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Abstract. Concentrations of ambient NH3, NO, NO2 and
SO2 were measured over Bay of Bengal (BoB) during 28
December 2008 to 25 January 2009 to study their diurnal
variation and relationship of NH3 with other trace gases
over BoB. The measurements were done under the winter
phase of Integrated Campaign on Aerosols and Radiation
Budget (WICARB). For the first time, ambient NH3 was
monitored precisely over BoB based on chemiluminescence
method, having estimation efficiency more precise than the
chemical trap method. The average concentration of ambi-
ent NH3, NO, NO2 and SO2 were recorded as 4.78± 1.68,
1.89± 1.26, 0.31± 0.14 and 0.80± 0.30 µg m−3, respec-
tively, over BoB. The prominent latitudinal and longitudi-
nal variations of the trace gases were observed over BoB,
whereas NH3 and NO showed the non-significant diurnal
variation. Results reveal that the concentration of ambient
NH3 negatively correlated with ambient NO2 (r2 =−0.56),
SO2 (r2 =−0.58) and ambient temperature (r2 =−0.27) dur-
ing the study.

Keywords. Atmospheric composition and structure (Gen-
eral or miscellaneous)

1 Introduction

In the atmosphere and ocean, NH3 and its ionized form NH+4
are ubiquitous. Naturally and anthropogenically produced
NHx (NH3 + NH+

4 ) are transported through the atmosphere
and generally their concentrations in air decrease as the dis-
tance from land increases. It has been suggested that in pre-
industrial times, the oceans were probably a net source of
NHx of the continents (Duce et al., 1991), but this is not
the case today (Sutton et al., 1995, 2000). NHx is produced
in surface water by the biological reduction of nitrate (ei-

ther directly or via the degradation of biologically synthe-
sized organic nitrogenous material/agricultural run-off). In
a solution, NHx is partitioned between NH+4 and NH3 ac-
cording to equilibrium thermodynamics: the proportion of
NHx that occurs as NH3 (depending on pH, temperature and
ionic strength of the medium) is available for emission to
the atmosphere (Aneja et al., 2001). NH3 is also emitted
to the atmosphere by plants, animals and its environments,
by soil micro-organisms and by various industrial and agri-
cultural processes, including the direct volatilization of solid
NH4NO3 salts and fertilizers (Sutton et al., 2000; Li et al.,
2006; Sharma et al., 2010a, b). There is also evidence
of volcanic source of NHx to the atmosphere (Uematsu et
al., 2004) and of substantial NH3 emissions from seabird
colonies (Blackall et al., 2007; Theobald et al., 2006)

Norman and Leck have reported NH3 of the order of 0.05–
0.2 nmol m−3 (0.0085–0.0034 µg m−3), whereas, Gibb and
Mantoura (1999) and Gibb et al. (1999) have reported 10–
20 nmol m−3 (0.17–0.34 µg m−3) in the central Indian Ocean
and 2.5–5.6 nmol m−3 (0.043–0.095 µg m−3) over coastal
Arabian Sea and 0.4–1.8 nmol m−3 (0.007–0.031 µg m−3)
over remote Arabian Sea. Schafer et al. (1993) have re-
ported the concentration of NH3 gas over BoB of the order
of 14.29–29.29 nmol m−3 (0.243–0.500 µg m−3). Johnson et
al. (2008a, b) has reviewed the measurement of ambient NH3
gases along with sea water NHx (NH3 + NH+

4 ) over Pacific,
Atlantic and Indian Ocean. Table 1 summaries the results on
concentrations of ambient NH3 over various oceans reported
by different researchers.

Ambient NH3 plays an important role not only in the for-
mation of secondary aerosols while combining with atmo-
spheric acid gases (sulfuric acid, nitric acid and hydrochloric
acid) but also contributes to adverse health effects, mainly
respiratory diseases (Warneck, 1988) and climate change.
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Table 1. Comparison of ambient NH3 (nmol m−3) over various locations.

