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Abstract. The conventional equations of ionospheric elec-
trodynamics, highly succesful in modeling observed phe-
nomena on sufficiently long time scales, can be derived rig-
orously from the complete plasma and Maxwell’s equations,
provided that appropriate limits and approximations are as-
sumed. Under the assumption that a quasi-steady-state equi-
librium (neglecting local dynamical terms and considering
only slow time variations of external or aeronomic-process
origin) exists, the conventional equations specify how the
various quantities must be related numerically. Questions
about how the quantities are related causally or how the stress
equilibrium is established and on what time scales are not an-
wered by the conventional equations but require the complete
plasma and Maxwell’s equations, and these lead to a picture
of the underlying physical processes that can be rather differ-
ent from the commonly presented intuitive or ad hoc expla-
nations. Particular instances include the nature of the iono-
spheric electric current, the relation between electric field
and plasma bulk flow, and the interrelationships among vari-
ous quantities of neutral-wind dynamo.

Keywords. Ionosphere (Electric fields and currents;
Ionosphere-atmosphere interactions; Plasma convection)

1 Introduction

The conventional treatment of ionospheric electrodynam-
ics expounded in standard textbooks and tutorial publica-
tions (e.g.Matsushita, 1967; Rishbeth and Garriott, 1969;
Bostr̈om, 1973; Kelley, 1989; Volland, 1996; Rishbeth, 1997;
Richmond and Thayer, 2000; Heelis, 2004; Fuller-Rowell
and Schrijver, 2009, and many others) has a dual aspect: the
equations actually used to carry out calculations, and the ver-
bal descriptions intended to explain physical processes repre-
sented by the equations. The conventional equations of large-
scale ionospheric electrodynamics constitute a well-defined

set and have been successfully applied to model correctly a
multitude of observed phenomena (down to time scales as
short as minutes in some cases), despite the fact (not always
explicitly acknowledged) that the equations are based on as-
sumptions valid only in the case of quasi-steady-state equi-
librium and therefore cannot describe dynamic developments
or provide information about causal relations. The verbal de-
scriptions are intended to provide an intuitive understanding
of results from calculations, but sometimes they go beyond
their nominal purpose and are expanded into qualitative dis-
cussions of causal sequences and sometimes even of tempo-
ral developments, even though these are not really described
by the conventional equations.

The physical basis on which the verbal descriptions have
been formulated and the conventional equations derived, to a
large extent, is that provided by electromagnetic theory at the
ordinary textbook level (which I refer to as E&M, to distin-
guish it from the electromagnetism of the complete plasma
and Maxwell’s equations). The purpose of this paper is to
show that, when the complete plasma and Maxwell’s equa-
tions are applied, the conventional equations are obtained un-
der appropriate well-defined approximations, but the more
rigorous physical understanding of causal sequences and
time variations may be different from, and sometimes in-
consistent with, the conventional verbal descriptions. The
conventional ionospheric equations may thus be accepted as
valid under restricted conditions (it is therefore no surprise
that, despite their deficient treatment of plasma physics, they
have proved adequate to explain the observations), but the
detailed description of some underlying physical processes
needs to be revised. The revised description can draw at-
tention to important unanswered questions, the significance
(or in some cases even the existence) of which may not be
apparent in the conventional approach.

The reaction of some ionospheric physicists to the above
argument has been that, as long as the equations are cor-
rect within their range of applicability and predict results in
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358 V. M. Vasyliūnas: Ionospheric electrodynamics

agreement with observations, the detailed physical picture
can be ignored. This may be called (Vasyliūnas, 2010) the
Ptolemaic approach, by analogy to astronomical theory in
the 16th century, when the heliocentric theory could be ig-
nored or rejected on the grounds that the Ptolemaic scheme
explained the observations just as well if not better than the
Copernican (which was true at the time of Copernicus and
for some decades afterwards).

