GPS ns18 orbit and
differential omnidirectional fluxes every 4 min along LANL-
GEO-1989-046 orbit are deduced from the “true” state; and
(2) synthetic integral omnidirectional fluxes every two min-
utes along GPS ns18 orbit, differential omnidirectional fluxes
every 4 min along LANL-GEO-1989-046 orbit and differen-
tial omnidirectional fluxes every 2 min along CRRES orbit
are deduced from the “true” state. In both cases, synthetic
data channels are chosen to be identical to the ones of the
corresponding instrument. The settings of the EnKF are those
described in Sect. 4.5.

To measure the efficiency of the data assimilation scheme
adopted, the mean ratio over the full simulation grid of the
mean predicted PSD by the ensemble to the “true” PSD is
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Fig. 9. Root mean square deviation of the logarithm of phase space
densities averaged over the entire simulation domain (E, αeq, L∗)
for various size of ensemble (top panel), and magnetic activity index
Kp (bottom panel).
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computed every 2 min (Fig. 10). First of all, in both cases
the data assimilation scheme converge and the mean predic-
tion by the ensemble is closed to the “true” state; in sce-
nario (1) the deviation in within 16 % before the storm onset
and on the order of 5 % after, while in scenario (2) deviation
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Fig. 11. Mean ratio over the full simulation grid of the mean pre-
dicted PSD by the ensemble to the “true” PSD versus time in an
identical-twin configuration. Comparison when a non biased or bi-
ased assimilating model is used.

is within 12 % before the storm and on the order of 1 % after.
As expected, when more information is provided (i.e. when
synthetic data along CRRES orbit are added), the results are
even better.

Next, an assimilation experiment where a part of the do-
main suffers from a bias is performed. Synthetic integral om-
nidirectional fluxes every two minutes along GPS ns18 orbit,
differential omnidirectional fluxes every 4 min along LANL-
GEO-1989-046 orbit and differential omnidirectional fluxes
every 2 min along CRRES orbit are deduced from the “true”
state. The model then used for assimilation is biased, i.e. the
wave-particle diffusion coefficients due to chorus waves are
divided by a factor 10 forL∗ > 5.5. The mean ratio over the
full simulation grid of the mean predicted PSD by the ensem-
ble to the “true” PSD is computed every 2 min (Fig. 11). The
results are clear: large deviations are recorded. The first two
days the deviations are very large and then diminish down to
145 % with occasional increases up to 345 %. Clearly, bias in
a part of the domain being simulated may affect the overall
performance of the data assimilation tool.

The identical-twin configuration shows how, in an ide-
alistic framework, the ensemble Kalman filter assimilation
performs for the particular model and data being consid-
ered. Moreover, twin-experiments can performed to consider
model bias, model errors, missing physics, etc. In the real
world, of course, no models are perfect, and the results of
identical-twin experiments, in the case of bias blind assimi-
lation scheme, necessarily err on the optimistic side (Daley,
1991, pp. 340). In this case, a more objective comparison, but
complementary to twin experiments, is then proposed in the
following section.

5.3 Reanalysis for the 10 October 1990 storm

Because data assimilation is limited to the outer radiation
belts (along GPS and GEO orbits), the simulation results (the
reanalysis) will be analysed forL∗ > 4. GPS data are being
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assimilated every 2 min but only when the spacecraft can
measure electrons with equatorial pitch-angle greater than
35◦. This last condition prevents ingestion of data where the
model is biased due to the low resolution grid being used
so far. LANL-GEO data are being assimilated every 4 min.
Note that a lower cadence has been set for GEO data because
theL∗ value where the measurements are available does not
change much from time to time.

Since the updates are propagated via the implicit covari-
ance matrix of the ensemble to the entire domain, there is
no guarantee to retrieve the assimilated data out of the re-
analysis (thought there is good chance anyway). A prelimi-
nary validation of the EnKF performance consists in a basic
check in which the average predicted data are compared with
the assimilated ones. Figure 12 provides such a comparison
along LANL-GEO-1989-046 versus time for two channels,
0.315–0.5 MeV and 1.1–1.5 MeV. First of all, it can be seen
that the pure Salammbô code always overestimates the ob-
servations. The deviation can be as high as a decade or more
for 0.315–0.5 MeV channel. The mean predictions over all
members of the ensemble match pretty well the observations:
in the 0.315–0.5 channel 85 % of predictions are within a
factor 2, 71.5 % are within a factor 1.5 and 48 % are within
a factor 1.25; while in the 1.1–1.5 channel 97.5 % of mean
predictions are within a factor of 2, 86.8 % are within a fac-
tor 1.5 and 63.5 % are within factor 1.25. The gain of using
data assimilation tool accounting for model and data errors is
clear: since in data assimilation, modelling uncertainties are
accounted for, the EnKF is able to find an optimized “path”
within the dispersion of diffusion process intensities (from
modelling uncertainties by Monte-Carlo sampling) to get the
best estimate. The pure Salammbô code is much more re-
strictive and does not have such a freedom.

