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Abstract. In this work, results obtained by investigating
the application of different neural network backpropaga-
tion training algorithms are presented. This was done to as-
sess the performance accuracy of each training algorithm
in total electron content (TEC) estimations using identical
datasets in models development and verification processes.
Investigated training algorithms are standard backpropaga-
tion (SBP), backpropagation with weight delay (BPWD),
backpropagation with momentum (BPM) term, backpropa-
gation with chunkwise weight update (BPC) and backprop-
agation for batch (BPB) training. These five algorithms are
inbuilt functions within the Stuttgart Neural Network Sim-
ulator (SNNS) and the main objective was to find out the
training algorithm that generates the minimum error between
the TEC derived from Global Positioning System (GPS) ob-
servations and the modelled TEC data. Another investigated
algorithm is the MatLab based Levenberg-Marquardt back-
propagation (L-MBP), which achieves convergence after the
least number of iterations during training. In this paper, neu-
ral network (NN) models were developed using hourly TEC
data (for 8 years: 2000–2007) derived from GPS observa-
tions over a receiver station located at Sutherland (SUTH)
(32.38◦ S, 20.81◦ E), South Africa. Verification of the NN
models for all algorithms considered was performed on both
“seen” and “unseen” data. Hourly TEC values over SUTH
for 2003 formed the “seen” dataset. The “unseen” dataset
consisted of hourly TEC data for 2002 and 2008 over Cape
Town (CPTN) (33.95◦ S, 18.47◦ E) and SUTH, respectively.
The models’ verification showed that all algorithms investi-
gated provide comparable results statistically, but differ sig-
nificantly in terms of time required to achieve convergence
during input-output data training/learning. This paper there-
fore provides a guide to neural network users for choosing

appropriate algorithms based on the availability of computa-
tion capabilities used for research.

Keywords. Ionosphere (Modelling and forecasting)

1 Introduction

Total electron content (TEC) estimations using the neural
network (NN) technique have been done over many years
with relative success (e.g.Herǹandez-Pajares et al., 1997;
Tulunay et al., 2004, 2006; Leandro and Santos, 2007; Senalp
et al., 2008; Yilmaz et al., 2009). The main work in the ap-
plication of this nonlinear technique involves finding a rela-
tionship between known input and output parameters using
a relevant training algorithm. A training algorithm or learn-
ing function has the purpose of adjusting connection weights
between input and output layers to achieve the desired result
for the system under characterisation (Haykin, 1994; Rojas,
1996; Zell et al., 1998). This study undertakes an investi-
gation of some training algorithms employed in TEC mod-
els by different research groups. Specifically, this is a com-
parative study of performance levels of some algorithms for
feed forward networks only. Considered algorithms are back-
propagation for batch (BPB) training, backpropagation with
momentum (BPM) term, backpropagation with chunkwise
weight update (BPC), backpropagation with weight delay
(BPWD), standard backpropagation (SBP) and Levernberg-
Marquardt backpropagation (L-MBP). The first five training
algorithms are inbuilt functions within the Stuttgart Neu-
ral Network Simulator (SNNS) software (Zell et al., 1998;
Reczko et al., 1998). The sixth algorithm implemented is a
MatLab based L-MBP (Demuth et al., 2009).
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These algorithms mainly differ in the way that weights
are adjusted; otherwise, backpropagation is essentially im-
plemented during training. Comprehensive details of these
algorithms with mathematical descriptions of weight adjust-
ments and procedure of their applications can be found in
Rojas(1996); Zell et al. (1998), andDemuth et al.(2009).
For its simplicity, SBP algorithm has been widely used for
TEC modelling and mapping in both feed forward and re-
current neural networks (e.g.Leandro and Santos, 2007; Yil-
maz et al., 2009; Habarulema et al., 2007, 2009, 2010). Re-
search has shown that different problems require different
training algorithms and types of neural networks. For exam-
ple, in space weather applications involving predictions that
use solar wind data as inputs, recurrent networks have been
found to be more desirable (Lundstedt et al., 2002; Weigel
et al., 2002, 2003; Vandegriff et al., 2005; Lundestedt, 2006;
Habarulema et al., 2009; Heilig et al., 2010). Other iono-
spheric parameters, such as the critical frequency of the E-
region (foE) and critical frequency of the F2 layer (foF2),
have been predicted using feed forward networks (e.g.Can-
der et al., 1998; Cander, 1998; McKinnell, 2002; McKinnell
and Poole, 2004; Oyeyemi et al., 2006). Radial basis func-
tion networks have also been used in the generation of TEC
data for ionospheric TEC mapping, as well as short term
forecasting offoF2 (e.g.Chan and Canon, 2002; Yilmaz
et al., 2009). TEC modelled and forecasted results for mod-
els, which utilised the L-MBP algorithm, have also been
presented (Tulunay et al., 2006; Yilmaz et al., 2009). This
algorithm is credited for its time savings during NN train-
ing/learning processes (Jang et al., 1997). While neural net-
works have been widely applied to ionospheric data, few re-
sources are available which compare the performances of dif-
ferent algorithms with specific emphasis on ionospheric pa-
rameter modelling. Although this paper does not investigate
all training algorithms, it serves as a guide to neural network
users who may want to apply different training algorithms to
their datasets, especially for ionospheric applications.