In this paper I consider ionospheric electrodynamics both
from the conventional and from the more rigorous point of
view, with emphasis on the differences between the two ap-
proaches and their consequences. Section2 summarizes the
basic equations as conventionally presented and lists some
advantages as well as problems associated with them. In
Sect.3 the conventional equations are derived from rigorous
complete equations of plasma physics, with particular atten-
tion to approximations required and to discrepancies from
the conventional verbal descriptions. Section4 discusses
two processes where the underlying physics is viewed in a
particularly different way depending on whether the conven-
tional or the more rigorous picture is invoked: the relation
between electric field and plasma bulk flow, and the origin of
the electric current produced by a neutral wind. Finally, as
an illustrative example, Sect.5 sketches how the prototypical
neutral-wind dynamo is treated in the two approaches.

2 Conventional ionospheric electrodynamics

2.1 Basic concepts and equations

Restricted to questions of electrodynamics (electric and mag-
netic fields, currents, plasma bulk flow) as distinct from
aeronomy (ionization, recombination, diffusion, chemical
processes) and in the quasi-static limit (leaving out short-
period wave processes), the theory of the ionosphere can
be reduced to five basic equations (Gaussian units are used
throughout this paper, for reasons discussed byParker, 2007,
his Sect. 6.4).

2.1.1 Ionospheric Ohm’s law

The electric current densityJ is assumed to be related by an
Ohm’s law

J = σ ·E′
= σP E′

⊥
+σHB̂ ×E′

+σ‖E‖ (1)

to the electric fieldE′ in the frame of reference of the neutral
atmosphere

E′
≡ E+

1

c
V n×B (2)

whereV n is the neutral wind velocity andE the electric field
(in the “fixed” frame of reference in which the calculation is
done, most commonly the frame of the rotating Earth).B̂ is
the unit vector along the ambient magnetic fieldB, with ⊥ or
‖ marking quantities perpendicular or parallel toB̂; σ is the

conductivity tensor, withσP, σH, σ‖ the Pedersen, Hall, and
parallel conductivities, respectively.

2.1.2 Potential electric field

The electric field (in the “fixed” frame) is assumed to have
negligible curl and hence can be expressed as the gradient of
a scalar potential,

E = −∇8 . (3)

2.1.3 Continuity of current

The electric current density is assumed to have zero
divergence,

∇ ·J = 0 . (4)

Combining Eq. (4) with Eqs. (1), (2), and (3) yields a second-
order elliptic differential equation

∇ ·σ ·∇8 = ∇ ·σ ·(V n×B)/c (5)

from which the potential8 can be calculated, given its
boundary conditions and the spatial distribution of neutral
windsV n.

2.1.4 Near-equipotential field lines

The component of the electric field along the magnetic field
E‖ ≡ E · B̂ (independent of frame of reference) is assumed
to be negligibly small, hence the potential can be taken as
constant along a field line,

B̂ ·∇8 ' 0 . (6)

Although in principle this property should appear as the re-
sult of solving Eq. (5) for 8 when the conditionsσ‖ � σP,
σ‖ � σH hold, usually it is introduced as a separate assump-
tion, thereby greatly simplying the calculation.

2.1.5 Plasma bulk flow equation

Ion and electron bulk flows do not appear explicitly in the
electrodynamic equations presented thus far. Conventionally
they are assumed to be determined byE×B drifts plus col-
lision effects. The plasma bulk flow velocityV can then be
calculated (over most of the ionosphere) from the equation

0= c
E

B
+V × B̂ −

νin

�i
(V −V n) (7)

whereνin is the ion-neutral collision frequency and�i the ion
gyrofrequency. (Corrections of order electron-to-ion mass
ratio, me/mi � 1, are neglected throughout this paper, ex-
cept for mentioning a few special instances where the case
me= mi serves to illuminate some aspect of physics.)

Not included among the basic equations is Ampère’s law

c∇ ×B = 4πJ (8)
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which relates the disturbance magnetic field to the iono-
spheric currents. In the conventional approach, it is used
solely to compute the disturbance fields for comparison with
observations and plays no other role in the electrodynamics.

