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Abstract. Using the shallow water equations for a rotating
layer of fluid, the wave and dispersion equations for Rossby
waves are developed for the cases of both the standardβ-
plane approximation for the latitudinal variation of the Cori-
olis parameterf and a zonal variation of the shallow water
speed. It is well known that the wave normal diagram for the
standard (mid-latitude) Rossby wave on aβ-plane is a cir-
cle in wave number (ky,kx) space, whose centre is displaced
−β/2ω units along the negativekx axis, and whose radius
is less than this displacement, which means that phase prop-
agation is entirely westward. This form of anisotropy (aris-
ing from the latitudinaly variation off ), combined with the
highly dispersive nature of the wave, gives rise to a group
velocity diagram which permits eastward as well as west-
ward propagation. It is shown that the group velocity dia-
gram is an ellipse, whose centre is displaced westward, and
whose major and minor axes give the maximum westward,
eastward and northward (southward) group speeds as func-
tions of the frequency and a parameterm which measures
the ratio of the low frequency-long wavelength Rossby wave
speed to the shallow water speed. We believe these proper-
ties of group velocity diagram have not been elucidated in
this way before. We present a similar derivation of the wave
normal diagram and its associated group velocity curve for
the case of a zonal (x) variation of the shallow water speed,
which may arise when the depth of an ocean varies zonally
from a continental shelf.

Keywords. Electromagnetics (Wave propagation)

1 Introduction

The propagation properties of mid-latitude Rossby waves on
a β-plane are well known (Gill, 1982; Pedlosky, 1987). The
dispersion equation in either its diagnostic form,(ω,k) plots,
or wave normal form (Longuet-Higgins, 1964) shows that
phase propagation is purely westward and that the waves can-
not propagate above a critical frequency, at which the zonal
group velocity becomes zero for a wave number equal to the
inverse Rossby radius. This implies that for wavelengths less
(greater) than the Rossby radius, the zonal group velocity is
eastward (westward), while the phase velocity remains west-
ward. This “backward” property, i.e. phase and group veloc-
ities in opposite directions, also manifests itself at a general
angle of phase propagation, in that poleward directed rays
(energy flux direction) correspond to equatorward wave nor-
mal (or phase) directions.

In this paper we highlight these anisotropic and dispersive
properties through the use of the phase and group velocity
diagrams, in which the former takes the well known form of
a circle, whose centre is displaced westward and the latter,
the less well known form, is an ellipse, whose centre is also
displaced westward. The important parameters are the wave
frequencyω (suitably normalized) and a parameterm, which
is the ratio of the Rossby wave zonal speed (at low frequen-
cies and long wavelengths) to the shallow water speed.

In the next section we use the shallow water equations to
derive the wave equation for the system, which reduces to
the classical Rossby wave equation in the low frequency ap-
proximation. This leads to the well-known dispersion equa-
tion at mid-latitudes and is generalized to include not only
the usualβ-effect arising from the latitudinal variation of the
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Coriolis force, but also a topographicβ-effect arising from
background variations in the shallow water speed.

In Sect. 3 we outline the propagation properties of the mid-
latitude Rossby wave in terms not only of its well-known
wave normal diagram (Longuet-Higgins, 1964), but also its
phase and group velocity diagrams. Of particular interest is
the latter, which is normally given as expressions for the
zonal and latitudinal group speeds in terms of the wave num-
ber vectors, which can be reduced to the zonal wave nor-
mal as the generating parameter. At a given frequency we
show that the group velocity,(Vgy,Vgx), curve is in fact an
ellipse, with centre displaced westward by an amount that de-
pends on the “m” of the planet and the ratio of the wave fre-
quency to the critical frequency, above which Rossby waves
are evanescent. The major and minor axes yield the max-
imum zonal, westward, eastward and northward speeds as
functions of frequency andm. The corresponding phase ve-
locity diagram is a circle, with centre displaced westward. In
the limiting case ofm→ ∞ (or infinite Rossby radius), the
group velocity curve becomes a parabola, and the phase ve-
locity curve becomes a line indicating constant zonal phase
velocity for all directions of propagation (limited of course to
the 2nd and 3rd quadrants). These results are supplemented
by the relation between the ray directionχ and the wave
normal angleφ. It is well known that the latitudinal compo-
nents of the phase and group velocities are anti-parallel. In-
terestingly, this “backward” property of the Rossby wave has
been invoked to explain the dipole-like formation of equato-
rial easterly jets resulting from localized equatorial heating
and at higher latitudes westerly jets (Diamond et al., 2008).