NN models are developed using a similar dataset with dif-
ferent training algorithms and verified on statistically simi-
lar (not necessarily identical) datasets (both “seen” and “un-
seen”) to assess their performance levels. Training was done
on a 2.4 GHz PC with 2 GB RAM. For fair comparisons, the
same architecture – comprised of one input layer (6 input
nodes), one hidden layer (9 hidden nodes) and one output
layer – was used. In this way, it has been observed that the
number of epochs/iterations required to achieve convergence
or generalisation is the main determinant in the choice of
the algorithm, especially for time needed and computing ca-
pability available. Table 1 shows the approximate time and
iterations determined for each algorithm to achieve conver-
gence. BPB has the highest number of iterations and hence
takes longer to give the optimum solution. This may be re-
lated to the learning rate, which contributes to the “speed”
with which training takes place. In BPB, the learning param-
eter is divided by the number of training patterns, making

Table 1.Approximate number of iterations and time taken (in min-
utes) for generalisation to be achieved for different training algo-
rithms.

Training Number of Approximate time (minutes)
algorithm iterations for convergence

BPB 16 800 18.5
SBP 3500 4.3
BPC 2400 2.933
BPM 1000 1.1
BPWD 1000 1.2667
L-MBP 165 3

it significantly small, and it could therefore slow the train-
ing rate of the network on all training patterns (Zell et al.,
1998). Results discussed in this paper were obtained from
NN models developed using the South African data from
the Sutherland station (SUTH) (32.38◦ S, 20.81◦ E) hourly
(1–23 h) TEC dataset (2000–2007) of∼50 300 data points,
which accounted for∼74.87 % derivable data for the pe-
riod considered. The verification was done on 2003 and 2008
datasets over SUTH, as well as the 2002 dataset over Cape
Town (CPTN), South Africa (33.95◦ S, 18.47◦ E).

2 Data

2.1 TEC from GPS

GPS TEC data were derived from observations made by
dual frequency receivers located at SUTH and CPTN, both
in South Africa. The values were derived using the ad-
justed spherical harmonic analysis (ASHA) algorithm, which
makes use of the mapping function that assumes the iono-
sphere to be a single layer of height 350 km (Opperman et al.,
2007). A total of 9 years (2000–2008) of data was derived
over SUTH, of which the 2000–2007 dataset was utilised in
the development of the NN models. Hourly TEC data for
2008 was used in the final verification of the models along
with CPTN data for the year 2002. The ASHA algorithm
is based on spherical harmonic expansion and was adapted
from theSchaer(1999) global model to be used as a regional
model. It uses data from a local GPS receiver network and
was chosen to estimate single station TEC results for com-
parative purposes with ionosonde measurements (Opperman
et al., 2007). Full details of the TEC derivation procedure
from GPS observations using the ASHA algorithm (and its
validation with different data sources) are presented inOp-
perman et al.(2007) andOpperman(2007).