Location Maximum Minimum Average Reference

Southern Ocean 6.0 0.6 3.5 Ayers and Gras (1980)
Central Atlantic Ocean 30.0 1.0 – Zhuang and Huebert (1996)
Central Atlantic Ocean 18.4 3.7 9.7 Norman and Leck (2005)
Central Pacific Ocean 3.4 0.01 0.67 Quinn et al. (1990)
Southern Atlantic Ocean 7.7 0.1 2.1 Norman and Leck (2005)
Southern Indian Ocean 4.4 2.2 – Ayers and Gras (1980)
Southern Indian Ocean 2.1 0.3 1.1 Norman and Leck (2005)
Central Indian Ocean 0.2 0.05 0.1 Norman and Leck (2005)
Central Indian Ocean (coastal) 5.6 2.5 3.8 Gibb and Mantoura (1999)
Central Indian Ocean (remote) 1.8 0.4 1.0 Gibb et al. (1999)
Bermuda 20 Lebel et al. (1985)
Atlantic (transect S-N) 7.6 1.3 4.3 Johnson et al. (2008b)
Atlantic (transect N-S) 1.0 0.02 0.2 Johnson et al. (2008a)
Atlantic transect 3.2 0.07 1.9 McKee (2001)
Berhampur (coastal) – – 329.4 Carmichael et al. (2003)
Bhunbaneswar (coastal) – – 288.2 Carmichael et al. (2003)
Bay of Bengal (coastal) 211.8 117.6 158.8 Khemani et al. (1987)
Bay of Bengal (coastal) 675.0 105.2 265.2 Biswas et al. (2005)
Bay of Bengal 441.2 11.7 281.2 Present study
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Fig. 1. Scheduled track ofSagar KanyaSK-254 cruise for measure-
ment of trace gases over BoB.

Sulfuric acid (H2SO4) and nitric acid (HNO3) are the ma-
jor acid gases in the atmosphere that occur from oxidation of
SO2 and NOx, respectively. These acid gases are neutralized
by NH3 in the atmosphere, thereby forming NH4HSO4 and
(NH4)2SO4 and NH4NO3 aerosols, respectively.

This study is the first time ambient NH3 has been mon-
itored precisely over BoB based on chemiluminescence
method along with the other trace gases NO, NO2 and SO2
onboardSagar Kanya(a research vessel). The meteorologi-
cal parameters (temperature, sea surface temperature (SST),
relative humidity (RH), wind direction and wind speed) were

also recorded over BoB during the campaign to correlate with
trace gases. The main objective of this campaign was to
study the diurnal variation of ambient NH3 and other trace
gases over BoB and its interaction.

2 Experimental setup

2.1 Cruise track of W ICARB

Measurement of trace gases, i.e. NH3, NO, NO2, and SO2,
were made over BoB under the WICARB campaign from
28 December 2008 to 25 January 2009 onboardSagar Kanya
(SK-254) cruise (a research vessel) as per its scheduled track
given in Fig. 1. The cruise tracks covered the region rang-
ing from 21◦ N to 3.5◦ N latitude and 76.3◦ E to 98◦ E longi-
tudes over BoB. The cruise embarked on 27 December 2008
from Chennai and ended at Kochi (9.96◦ N, 76.3◦ E), India,
on 31 January 2009. The ship halt times are also indicated
in the figure by open circles. The cruise stationed at 3 places
for 18 h to take time series/diurnal variation measurements
on 5, 8 and 23 January 2009. Sampling inlets of all analyzers
were connected to the sampling system, which was placed
in the opposite direction of the cruise ship plume to reduce
the self-contamination; the portable weather station was also
mounted at same height (about 11 m from sea surface) and
same location on the deck of the ship. These instruments
operated continuously for the entire period of the campaign
(28 December 2008 to 25 January 2009).

Ann. Geophys., 30, 371–377, 2012 www.ann-geophys.net/30/371/2012/
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Table 2. Average concentration of NH3, NO, NO2 and SO2
(µg m−3) over BoB.