To fully validate the EnKF performances, an independent
data set is used. Reanalysis results are then compared to CR-
RES/MEA and HEEF measurements forL∗ > 4. Error distri-
bution (log (observations/mean predictions)), the errors (ob-
servations/mean predictions) versus observation values and
errors (observations/mean predictions) versusL∗ are plotted
on Fig. 13 for two electron energies 0.33 MeV and 1.58 MeV.
Results obtained from 5 October to 25 October are melted
in these plots. The top panels show evidence that the pure
Salammb̂o code systematically overestimates fluxes by about
a factor of 10 or more. The corresponding distribution is cen-
tered to about−1 in decimal log, whereas the one obtained
with mean prediction from the ensemble Kalman filter is cen-
tered to about 0. Moreover, the distribution of errors in dec-
imal log is larger when predictions from a pure Salammbô
code are taken. This shows clearly the added value of the fil-
tered data assimilation tool. On the middle panels of Fig. 13,
one can see that the deviation between observations and pre-
dictions by the ensemble Kalman filter increases when mea-
sured fluxes decrease. This is obvious for 1.58 MeV elec-
trons. Finally, it turns out that this deviation is large (and can
be very large) for L shells greater than 6 (see bottom pan-
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Fig. 12. Comparison of mean prediction of the ensemble Kalman
filter where LANL-GEO and GPS ns18 data are assimilated, with
measurements along GEO orbit, for 0.315–0.5 MeV (top panel) and
1.1–1.5 MeV (middle panel) electrons. Black curve is the observa-
tion, green curve is the mean ensemble Kalman filter prediction and
red curve is the pure Salammbô prediction. The magnetic activity
index Kp is plotted in bottom panel.

els of Fig. 13). Again for 1.58 MeV electrons it is obvious.
This last result indicates a systematic bias of the model be-
yondL∗

= 6. This bias is known: there are no chorus wave-
particles interactions included in the model beyondL∗

= 6.
Thus, such results were expected. ForL∗ below 6, i.e. a do-
main where chorus wave are included in the model, some
predictions (a small fraction) can deviate by a factor 10 to
CRRES observations. Although the chorus waves are taken
into account, bias are suspected due to non inclusion of cho-
rus wave at high latitudes, which is to say particle scat-
tering to the atmosphere due to wave-particle interactions
are underestimated in the model as suggested by Shprits et
al. (2006b). It also highlights the importance of using a non-
biased model to obtain very good performances of the data
assimilation tool at any grid cells.

6 Conclusions

A first data assimilation tool based on a 3-D radiation belt
model, the Salammb̂o code, has been set up. The EnKF
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Fig. 13. Error distribution (log (observations/mean predictions)) (top panels), the errors (observations/mean predictions) versus observa-
tion values (middle panels) and errors (observations/mean predictions) versusL∗ (bottom panels), with on the left column electrons with
0.33 MeV energy and on the right column electrons with 1.58 MeV energy along CRRES orbit.

overcomes one major problem associated with the traditional
Kalman filter: in a Kalman filter an error covariance matrix
for the model state needs to be stored and propagated in time,
making the method computationally infeasible for models
with high-dimensional state vectors.

In this study we show how data assimilation using an
EnKF may be applied to perform high fidelity electron radi-
ation belt reanalysis from a sparse data set (3 channels along
GPS and 6 channels along GEO orbits only were ingested).
We also point out the danger of using a biased model in such
applications while using a bias-blind assimilation scheme.

While simple approximations were made in this study to
set data and model errors, a detailed assessment of each phys-
ical processes uncertainties, namely diffusion due to wave-
particle interactions and radial diffusion, must be performed.
Wave particle interactions must be known at all grid cells to
reduce or even better eliminate bias reported in this study,
and wave intensity distributions have to be assessed based on

available wave intensity measurements in the inner magne-
tosphere. Radial diffusion model is also far from perfect and
must be improved in the future. From the data point of view,
realistic error distributions which may be different from in-
strument to instrument have to be assessed. Nevertheless, this
study highlights the capabilities of such a data assimilation
framework applied to radiation belts science. The reanalysis
of data from multiple spacecrafts results in a significant re-
duction of the error compared to the ones obtained with a
pure physical model.
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