2.2 Physical and geophysical data parameters

TEC is modelled as a function of known physical and geo-
physical parameters which influence its variability. These are
seasonal and diurnal variations, as well as solar activity and
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geomagnetic activity. Seasonal and diurnal variations are ef-
fectively represented by day number of the year (DOY) and
hour of the day (HOD), respectively. The measure of the solar
activity is represented by the sunspot number, while the mag-
netic A index values account for the geomagnetic influence
on TEC. Quantitatively, the magnetic and solar activities de-
termined byHabarulema et al.(2007) for South African GPS
TEC modelling were used in this study. These are the aver-
age of the previous 4-months for the daily sunspot number
and the average of the previous eight 3-hourly magnetic A
index values (A8) derived from the archived K-index data
recorded at the Hermanus Magnetic Observatory (34.43◦ S,
19.23◦ E), South Africa. Diurnal and seasonal variation rep-
resentations, sunspot number, and geographic latitudes and
longitudes have been used previously in the modelling of
foF2 and TEC using neural networks (e.g.Cander et al.,
1998; McKinnell, 2002; McKinnell and Poole, 2004; Lean-
dro and Santos, 2007).

3 Selected functions required for training

Data representations for parameters which influence TEC
variability along with known TEC values make up the train-
ing patterns of the form[(x1, t1), (x2, t2), ..., (xn, tn)], where
xi is the training pattern consisting of inputs, andti is the
target corresponding toxi (where i = 1,2, ...,n). The up-
date and initialisation functions used for BPB, BPC, BPM,
BPWD and SBP algorithms are topological order and ran-
domised weights, respectively. The initialisation function
randomly selects the weights which are real numbers. Pre-
senting an input patternxi from the training set generates an
outputoi which is different from the target outputti . The aim
is to ensure thatoi andti are identical fori = 1,2, ...,n with
the help of a training/learning algorithm (Haykin, 1994; Ro-
jas, 1996; Zell et al., 1998); the ultimate goal is to minimise
the error function of the network defined as

Nne =
1

2

n∑
i=1

(oi − ti)
2 (1)

whereNne is the error function of the network.
OnceNne has been sufficiently minimised for the train-

ing dataset, input patterns not known to the network are pre-
sented, and the network is expected to recognise whether the
new input patterns are similar to the learned patterns. Once
this condition is met, the network generates a similar out-
put (Rojas, 1996). This interpolation process is the one re-
ferred to as the verification of the NN models. Therefore,
training/learning involves finding the optimal combination
of weights that allows the network function to approximate
a given function, in this case implicitly through known in-
put and target training examples (Rojas, 1996). Topological
order update simply means that the presented input training
pattern propagates forward from the input layer through the
hidden layer until the activation reaches the output layer (Zell

Table 2.Computed correlation coefficient values for SUTH in 2003.

Training Correlation coefficients at different times (UT)

algorithm all hours 04:00 10:00 16:00 22:00

BPB 0.9229 0.7636 0.6898 0.8400 0.7393
BPC 0.9303 0.7834 0.7180 0.8468 0.5995
BPM 0.9309 0.7876 0.7219 0.8535 0.6202
BPWD 0.9309 0.7876 0.7219 0.8535 0.6202
SBP 0.9312 0.7954 0.7178 0.8516 0.5940
L-MBP 0.9381 0.8470 0.7407 0.8615 0.7662

et al., 1998). No pattern remap function was used. The pur-
pose of a pattern remap function is to quickly vary the desired
output of the network without changing the pattern files dur-
ing training, and non-use indicates that no remapping was
done and thus all presented patterns were trained (Zell et al.,
1998; Reczko et al., 1998). In the implementation of these
functions, a similar network setup of 6 input nodes, 9 hid-
den nodes and 1 output node was used during the training of
the network. The same architecture was used for the L-MBP
algorithm.