Concentration

Average Day Night D/N

NH3 4.78±1.68 4.85±1.91 4.70±1.44 1.03
NO 1.89±1.26 1.87±1.24 1.90±1.27 0.98
NO2 0.31±0.14 0.27±0.12 0.34±0.16 0.79
SO2 0.80±0.30 0.86±0.33 0.75±0.27 1.15

± Standard deviation

2.2 Measurement of trace gases

Concentration of ambient NH3 was measured continuously
using an NH3-analyzer (model: CLD88CYp, M/s. ECO
Physics AG, Switzerland) operating on chemiluminescence
method (having estimation efficiency>90 % compared to
chemical trap method having reproducibility of 4.7 %). In
this analyzer, two catalytic converters of different character-
istics allow sequential detection of NOx and NOx−aminesby
converting them into NO at 375◦C and 650◦C, respectively.
Concentration of ambient NH3 was calculated from the dif-
ference between NOx and NOx−amine (NH3 = NOx−amine-
NOx). The measurement range of NH3 analyzer varied
from 0–5 ppb to 0–5000 ppb (accuracy±0.050 ppb of all
the ranges). NO and NO2 were measured continuously us-
ing an NOx-analyzer (model: CLD88p, M/s. ECO Physics
AG, Switzerland) with photo catalytic converter (model:
PLC860, M/s. ECO Physics AG, Switzerland) also based
on chemiluminescence method. The estimation ranges of
NOx-analyzer varied from 0–5 ppb to 0–5000 ppb (accuracy
±0.050 ppb of all the ranges). The response time of these an-
alyzers are<1 s with a signal noise of 1 % of measured value
and the estimation efficiency is>90 %. The zero air calibra-
tions of these analyzers were done using a pure air generator
(model: PAG-003, M/s. ECO Physics AG, Switzerland) hav-
ing air pollutant elimination capacity<0.010 ppb. The ana-
lyzers were calibrated and validated using NIST-USA trace-
able certified NO gas (250 ppb± 2.5 %, M/s Spectra Gases
Inc., USA). The analyzers showed less than±1 % error rate
during calibration. Zero and span calibrations (before and af-
ter the measurement) of these analyzers were performed for a
week to obtain reproducible values. Ambient SO2 was mea-
sured continuously using a calibrated SO2-analyzer (model:
APSA 360A, M/s. Horiba Ltd, Japan) at the same location.
The instrument was calibrated daily using in-built calibrator
for zero and span.

Meteorological parameters such as temperature (accuracy:
±1◦C), relative humidity (accuracy:±2 %), wind direc-
tion (accuracy:±3◦) and wind speed (accuracy:±2 % of
full scale) were recorded at hourly intervals using calibrated
portable weather station.

22 
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Fig. 2. Average diurnal variation of NH3, NO, NO2 and SO2 over
BoB.

The gas analysers were used to record the ambient NH3,
NO, NO2 and SO2 concentration at 1 min intervals through-
out the study period. The concentrations of all the above
trace gases were converted into µg m−3 from ppb by respec-
tive factors for uniform representation of the results. Statisti-
cal analysis of all the data sets collected during the study pe-
riod was performed using standard recommended methods.

3 Results and discussion

The concentration of trace gases, i.e. NH3, NO, NO2 and
SO2, were measured over BoB during WICARB campaign.
The average values of trace gases with day and night average
values are summarized in Table 2. The average concentration
of ambient NH3 was recorded as 4.78±1.68 µg m−3 with a
day/night ratio of 1.03, whereas average concentration of NO
was recorded 0.31± 0.14 µg m−3 with a day/night ratio of
0.79.

Figure 2 shows the average diurnal variation of NH3, NO,
NO2 and SO2 along with ambient temperature and RH over

www.ann-geophys.net/30/371/2012/ Ann. Geophys., 30, 371–377, 2012
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Fig. 3. Latitudinal and longitudinal variations of trace gases (NH3,
NO, SO2) over BoB.