2.2 Advantages and problems

An undeniable advantage of the conventional approach is
mathematical convenience. Under a wide range of condi-
tions, Eq. (3) implies that the horizontal electric field is to a
good approximation independent of altitude within the iono-
sphere. At high latitudes, where the magnetic field is nearly
vertical, this follows from Eq. (6); elsewhere and more gen-
erally, this follows directly from Eq. (3) whenever the hor-
izontal length scale is large in comparison to the vertical
length scale of the ionosphere (which is the case in many
problems of interest). The spatial dependence of the iono-
spheric electric potential is then effectively on latitude and
longitude only, and Eq. (5) can be reduced to a much simpler
two-dimensional form, with height-integrated conductivities.

Outweighing this mathematical advantage are several
problems of physical understanding, most of them related to
the fact that the conventional theory applies only in situations
of quasi-steady-state equilibrium.

1. The equations are approximate ones, valid (roughly
speaking) for situations of slow change. The limits of
validity – how slow is slow? – vary from equation to
equation, but a clear unambiguous statement is gener-
ally lacking, partly perhaps because the equations have
often been derived by ad hoc or semi-intuitive argu-
ments, instead of by systematic approximation starting
from complete equations of plasma physics (presented
here in Sect.3).

2. In theory, it is acknowledged that the equations are
merely relations between quantities at a given time and
do not say anything about cause and effect; occasionally
one encounters, e.g. an explicit remark that the iono-
spheric Ohm’s law just relates electric field and cur-
rent without stating which is cause and which is effect
(Bostr̈om, 1973; Richmond and Thayer, 2000). In prac-
tice, though, particularly in tutorial presentations, the
equations may be invoked to draw quite specific and de-
tailed conclusions about cause and effect – conclusions
that in some cases are not supported, or are even contra-
dicted, by a more rigorous treatment on the basis of the
plasma equations.

Some specific instances of the problem noted above:

(a) Concerning the interpretation of Eq. (7) for the
plasma bulk flow, it seems to be assumed almost
universally in the ionospheric/thermospheric com-
munity that the electric field is a cause producing
a plasma bulk flow as an effect (E ×B drift). For

plasma regimes that exist within most of the iono-
sphere and magnetosphere, however, the reverse
can be shown to hold: an imposed plasma flow cre-
ates the corresponding electric field, but an imposed
electric field by itself does not create a flow (dis-
cussed in Sect.4.1).

(b) Currents associated with the neutral-wind dynamo
are often described as produced directly by neu-
tral winds, through their larger effect on ion flow
than on electron flow. This direct process, however,
produces only a transient current that dies away
very quickly; the main dynamo current results (on
a much longer time scale) from velocity gradients
and does not depend on differences between ion-
neutral and electron-neutral collision effects (dis-
cussed in Sect.4.2).

(c) Constancy of electric potential along a field line,
expressed by Eq. (6), represents a well-understood
property of a quasi-steady configuration, but it is
frequently described as if it were aprocessof “elec-
tric field mapping along magnetic field lines,” sup-
posedly acting to establish the property (discussed
in Sect.3.2.4).

3. Since the equations describe the quasi-steady-state
equilibrium but not the processes by which it is estab-
lished or modified, the conventional approach leaves
out of consideration important physical questions: e.g.
for 2a above, how the bulk flow is actually produced,
in terms of dynamics (what forces act to impart the
required linear momentum to the plasma?); for2b,
the role of magnetic stresses in the neutral-wind dy-
namo; for2c, the role of MHD waves in communicating
plasma flow and electric field changes along field lines.

3 Deriving the conventional equations

3.1 Fundamental equations of plasma electrodynamics

The complete and exact equations describing the relevant
physics constitute the starting point for a proper derivation of
any simplified approximate forms. For ionospheric electro-
dynamics at the level considered in this paper, the following
set is necessary and sufficient.

3.1.1 Maxwell’s equations

In their complete form, Maxwell’s equations

∂E

∂t
= −4πJ +c∇ ×B (9)

∂B

∂t
= −c∇ ×E (10)

∇ ·B = 0 ∇ ·E = 4πρc (11)
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provide the only exact and universal first-principles descrip-
tion of the electromagnetic field; other expressions, such as
Coulomb’s law, Biot-Savart law, Amp̀ere’s law, etc., are de-
rived or approximated.