4 Results and discussion

4.1 Interpolation results

It is known that neural networks interpolate well within the
input space, and therefore the network is expected to repro-
duce the dataset that was used to train it with relatively good
accuracy (McKinnell, 2002; Habarulema et al., 2007). Since
the main aim is to compare the performance accuracies of
the training algorithms on the training dataset, part of the
training dataset can still be used in the final verification of
the models. This can be referred to as the determination of
the correct application of the neural network technique on
a particular dataset. The overall verification of the models
was performed using Sutherland (2003 and 2008) and Cape
Town (2002) datasets. While it is expected that the network
should perform very well for SUTH 2003 data (part of the
training dataset), the differences between algorithm perfor-
mances should be evident if present. Figure 1 shows the scat-
ter plot for hourly GPS TEC and modelled TEC values using
different NN training algorithms over SUTH for 2003. Cor-
relation coefficient values indicate a slightly better perfor-
mance by the L-MBP algorithm compared to the rest of the
considered algorithms. The widely used algorithms (SBP and
L-MBP) in ionospheric modelling provide improved interpo-
lation of TEC estimates. Although the model was tested on
the “seen” dataset (2003), it was noted that all training algo-
rithms achieved over 90 % accuracy (over the entire dataset,
denoted as “all hours” in Table 2) in estimating TEC, and
their modelling results are highly comparable.
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Fig. 1. Scatter plots for hourly GPS TEC and corresponding modelled TEC values using different NN training algorithms for Sutherland in
2003.

Table 3.Computed correlation coefficient values for CPTN in 2002.

Training Correlation coefficients at different times (UT)

algorithm all hours 04:00 10:00 16:00 22:00

BPB 0.9514 0.7705 0.8705 0.8804 0.7475
BPC 0.9589 0.7733 0.8885 0.8925 0.7866
BPM 0.9585 0.7785 0.8840 0.8951 0.7900
BPWD 0.9585 0.7785 0.8841 0.8951 0.7900
SBP 0.9589 0.7768 0.8887 0.8943 0.7883
L-MBP 0.9563 0.7896 0.8785 0.8744 0.8067

Figure 2 shows the computed RMSE values between GPS
TEC and modelled TEC using the six algorithms consid-
ered at local sunrise (04:00 UT), midday (10:00 UT), sunset
(16:00 UT) and midnight (22:00 UT) over SUTH in 2003.
Superimposed on these plots is the GPS TEC variability at
these respective times. Table 2 is a summary of the correla-
tion coefficients computed using GPS derived TEC and mod-
elled TEC (from 6 algorithms) for hourly data, 04:00 UT,
10:00 UT, 16:00 UT and 22:00 UT over SUTH in 2003. For

the “seen” data, it was observed that the L-MBP algorithm
performs well for local sunrise and midday TEC estimates.
Figure 3 shows the scatter plot for GPS TEC and modelled
TEC for the “unseen” data over CPTN in 2002. Table 3
shows the corresponding correlation coefficients for local
sunrise, midday, sunset and midnight hours. RMSE values
for similar periods are graphically shown in Fig. 4 with su-
perimposed GPS TEC values. The following summarises the
observations made from Table 3 and Figs. 3 and 4:

– In terms of correlation coefficients, all algorithms
achieved over 95 % prediction accuracy. However, to
draw a conclusion on the overall performance of any al-
gorithm, more than one statistical technique is required.
An example is the SBP algorithm, which gives a correla-
tion coefficient value for 16:00 UT that is less than those
for BPM and BPWD algorithms (Table 3), but gives the
least RMSE value for 16:00 UT (see Fig. 4).

– During periods of low TEC variability (04:00 UT and
22:00 UT) the accuracy of all algorithms reduce. Al-
though it is assumed that the ionospheric shell height is
350 km in the derivation of TEC data, which were later
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Fig. 2. GPS TEC values and RMSE values computed for modelled TEC using different algorithms at 04:00 UT, 10:00 UT, 16:00 UT and
22:00 UT, respectively, over SUTH 2003.

used in models development as target values, in reality
the shell height varies with time and solar activity levels.
Given that 350 km is the typical day-time ionospheric
shell height in mid-latitude regions, the reduction in al-
gorithm prediction accuracy during low TEC variability
periods could be related to the assumption of a constant
value. During nighttime (in absence of ionisation) the
shell height increases.

– At local midday and sunset the SBP algorithm gives im-
proved TEC estimates compared to other algorithms.

– Algorithms BPM and BPWD almost have the same
accuracy. Their difference (where it exists) in predic-
tion performance is significantly small (∼ 1×10−4 and
(1− 3) × 10−4 TECU for correlation coefficient and
RMSE, respectively).