BoB. In the present observations, non-significant diurnal
varitions of ambient NH3 and NO (Fig. 2) were observed,
whereas NO2 and SO2 showed significant diurnal variations.
The average daytime concentration of NO2 was recorded as
0.27±0.12 µg m−3, whereas average nighttime NO2 concen-
tration recorded was as 0.34± 0.16 µg m−3. Nighttime in-
cerase in NO2 concentration may be attributed to conversion
of NO to NO2 with the reaction of O3 as well as lowering
of the boundary layer during winter. Figure 3 represents the
spatial distribution of trace gases (NH3, NO, SO2) over BoB
region. The average concentration of ambient NH3 during
campaign recorded as 4.78± 1.68 µg m−3 with a range of
0.23–14.34 µg m−3. Concentration of ambient NH3 gas in
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Fig. 4. Latitudinal and longitudinal variations of meteorological
parameters over BoB.

the present study is almost one order higher than the earlier
reported values over the central Indian Ocean as well as BoB
(Norman and Leck, 2005; Schafer et al., 1993) (Table 1).

A strong positive west-east (zonal) gradient (0.184) was
observed in ambient NH3 concentration (6.0–9.0 µg m−3)

over the area close to the west coast of BoB as com-
pared to other parts of the BoB (Fig. 3). It is to be noted
that agricultural activities (Sharma et al., 2010a, b), live-
stock, biomass burning and transport may contribute to the
emission of large amounts of NH3 (Sutton et al., 1995,
2000). Khemani et al. (1987) reported the concentration
of NH3 in coastal region of BoB of the order of 1.4–
2.9 µg m−3. Carmichael et al. (2003) also reported high NH3
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concentrations (6.4–7.1 µg m−3) at two sites (Bhubneswar
and Berhampur) of the western coast of BoB. West-east pos-
itive gradient observed in the western coast of BoB could be
due to transport of NH3 locally, since we do not have any
record of dissolved NH3 in seawater and NH+4 in the sea
water. It is difficult to comment on comparative quantifica-
tion of biogenic oceanic source of NH3 due to phytoplankton
and sea birds as compared to anthropogenic activities. Nor-
man and Leck (2005) reported distribution of NH3 with the
range of 1.1–3.2 nmol m−3 (0.019–0.054 µg m−3) in the ma-
rine boundary layer over Atlantic and South Indian Ocean
during Cruise99. They also connected peak value of NH3 to
biomass combustion and dust sources on the African conti-
nent. Compared to these data, it may be concluded that NH3
concentrations over BoB are quite high. Since the lifetime
of ambient NH3 gas is short (1–5 d), particularly in the hu-
mid oceanic atmosphere, conversion to particulate NH+

4 is
supposed to be very fast (30 % h−1). In the middle region of
BoB and southern part of BoB, ambient NH3 is of the order
of 1–2 µg m−3.

Observation of nitric oxide (NO) over BoB is not re-
ported so far except over the Indian Ocean (Naja et al., 1999;
Rhoads et al., 1997). The reported value over the Arabian
Sea and North Indian Ocean varies in the range of 0.06–
0.19 µg m−3. In the present study, average concentration of
NO was of the order of 1.89 µg m−3 with day/night ratio 0.98,
one order higher than the reported value over the Arabian
Sea. Spatial distribution of NO shows two peaks in the south-
ern part of BoB with low values in the coastal region and
middle of BoB. The peak value of NO resembles the peak
of SST and RH. Due to its short lifetime, source of NO in
the southern BoB is obviously marine rather than continen-
tal transport. The conversion from gaseous NO to particulate
NO−

3 is unlikely in the southern BoB.

Observation of in-situ NO2 over the Indian Ocean, particu-
larly BoB, is very limited and only supported by satellite ob-
servations (Kunhikrishnan et al., 2004; Franke et al., 2009).
They showed that the central Indian Ocean in the Southern
Hemisphere is not always as pristine as observed earlier dur-
ing the winter monsoon period, but is polluted during the
monsoon transition periods by pollution plumes from Africa
and Southeast Asia. Generally, the most polluted region is
the BoB, which is influenced by Indian and south-east Asian
outflow during most of the year and China during part of the
year. In the present study, average concentration of NO2 was
recorded as 0.31 µg m−3 with a day/night ratio 0.79. Con-
centration of NO2 is very low and very often it is observed to
be below the lower detection limit (LDL± 0.04 µg m−3) of
the instrument (NOx-analyzer; model: CLD88p; M/s. ECO
Physics AG) at few locations over BoB. Correlations of these
trace gases with meteorological parameters are summarized
in Table 3.