3.1.2 Generalized Ohm’s law

The evolutionary equation for current density (obtained from
the charge-weighted sum of velocity-moment equations of
all the species)

∂J

∂t
=

ne2

me

(
E+

1

c
V ×B −

J ×B

nec

)
+e(ni −ne)g

+e

(
∇ ·κe

me
−

∇ ·κ i

mi

)
+

(
δJ

δt

)
coll

(12)

describes the time development ofJ , the primary source
term in Maxwell’s equations. Equation (12) is here given
in a slightly simplified form that assumes a quasi-neutral
plasma of electrons and one species of singly charged ions
with |ni −ne| � n andmi � me (for the exact multi-species
form, see, e.g.Rossi and Olbert, 1970; Greene, 1973; Va-
syliūnas, 2005a, 2011, and references therein). The effect of
the gravitational accelerationg, included for completeness,
is in practice completely negligible here;κa is the kinetic ten-
sor of speciesa, more commonly written asκ = ρV V +P;
and the collision term applicable in the ionosphere is(

δJ

δt

)
coll

= −

(
νei+νen+

me

mi
νin

)
J

+(νen−νin)ne(V −V n) (13)

whereνin, νen, andνei are the ion-neutral, electron-neutral,
and electron-ion collision frequencies, respectively.

3.1.3 Plasma momentum equation

The time development of plasma bulk flowV , which plays
an important role in the generalized Ohm’s law Eq. (12) is
described by

∂

∂t
(ρV )+∇ ·κ −ρg =

1

c
J ×B +

(
δρV

δt

)
coll

(14)

(obtained from the mass-weighted sum of velocity-moment
equations of all the species) whereρ is the mass density and
κ the kinetic tensor of the entire plasma (not including the
neutrals); the collision term in the ionosphere,(

δρV

δt

)
coll

= −n(miνin +meνen)(V −Vn)

−me(νin −νen)
J

e
(15)

≈ −nmiνin(V −Vn) ,

is universally approximated by the second expression (valid
if me� mi and|νin −νen| ��e).

The time development of bulk flow of the neutrals is de-
scribed by a neutral momentum equation, the counterpart of
Eq. (14). In calculations where electrodynamic aspects are
of primary interest, the neutral flow is often assumed to be
known independently; also, the plasma density distribution
is taken as given (from empirical or from independent theo-
retical modeling), and the kinetic-tensor terms are assumed
negligible. (The vertical structure of the ionosphere, where
pressure gradients and gravity cannot be neglected, is gen-
erally treated separately from electrodynamics, as a question
of aeronomy.) Equations for the evolution ofρ and ofκe, κ i
as well as of the neutral flow thus need not be considered ex-
plicitly when (as in this paper) the emphasis is on ionospheric
electrodynamics, although they must of course be included
for self-consistent modeling of the ionosphere/thermosphere
interaction (e.g.Richmond et al., 1992; Fuller-Rowell et al.,
1996; Ridley et al., 2006; Song et al., 2009; Tu et al., 2011).

3.2 Approximations of the conventional approach

The conventional equations listed in Sect.2.1are in essence
(although not necessarily derived in this way) the result
of dropping the time derivatives from all the fundamental
Eqs. (9), (10), (12), (14). These fundamental equations, how-
ever, determine uniquely the time derivatives of all the quan-
tities involved, given the present values of the quantities and
their spatial gradients. The (approximate) conventional equa-
tions thus cannot be derived simply by assuming a steady
state (the more so when they are invoked to interpret ob-
served ionospheric phenomena, every one of which is vari-
able on some time scale); it is necessary to consider under
what conditions the time derivative implied by each funda-
mental equation can be treated as negligibly small.