For any specific time selected, the performance differences of
all the algorithms are not significantly large (as quantified by
correlation coefficient and RMSE values), apart from results
shown in Fig. 2 where the L-MBP algorithm interpolates ex-

ceptionally well at 04:00 UT over SUTH. What is quite dis-
tinct is that the performance of all algorithms on “seen” data
(SUTH 2003) is lower than their corresponding performance
on “unseen” data (CPTN 2002).

Figure 5 shows the GPS TEC data that was used for the
model development, along with daily sunspot numbers to
also demonstrate the correlation between solar activity and
ionospheric TEC behaviour. This figure reveals that there
was missing data for 2001 and almost half of 2004. The
years 2003 and 2004 were in the declining phase of the
sunspot cycle, and the absence of 2004 data could have con-
tributed to the observed low prediction accuracies of the NN
algorithms for the “seen” data.

4.2 Extrapolation results

Daily TEC values for January, February and March 2008
were modelled using NN models developed with the SUTH
2000–2007 dataset. This was done to assess the generalisa-
tion capability of the investigated algorithms in extrapolation

www.ann-geophys.net/30/857/2012/ Ann. Geophys., 30, 857–866, 2012
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Fig. 3.Similar to Fig. 1, but for Cape Town in 2002.

of TEC data outside the temporal range used in developing
the models.

Figure 6 shows average diurnal TEC variations for Jan-
uary, February and March 2008 over SUTH. While the vari-
ability of TEC values generated by the L-MBP algorithm can
be seen to be far from other values (for January and Febru-
ary 2008), the prediction performances cannot be easily in-
fered from this figure. Computed RMSE values between de-
rived GPS TEC and modelled TEC are shown in Fig. 7. Gen-
erally, BPC, BPM, BPWD and SBP algorithms are consis-
tent in their performances for the three months. Presented ex-
trapolation results show that BPM and BPWD provide better
TEC estimates with L-MBP giving the least accuracy for Jan-
uary 2008. This is also reflected in Table 4, which shows the
RMSE values between GPS TEC and modelled TEC data for
the first 10 days in January 2008. Statistically, average values
indicate better performance for BPM and BPWD algorithms.

There are observed fluctutations in performance levels for
different algorithms. BPC and SBP have almost the same
performance for February 2008, while L-MBP gives better
TEC estimates for March 2008. At this stage our results are
therefore inconclusive about the preferred algorithm for ex-

Table 4. Computed RMSE values for the first 10 days in Jan-
uary 2008 over SUTH.

Day RMSE (TECU) between GPS and modelled TEC

Jan 08 BPB BPC BPM BPWD SBP L-MBP

1 2.8333 2.7272 2.8009 2.8006 2.7218 2.2781
2 1.6280 1.1237 1.2628 1.2630 1.1797 1.7804
3 1.2564 1.2260 1.3285 1.3284 1.2177 1.6202
5 5.4457 5.4742 5.7203 5.7201 5.4579 4.6063
6 2.6385 2.4754 2.2284 2.2285 2.4856 2.9358
7 2.1040 1.8599 1.5909 1.5911 1.8826 3.0268
8 1.7925 1.7212 1.6681 1.6680 1.6345 2.8511
9 2.0558 1.9382 1.7954 1.7955 1.9409 3.4634
10 1.8872 1.3677 1.2846 1.2848 1.4350 2.4774

Ave. 2.4046 2.2126 2.1866 2.1867 2.2173 2.7822

trapolating improved TEC data. From Table 4, it is observed
that RMSE values for 5 January 2008 are higher than the
other days’ values. Figure 8 shows diurnal TEC variability
for 3–6 January 2008, along with Dst and Kp indices. Super-
imposed on the GPS TEC plot are the modelled TEC values
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Fig. 4.Similar to Fig. 2, but for CPTN 2002.
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Fig. 5.Hourly GPS TEC data over SUTH (2000–2007) used for NN
training along with daily sunspot number.