In Sect.4 we carry out similar calculations for a topo-
graphicβ-effect arising from zonal variations of the shallow
water speed. In this case, it is as if the properties described in
Sect. 3 were rotated throughπ/2 from west to north.

2 The general Poincaŕe-Rossby wave equation and the
low frequency Rossby wave

The linearised shallow water equations in a rotating layer of
fluid of depthH(x,y) may be written (Gill, 1982; Pedlosky,
1987)

∂Q

∂t
+ f ×Q= −c2

∇η (1)

∂η

∂t
+ divQ= 0 (2)

in which Q= (Qx,Qy)=H(u,v) is the perturbation hor-
izontal momentum vector,(u,v) the horizontal velocity,η
the displacement of the surface from its equilibrium depth
H , f = 2�(sinθ)ẑ is the Coriolis parameter (� rotation fre-
quency) andc =

√
gH the shallow water speed. The opera-

tions ∂
∂t

div on Eq. (1) plusf times thez component of the

curl of Eq. (1), and the use of Eq. (2) to eliminate divQ in
favour of −∂η/∂t , and Eq. (1) to eliminateQ in terms of
∇η immediately lead to the following wave equation for the
displacementη:

∂

∂t

[(
∂2

∂t2
+ f 2

)
η− div

(
c2

∇η
)]

=

(
∇

(
c2f

)
× ∇η

)
z
,

(3)

in whichf andc may be functions ofx andy. Equation (3)
is the general equation for the combined system of Poincaré-
Rossby waves (Pedlosky, 1987). In the “low-frequency” ap-
proximation( ∂

∂t
<< f ), this equation reduces to the classical

Rossby wave equation:

∂

∂t

[
f 2

c2
−

(
∂2

∂x2
+
∂2

∂y2

)]
η =

(
β × ∇η

)
z
, (4)

in which

β ≡
(
βx,βy

)
= c−2

∇

(
c2f

)
(5)

since∇f = (0,β,0). Equation (4) is a generalization of the
usual Rossby wave equation (see Pedlosky, 1987) to include
the topographic “β” effect through spatial variations (inx
andy) of the shallow water speedc as well as they variation
of f (= f0 +βy) in the classicalβ-plane approximation of
the latitudinal variation of the vertical componentf ẑ on a
spherical planet of radiusR where

f = f0 +β0y, β0 =
2�cosθ0

R
, f0 = 2�sinθ0. (6)

Here θ0 is the latitude at which theβ-plane is constructed
tangent to the surface atθ0, and thereforey measures distance
northward whilstx is directed eastward.

If the background variations ofc2(x,y) and f (y) are
assumed “slow” over a wavelength, the wave Eq. (4) ad-
mits a local dispersion relation for plane waves, varying as
expi(ωt − kxx− kyy) namely

ω =
−βykx +βxky(
k2

x + k2
y + f 2

0 /c
2
) (7)

or(
ky −

βx

2ω

)2

+

(
kx +

βy

2ω

)2

=
βx

2
+βy

2

4ω2
−
f0

2

c2
. (8)

For a givenω the latter wave normal form is a circle cen-
tred at(−βy/2ω,βx/2ω) of radius given by the square root
of the RHS of Eq. (8). The presence of an inhomogeneity in
x (zonal eastward),dc2/dx, gives rise to a displacement of
the usual Rossby wave, representing purely westward prop-
agation(kx < 0), northward so as to permit eastward phase
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Fig. 1.The wave normal circle for various values ofm.

propagation(kx > 0), as represented by anyk pointing north-
east with a corresponding ray directed southwest. Thus, a
northwest propagation vectork gives rise to a ray directed
southwest. Such are the rather peculiar propagation prop-
erties of the Rossby wave, which follow from the theorem
that the group velocity vector points along the normal to the
wave normal curve in the direction of increasingω (Lighthill,
1978). We shall now explore these properties in greater de-
tail through the use of figures representing the wave normal
diagram and the phase and group velocity diagrams at given
frequencies for different values ofm.