Neglect of time derivatives∂J/∂t in the generalized
Ohm’s law Eq. (12) and∂E/∂t (displacement-current term)
in Maxwell’s Eq. (9), reducing the latter to Amp̀ere’s
law Eq. (8), can be shown (Vasyliūnas, 2005a,b, 2011) to
be valid for all plasma phenomena characterized by spa-
tial scales much larger than the electron inertial length
(collisionless skin depth)λe≡ c/ωp and time scales much
longer than the inverse plasma frequencyωp

−1, i.e. length
and time scales much larger than those of (electron)
plasma oscillations. (Numerical values:λe= 5.3 km/

√
ne,

ωp = 2π
√

ne× 9.0 kHz, ne in cm−3.) In the ionosphere,
this means length scales longer than some tens of me-
ters and frequencies below the radio range, which includes
most of the phenomena studied by the conventional ap-
proach. On these large scales, charge separation effects can
be neglected; conversely, charge separation and accumula-
tion effects, when significant, occur on times scales of order
∼ ωp

−1 (cf. Sect.3.2.3).
Below I discuss the derivation of each of the conventional

equations of Sect.2.1 in turn.
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3.2.1 Ionospheric Ohm’s law

With neglect of the time derivative as discussed above, and
with further neglect of kinetic-tensor and gravitational terms,
the generalized Ohm’s law Eq. (12) can be rewritten as

0' E+
1

c
V ×B −

J ×B

nec
+

me

ne2

(
δJ

δt

)
coll

(16)

where the collision term is, to lowest order inme/mi ,

me

ne2

(
δJ

δt

)
coll

' −
meνe

ne2
J νe≡ νei+νen . (17)

The ionospheric Ohm’s law Eq. (1) is conventionally pre-
sented as analogous to the ordinary Ohm’s law in a conduct-
ing medium: E in the frame of reference of the medium
drivesJ that is limited by collisions. Inserting the collision
term (17) into Eq. (16) does not, however, lead to Eq. (1) but
yields a different equation

0' E+
1

c
V ×B −

J ×B

nec
−

meνe

ne2
J (18)

which when solved forJ relates it linearly (by an equation of
the same form as Eq. (1) but with different conductivity co-
efficients) to the electric field in the frame of reference of the
plasma, with the conductivity depending primarily on elec-
tron collisions; in contrast, Eq. (1) relatesJ to the electric
field E′ in the frame of reference of the neutral atmosphere,
with the conductivity depending primarily on ion-neutral col-
lisions (the two alternatives were pointed out bySong et al.,
2001, who give explicit expressions for both forms of the
conductivity).

The root of the difference is most clearly seen by rewriting
Eq. (18) in terms ofE′ from Eq. (2) instead ofE:

0' E′
+

1

c
(V −V n)×B −

J ×B

nec
−

meνe

ne2
J . (19)

Obviously, Eq. (19) will predict a linear relation betweenJ
andE′ if and only if there exists a linear relation between the
velocity differenceV −V n andJ . Precisely such a relation,
however, is provided by the plasma momentum Eq. (14) if
its LH side (acceleration, gravitational, and pressure-gradient
terms) is neglected, reducing Eq. (14) to

0'
1

c
J ×B −nmiνin(V −Vn) . (20)

Inserting V −V n from Eq. (20) into Eq. (19) does yield
Eq. (1). Alternatively (and more fundamentally), one may
derive Eq. (1) by consideringJ as given by Eq. (20) and
invoking Eq. (16) solely to eliminateV by expressing it in
terms ofE.

The ionospheric current is thus primarily a stress-balance
current, obtained by balancing the Lorentz force against the
collisional drag force from relative bulk motion between
plasma and neutrals (Vasyliūnas and Song, 2005; Vasyliūnas,
2005b, 2011); in this respect it is analogous rather to the