Similarly, measurement of SO2 over the Indian Ocean is
also very limited (Reiner et al., 2001; Shon et al., 2001;

Table 3. Correlation matrix of ambient NH3, NO, NO2 and SO2
with meteorological parameters over BoB.

NH3 NO NO2 SO2 Temp SSTemp RH

NH3 1.00
NO 0.04 1.00
NO2 −0.56* 0.28 1.00
SO2 −0.58* 0.51 0.25 1.00
Temp −0.27 0.13 0.26 0.26 1.00
SSTemp −0.09 0.17 0.21 0.34 0.76* 1.00
RH −0.09 0.21 −0.50* 0.29 0.20 0.09 1.00

* significant at 5 % level (n = 600)

Putaud et al., 1992) and mostly done over the southern In-
dian Ocean. Using aircraft data, Reiner et al. (2001) have
reported SO2 profiles with surface concentration of the or-
der of 0.63 µg m−3 within the area of 8.1–8.3◦ N and 69.7–
70.1◦ E. They have reported an elevated layer with con-
centration>1.9 µg m−3 just above 2000 m altitude. In the
present study, average concentration of SO2 was recorded as
0.80 µg m−3 with a day/night ratio of 1.15. Since its lifetime
is a few days, transport of continental SO2 to BoB, which is
surrounded by densely polluted areas, changes the concen-
tration, depending on the wind pattern. In the eastern coastal
region, gaseous SO2 shows low value and it seems that the
gas-phase of SO2 has been immediately converted to SO2−

4
in the region.

Spatial distribution of sea surface temperature (SST), am-
bient temperature and relative humidity (RH) are plotted
over BoB (Fig. 4). North-to-south positive gradient in am-
bient temperature and SST is noticed with peak value in the
southern of BoB, whereas spatial distribution of RH shows
zonal gradient. Influences of ambient temperature and RH
on aerosol could be identified in nitrate formation (Seinfeld
and Pandis, 2006). During daytime with increasing UV radi-
ation, NO rapidly converts into NO2 in the presence of O1D
and atmospheric NO2 reacts with hydroxyl radical (OH) to
form the nitric acid (HNO3). However, SO2 also reacts with
the hydroxyl radical (OH) to form sulphuric acid (H2SO4).
During nighttime, NO−3 is the source of the HNO3 in the at-
mosphere. NO−3 reacts either with the NO2 to form N2O5,
which reacts with OH to form HNO3, or NO−

3 directly reacts
with water vapor to form HNO3 during nighttime. The re-
action of HNO3 or H2SO4 with NH3 is reversible and forms
NH4NO3 and (NH4)2SO4, respectively.

4 Conclusion

In the present study, the concentration of ambient NH3, NO,
NO2 and SO2 were measured over BoB. The prominent lat-
itudinal and longitudinal variations of the trace gases were
observed over BoB, whereas NH3 and NO showed the non-
significant diurnal variation. The average concentration of

www.ann-geophys.net/30/371/2012/ Ann. Geophys., 30, 371–377, 2012
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ambient NH3, NO, NO2 and SO2 were recorded as 4.78±

1.78, 1.89± 1.26, 0.31± 0.14 and 0.80± 0.30 µg m−3, re-
spectively, with a range of 0.23–14.34, 0.21–9.80, 0.10–1.00
and 0.35–3.53 µg m−3, respectively. Coastal region of BoB
reported large concentrations of NH3, NO, NO2 and SO2,
suggesting the role of continental influence in addition to
biogenic sources, particularly near Kolkata and Chennai re-
gions. Presence of higher concentrations of SO2 than ex-
pected in the south of BoB suggest biogenic sources, partic-
ularly the role of DMS (dimethyl sulfide). Since we do not
have measurement of DMS or its precursor MSA (methane-
sulfonic acid), it is difficult to conclude for certain.
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