3 Propagation properties of the mid-latitude Rossby
wave: wave normal, phase and group velocity curves
for βy 6= 0 (βx = 0)

The propagation properties of the Rossby wave have been
discussed extensively, for example, in the texts by Gill (1982)
and Pedlosky (1987). Here we develop the group velocity
diagram at a fixedω, which provides the counterpart to the
wave normal diagram. In the case where the Rossby wave
arises from inhomogeneity only in the y-direction(βx = 0),
the diagnostic(ω̄, k̄) plot and the wave normal curves are
given by

ω̄ =
−k̄x

k̄2 + 1/m
, (9)

and Eq. (8) may be written

k̄
2
y +

(
k̄x +

1

2ω̄

)2

=
1

4ω̄2
−

1

m
, (10)

in which ω̄ is the normalized frequency,ω/
√
βyc, k̄, the

normalized wave number vectork
(
c/βy

)1/2 andm is given
by

m = 2

m = 1

m = 0.5
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1.
Ω

Fig. 2.The diagnostic diagram(ω̄, k̄) plot for various values ofm.

m≡ βyc/f
2
0 =

cosθ0

sin2θ0

1

2M
, (11)

M =�R/c. (12)

Here we have assumed that there is no latitudinal variation of
c2, and therefore theβ effect arises solely from the variation
of f as in Eq. (6); M is a Mach (or Froude) number mea-
suring the equatorial rotation speed�R in units of the shal-
low water speedc, andm is in fact the ratio of the Rossby
zonal phase speed (at low frequencies and long wavelengths)
to c. Equation (10) is a circle in (k̄y, k̄x) space of radius√

1/4ω̄2 − 1/m, whose centre is displaced along the negative
k̄x axis by−1/2ω̄ units (Longuet-Higgins, 1964), as shown
in Fig. 1 along with the(ω̄, k̄) plot in Fig. 2. Note that the
phase propagation is entirely westward and propagation re-
quiresω̄ <

√
m/2. Figure3 demonstrates the geometrical re-

lation between the ray directionχ and the wave normal angle
φ, both measured from̄kx-axis, which shows the two values
of χ for any givenφ. The relationship betweenχ andφ is
found by expressingχ as normal to the slope of the(k̄y, k̄x)

curve, i.e. tanχ = −1/(∂k̄y/∂k̄x), which yields

tanχ = (sinφ cosφ)/

(
cos2φ+

1

−1±

√
1− 4ω2/mcos2φ

)
.

(13)

For a givenφ there are two values ofχ , as shown in Fig.4.
We also show the limiting casem→ ∞, which yieldsχ =

2φ (lower signm in Eq. 13) andχ = π (upper sign). In this
limit f0

2/c2
→ 0, and the Rossby wave Eq. (4) reduces to

the classic form (see e.g. Yagamata, 1976)

∂

∂t
∇

2ψ = −β
∂ψ

∂x
(14)

whereψ is the stream function corresponding to strict 2-D
compressibility. It is for this reason we include a discussion
in the limitm→ ∞.
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Fig. 3. The wave normal displaced circle showing the relation be-
tween the ray directionχ (given by the arrows pointing towards the
centre measured from̄kx) and the wave normal angleφ betweenk̄
andk̄x.
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Fig. 4.The variation ofχ (two values) withφ for m= 2.