“ring current” in the magnetosphere, which is obtained by
balancing the Lorentz force against plasma pressure gradi-
ent. That it is not an Ohmic current in the usual sense is
also shown by lack of a unique “frame of reference of the
medium”: J can be related to the electric field equally well
(Song et al., 2001) in the frame moving with bulk flow of
the neutral atmosphereV n (the conventional approach), or
with bulk flow of the plasmaV , or indeed (Vasyliūnas and
Song, 2005) with any velocityU = V +ζ (Vn −V ) where
ζ is an arbitrary constant (U is any point in velocity space
on the line defined byV and Vn); the conductivity co-
efficients relatingJ to the electric field are different for
each choice of frame. As further indication of the stress-
balance nature of the current, energy dissipation calculated as
J ·(E+V n×B/c), conventionally called ionospheric Joule
heating, arises predominantly from mechanical dissipation
by plasma-neutral collisions with only a minor contribution
from electromagnetic dissipationJ ·(E+V ×B/c) (Joule
heating in the proper sense; seeVasyliūnas and Song, 2005,
for a detailed discussion).

3.2.2 Potential electric field

Equation (3), representing the electric field as the gradient of
a potential, is valid to the extent that∇×E and hence∂B/∂t

can be neglected. Faraday’s law Eq. (10) is the only one of
the fundamental equations in which∇ ×E as well as∂B/∂t

appear explicitly, and since it contains no other quantities to
which they could be compared, there is no obvious general
criterion for neglecting them. The approximation of potential
E can thus be justified only by indirect, order-of-magnitude
arguments, involving plausible or observed time scales.

The very small ratioδB/B of the observed magnetic fluc-
tuations to the main geomagnetic (dipole) field is sometimes
invoked to justify assuming a potentialE in the ionosphere.
An order-of-magnitude relation between non-potential field
δE and time-varyingδB is readily obtained from Eq. (10),

δE ∼
λ

cτ
δB (21)

whereτ is the time scale of the variation andλ is the gradient
length scale of∇ ×E, but there is no corresponding relation
between potentialE and the main fieldB. (Splitting the elec-
tric field into potential and non-potential parts is most simply
done with the Coulomb gauge.) The totalE (potential plus
non-potential) appears, however, in Eq. (1) and can thus be
related toJ , which in turn is related toδB by Ampère’s law,
Eq. (8). This yields the order-of-magnitude relation between
δB and the totalE:

δB ∼
4π

c
6PE (22)

where 6P is the Pedersen conductance (height-integrated
conductivity). Combining Eqs. (21) and (22) gives an esti-
mate for the ratio of potential to totalE:
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δE

E
∼

4π6P

c2

λ

τ
=

4π6PVA

c2

λ

VAτ
(23)

(in SI units, replace 4π6P/c2 by µ06P).
Equation (23) shows that, contrary to what is sometimes

supposed, the ratioδE/E is not proportional toδB/B. For
givenλ andτ , the ratio is in fact approximately proportional
to 1/B (because of the∼ B−1 dependence of6P) but does
not depend onδB (a somewhat counter-intuitive result from
Eqs. (21) and (22), which show thatδE andE are both pro-
portional toδB). The dimensionless quantity in the second
expression of Eq. (23)

4π6PVA

c2
=

6P

1mho

VA

796 km s−1
(24)

need not be small in the ionosphere, hence the condition for
negligibleδE/E isλ � VAτ . The approximation of potential
E is thus valid primarily because the time scaleτ of magnetic
variations is assumed long compared to the spatial scaleλ

divided by the Alfv́en speed; equivalently, only slow changes
of a quasi-steady equilibrium are considered, neglecting any
wave propagation effects.

3.2.3 Continuity of current

Equation (4) is an immediate mathematical consequence
of Ampère’s law Eq. (8) and thus holds whenever the
displacement-current term in Maxwell’s Eq. (9) can be ne-
glected, which (as discussed in Sect.3.2) is the case quite
generally for plasma regimes found in the ionosphere and the
magnetosphere, except for phenomena at frequencies> ωp
and/or length scales< λe. The current continuity assump-
tion of the conventional approach is thus valid to a very high
degree of approximation.