generated by the L-MBP algorithm, which gives the small-
est RMSE value for 5 January 2008. The Kp index had a
constant value of 3.7 from∼06:00–14:00 UT with Dst vary-
ing in the range of 15 to−18 nT. During this period, the
AE index (not shown) reached a maximum value of 619 nT

from 60 nT, and remained highly variable even on the next
day when TEC showed an irregular and declining trend. The
next high Kp index observed is 4 when the Dst index was
−26 nT at 23:00 UT. A magnetic substorm occurred on 5 Jan-
uary 2008 (Xu-Dong et al., 2010), which could have caused
an increase in TEC compared to the previous 3 January 2008
TEC values. Maximum TEC of∼27 TECU is observed at
12:00 UT on 5 January 2008 in contrast to a maximum value
of ∼20 TECU at 10:00 UT on 3 January 2008. Addition-
ally, thefoF2 value over Grahamstown (33.30◦ S, 26.53◦ E),
South Africa, increased from 5.5 MHz on 4 January 2008 to
7.325 MHz on 5 January 2008 at 12:00 UT, and later reach-
ing a maximum value of 7.725 MHz at 12:45 UT. This is a
difference of 1.825 MHz for 4–5 January 2008 compared to
0.625 MHz for 3–4 January 2008 at 12:00 UT. An investiga-
tion of storm time TEC variability over South Africa during a
geomagnetic storm of 15 May 2005 reported TEC enhance-
ment and attributed it to the travelling ionospheric distur-
bances (Ngwira et al., 2012). It appears that substorm activity
may also lead to TEC enhancement at South African midlati-
tude stations; however, a specific mechanism responsible for
the observed event in this paper has not been investigated yet.
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5 Conclusions

This paper has presented results comparing performance lev-
els of some backpropagation algorithms for ionospheric TEC
estimations. Similar to other sources (e.g.Jang et al., 1997;
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Fig. 8. Diurnal TEC values for 3–6 January 2008. Dst and Kp in-
dices for this period are also shown.

Yilmaz et al., 2009), it is evident that the L-MBP algorithm
requires the fewest number of iterations, compared to other
algorithms, to achieve generalisation. The reported conver-
gence time (∼3 min) is expected to reduce with improved
computing capacity. For TEC modelling, the differences in
accuracy between the investigated algorithms is not very sig-
nificant. What is worth noting, though, is the time it takes

Ann. Geophys., 30, 857–866, 2012 www.ann-geophys.net/30/857/2012/



J. B. Habarulema and L.-A. McKinnell: Backpropagation training algorithms in TEC estimations 865

each algorithm to achieve convergence or generalisation.
This time can increase or decrease depending on the size of
the dataset under consideration. This investigation was con-
ducted using a dataset of∼50 300 data points. Each algo-
rithm can generally be used depending on user requirements
and available resources. For small datasets, the MatLab based
L-MBP algorithm is sufficient. With more computing power,
the other training algorithms can be used to slightly improve
the accuracy. BPM and BPWD algorithms appear to achieve
the same accuracy in a relatively short period of time and
may be advantageous over the SBP algorithm, which has
been widely used for modelling various ionospheric parame-
ters. According toZell et al.(1998), the momentum term (in
the BPM) leads to the computation of the new weight change
using the old weight change (during training), thereby mim-
imising oscillations associated with SBP for narrow mini-
mum area error surfaces. BPM is a simple modification of
SBP which accelerates the training/learning process (Rojas,
1996), and this is clearly evident in Table 1 in terms of the
time and number of epochs required to achieve convergence.
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S., Herrmann, K.-U., Soyez, T., Schmalzl, M., Sommer, T.,
Hatzigeorgiou, A., Posselt, D., Schreiner, T., Kett, B., Clemente,
G., Wieland, J., and Gatter, J.: Stuttgart Neural Network Simula-
tor (SNNS), User Manual, Version 4.2, Universities of Stuttgart
and T̈ubingen, Germany, and the European Particle Research
Lab, CERN, Geneva, Switzerland, 1998.

Ann. Geophys., 30, 857–866, 2012 www.ann-geophys.net/30/857/2012/

http://dx.doi.org/10.1029/2005RS003285
http://dx.doi.org/10.1029/2002GL014740
http://dx.doi.org/10.1029/2002JA009627
http://dx.doi.org/10.1029/2008RS004049