The phase velocityVp = ω/k, which follows immediately
from Eq. (7), may be written in the normalized form

V̄ 2
py +

(
V̄px +

m

2

)2
=
m2

4

(
1−

4ω̄2

m

)
, (15)

in whichVp has been normalized with respect to the shallow
water speedc. Thus, the phase velocity diagram is a circle of
radius m2

√
1− 4ω̄2/m, whose origin is displaced westward

by −m/2 units and therefore lies entirely in the regime of
westward propagation. The smallest value of the westward
V̄px (in which V̄py = 0 in Eq.15) is

V̄pxmin =
−m

2
+
m

2

√
1−

4ω̄2

m
, (16)

which approaches−ω̄2 asm→ ∞. Thus, in the limitm→

∞ (which corresponds to infinite Rossby radius or Rossby
wave speed greatly in excess of the shallow water speed)

Vp

Vg

-0.5-1.-1.5-2.
V x

-1.

-0.5

0.5

1.
V y

Fig. 5. The phase velocityVp (a circle) and group velocityVg (an
ellipse) diagrams for a fixed̄ω andm= 2.

the phase velocity diagram reduces to the lineV̄px = −ω̄2

in (V̄py, V̄px) space.
The group velocityV g = ∂ω/∂k follows from Eq. (7) (in

which we putβx = 0) in the form

Vgx =
β
(
kx

2
−
(
ky

2
+ f0

2/c2
))(

kx
2
+ ky

2
+ f0

2/c2
)2 , (17)

Vgy =
2βkykx(

kx
2
+ ky

2
+ f0

2/c2
)2 . (18)

In the classic texts (Pedlosky, 1987; Gill, 1972) the group ve-
locity is left in this less than perspicacious parametric form,
in which thek̄x is the generating parameter, withk̄y given in
terms ofk̄x from the dispersion equation. Here we show that
the group velocity diagram is in fact an ellipse. This sim-
ple result follows from a few algebraic steps by eliminating
the denominator from Eqs. (17) and (18) using the disper-
sion equation, so that in normalized form, Eqs. (17) and (18)
become

V̄gx = ω̄2 (2+ 1/ω̄kx) , (19)

V̄gy = 2ω̄2(k̄y/k̄x
)
. (20)

It is now straightforward to eliminatēkx in favour ofV̄gx from
Eq. (19), which on substitution into the square of Eq. (20)
gives directly the group velocity(V̄gx, V̄gy) curve in the form

V̄ 2
gy = 4ω̄4

(1−
V̄gx

ω̄2

)
−
ω̄2

m

(
V̄gx

ω̄2
− 2

)2
 , (21)
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Fig. 6. The maximum westward, northward and eastward group
speeds as a function of frequencyω̄ for m= 1.
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Fig. 7. The group velocity (a parabola) and phase velocity (a line)
diagrams for the casem→ ∞.

which may also be written as

mV̄ 2
gy

4ω̄2
+

[
V̄gx +

m

2

(
1−

4ω̄2

m

)]2

=
m2

4

(
1−

4ω̄2

m

)
. (22)

The group velocity curve is an ellipse, whose centre is dis-
placed−m

2

(
1− 4ω̄2/m

)
units along theV̄gx axis. The phase

and group velocity curves are shown in Fig.5. The southward
group velocity is simply a reflection of the northward group
velocity in the x-axis. The maximum eastward and westward
group speeds are given by

V̄ ±
gx =

m

2

(
1−

4ω̄2

m

)1/2
±1−

(
1−

4ω̄2

m

)1/2
 , (23)

and the maximum northward (southward) group speed also
follows as

V̄gymax= ±ω̄m1/2

(
1−

4ω̄2

m

)1/2

. (24)

Examples of the behaviour of extremal group velocities
V̄pxmin, V̄pxmax and V̄pymax are shown in Fig.6. Note that
the ellipse collapses to the origin asm→ 4ω̄2, at which the
wave normal collapses to the pointkx = −1/2ω̄. In the lim-
iting case in whichm>> 1, which can prevail quite near the
equator(θ0 → 0), Eq. (21) tends to the parabola

V̄gy = ±2ω̄2

(
1−

V̄gx

ω̄2

)1/2

, (25)

which is shown in Fig.7 together with the phase velocity
diagram, which is simply the lineVpx = −ω̄2. It is of some
interest to emphasize that Rossby waves are “backward” in
the sense that the latitudinal components of their phase and
group velocities are always in opposite directions. This prop-
erty can be invoked to describe the formation of a dipole
pair of jets in the following way: Northward (away from the
equator) wave energy flux is associated with southward, to-
wards the equator, wave momentum flux; and the opposite
in the case of southward directed energy flux, away from the
equator, corresponds to northward (towards the equator) mo-
mentum flux. In other words, a poleward energy flux from
the equator is associated with an equatorward flux of mo-
mentum. Hence, Rossby wave dynamics implies that local-
ized equatorial heating gives rise to equatorial easterly zonal
jets. This “convergence” of equatorial momentum implies a
deficit at higher latitudes such that a westerly jet must neces-
sarily form there (Diamond et al., 2008).