A problem arises when sometimes (particularly in tutorial
presentations) the physical process that establishes current
continuity is described entirely in terms of the conventional
equations. A common argument is that if the initial distribu-
tion of electric potential and neutral-wind dynamo (V n×B)
drives a current with∇ ·J 6= 0, the implied charge accumu-
lation modifies the potential and henceE, which in turn,
through Eq. (1), modifiesJ until the condition∇ ·J = 0 is
satisfied. How fast does this occur? From

∇ ·J = −4π
∂ρc

∂t
= ∇

2
(

∂8

∂t

)
(25)

and withJ and8 assumed related by Eqs. (1) and (3), the
implied time scaleτ can be estimated as

1

τ
∼ 4πσP= νin

(
c2

VA
2

)
= νin

(
ωp

2

�e�i

)
∼ O(ωp) (26)

(in agreement with the general conclusion of Sect.3.2 that
anything involving charge separation happens on time scales
of this order). On such a short time scale, however, nei-
ther Eq. (1), which presupposes neglect of plasma accelera-
tion terms (Sect.3.2.1), nor Eq. (3), which presupposes time

scales longer than Alfv́en wave travel times (Sect.3.2.2), can
be assumed to apply.

The relation betweenJ and B is discussed at the level
of fundamental equations byVasyliūnas(2005b, 2011), with
the result that any difference betweenJ and (c/4π)∇ ×B

(which is a necessary condition for∇ ·J 6= 0) disappears on
a time scale of order eitherτ1 'L/c (light travel time, where
L is the gradient length scale) orτ2 ' ωp

−1 (inverse plasma
frequency), whichever is the shorter;τ1 = τ2 corresponds to
L= λe. If τ1 � τ2 (typical of the ordinary E&M laboratory),
∇ ×B changes to match(4π/c) J ; if τ1 � τ2 (typical of
the large-scale ionospheric and magnetospheric plasmas),J

changes to match(c/4π)∇ ×B.

3.2.4 Near-equipotential field lines

The component of the generalized Ohm’s law (e.g. in the
form of Eq. (18)) parallel to B implies, if the electron-
collision term is negligible,E‖ ≡ E · B̂ ' 0; from this, Eq. (6)
follows if and only ifE can be represented as the gradient of
a scalar potential, conditions for which have been discussed
in Sect.3.2.2.

An argument frequently invoked to derive Eq. (6) is that
charges can move freely alongB and therefore will short
out any potential difference. The immediate result, how-
ever, of this process (which involves charge separation and
therefore occurs on a very short time scale of orderωp

−1, cf.
Sect.3.2.3) is to remove the parallel electric field only, leav-
ing unchanged the perpendicular electric field which varies
on much longer time scales. Even if the initialE was a po-
tential field, the altitude-dependentE⊥ that remains afterE‖

has been “shorted out” has a non-zero curl (except in trivially
simple geometries) and therefore acts to produce a changing
B, which in general also has a non-zero curl and therefore
acts in turn (via theJ ×B force) to change the cross-field
flow of the plasma. What is here described can be readily
seen to be the velocity shear (implied by non-equipotential
field lines) propagating as an Alfvén wave. The physical
process is thus a mutual readjustment of differences in flow
andE⊥ between different locations on a field line by MHD
(Alfv én) waves propagating back and forth along the field
line; potential mapping is not the physical process but only
its final result when and if a quasi-steady state is reached.
The process itself has been widely studied particularly in the
context of magnetosphere-ionosphere coupling (e.g.Holzer
and Reid, 1975; Kan et al., 1982; Wright, 1996; Lysak, 2004,
and many others).

3.2.5 Plasma bulk flow equation

Equation (7) can be derived most simply by using the re-
duced form of the plasma momentum Eq. (20) to eliminate
the J ×B term from the (reduced) generalized Ohm’s law
Eq. (18) (the electron-collisionJ -term could also be elimi-
nated the same way but is usually neglected as being of order
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νe/�e compared to other terms). The essential step, here as
well as in the analogous derivation (Sect.3.2.1) of Eq. (1) by
using Eq. (20) to eliminate theV −V n term from Eq. (19),
is neglect of the acceleration and pressure-gradient terms in
the full plasma momentum Eq. (14). Equation (7) thus rep-
resents the plasma bulk flow that results from stress balance
between electromagnetic and collisional forces, just as the
ionospheric Ohm’s law Eq. (1) represents the current that re-
sults from this stress balance.