4 Propagation properties of the topographic Rossby
wave: wave normal, phase and group velocity curves
for βx 6= 0 (βy = 0)

In this case a zonal inhomogeneity (c a function ofx) dis-
persion and wave normal curves given by puttingβy = 0 in
Eqs. (7) and (8), are

ω̄ =
k̄y

k̄2
x + k̄2

y + 1/m
, (26)

k̄2
x +

(
k̄y −

1

2ω̄

)2

=
1

4ω̄2
−

1

m
, (27)

in which ω and k have been normalized to
√
βxc and

(c/βx)
1/2, respectively andm is now given by

m= βx
c

f 2
0

, (28)
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Fig. 8. The phase and group velocity diagrams for topographic
Rossby waves where shallow water speed varies zonally for fixed
ω̄ andm= 2.

βx =
f0

c2

dc2

dx
. (29)

The wave normal diagram is again a circle, but now its cen-
tre is displaced 1/2ω̄ units along the positivēky axis. The
corresponding phase velocity diagram is given by

(
V̄py −

m

2

)2
+ V̄ 2

px =
m2

4

(
1−

4ω̄2

m

)
, (30)

which is a circle of radiusm2
(
1− 4ω̄2/m

)1/2
with centre dis-

placedm/2 units along theV̄py axis. Hence, phase propaga-
tion is always northward, although as we can now anticipate,
there are both northward and southward components of the
group velocity. It is as if the classical westward Rossby wave
phase were rotated through ninety degrees. The calculation
of the group velocity follows similar lines but now with

V̄gy = ω̄2

(
−2+

1

ω̄k̄y

)
, (31)

V̄gx = −2ω̄2k̄x/k̄y. (32)

Hence, the group velocity curve is now given by the ellipse

V̄ 2
gx = 4ω̄4

( V̄gy

ω̄2
+ 1

)
−
ω̄2

m

(
V̄gy

ω̄2
+ 2

)2
 , (33)

or

mV̄ 2
gx

4ω̄2
+

[
V̄gy −

m

2

(
1−

4ω̄2

m

)]2

=
m2

4

(
1−

4ω̄2

m

)
, (34)

which is shown in Fig.8. This curve can be obtained by rotat-
ing the curve given by Eq. (22) and Fig.5 through ninety de-
grees. Thus, the maximum northward, southward and zonal
(east or west) speeds are given by Eqs. (23) and (24) in which
the labelsx andy are interchanged.

5 Summary

The propagation properties of mid-latitude Rossby waves are
illustrated through the local dispersion equation either in its
diagnostic form ((ω,k) plot) or as a wave normal curve for
given values ofω, both of which descriptions highlight the
dispersive and anisotropic nature of the wave. Here we de-
velop this further by showing that the group velocity diagram
is an ellipse, whose centre is displaced westward (Fig.5)
and whose major and minor axis yield the maximum west-
ward, eastward and northward (southward) group speeds as
a function of frequency and the parameterm (Fig. 6). This
elegant construction replaces the earlier (somewhat cumber-
some) expressions for the group velocity, which are usually
given in terms of the zonal and northward wave numbers act-
ing as generating parameters as in Eqs. (17) and (18). Similar
diagrams exist for the case of topographic Rossby waves, in
which shallow water speed varies zonally (Fig.8). We em-
phasize that the “backward” property of the Rossby wave has
been invoked to explain dipole-like formation of equatorial
easterly jets and at higher latitudes westerly jets, as discussed
by Diamond et al. (2008).
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