4 Underlying physics of some processes

4.1 Electric field and plasma flow: which drives which?

When collision effects are negligible, Eq. (7) predicts plasma
bulk flow equal toE×B drift plus an unspecified (and some-
times overlooked) flow component parallel toB. This flow
can also be obtained by calculating the drift motion of indi-
vidual charged particles in givenE andB fields; such deriva-
tions, found in many textbooks, seem to constitute the pri-
mary argument for the view that the electric field produces
the plasma flow. Taken by itself, however, Eq. (7) (or its sim-
plification to the MHD conditioncE+V ×B = 0) is merely
a relation between the quantities at a given time: it states that
if the electric field exists, the plasma flow must also exist,
and vice versa, a result that can be derived from the assumed
condition of stress balance (Sect.3.2.5).

If, instead, one views Eq. (7) as a statement that the elec-
tric field gives rise to or produces the plasma flow, one is pre-
supposing (explicitly or implicitly) that the relation between
the two is the result of a time evolution, with the electric
field specified first and the plasma flow then developing as a
consequence. Whether the electric field produces the plasma
flow in this way, or the plasma flow produces the electric
field, or both are produced by something else, can be deter-
mined unambiguously on purely physical grounds by calcu-
lating the time evolution of all the relevant quantities. The
simplest way of answering the question “which quantity pro-
duces which?” is to consider an initial-value problem: as-
sume that att = 0 only one of the quantities is present and
solve the equations to determine whether and how the other
quantity evolves at subsequent times. (The alternative is a
philosophical discussion, which involves subtle distinctions,
e.g. between efficient and formal cause, and is not likely to
yield a concrete physical result.) The conventional texbook
derivation ofE×B drift is in fact the initial-value calcula-
tion of a single particle in fixed given fields; the difference in
a plasma is that time evolution is now governed by the full
set of fundamental equations, and single-particle calculations
that ignore the effect of plasma on fields (particularly onE)
are no longer adequate.

Self-consistent plasma calculations of howE and V

evolve from some arbitrarily specifed (unconstrained) ini-
tial values (Buneman, 1992; Vasyliūnas, 2001) show that,

− − − − − − − − − − −

+ + + + + + + + + + +

fp
B

+ + +

− − −

6

~E0

?

δ ~E

imposed electric field

Fig. 1. Sketch of trajectories and charge locations for initially im-
posed electric field with no plasma flow.+ − outside the box
are charges associated with the imposed electric field;+ − inside
the box indicate charge separation resulting from the drift motion,
with δE the associated change of electric field. The trajectories are
drawn for the limit|δE| � |E0|; see text for discussion of the more
general case.

as long asVA
2
� c2 (i.e. the inertia of the plasma is dom-

inated by the rest mass of the plasma particles and not by
the relativistic energy-equivalent mass of the magnetic field),
flows produce electric fields but electric fields do not pro-
duce flows, in a precise sense: an initially imposed bulk flow
creates the correspondingE, while an initially imposed elec-
tric field does not create the correspondingV but dissolves
into fluctuations. In both cases, the change occurs on a time
scale of orderωp

−1 and is therefore (sinceνin
2
� ωp

2 when
VA

2
� c2) not affected by collisions. Why this happens can

be understood in several intuitive ways, some independent of
the initial-value approach.

4.1.1 Effect of± particle trajectories

Charge separation from the cycloidal trajectories of drifting
particles modifies the electric field (this argument, related to
the initial-value calculation, is perhaps the one most conso-
nant with the conventional approach). Figure1 illustrates,
in a simple slab geometry, the trajectories of ions and elec-
trons (equal initial concentrationsne' ni ≡ n) injected with
zero velocity (no initial flow) into an initialE0. As the result
of E×B drift, charge layers (of density± ne and thickness
' gyroradius of the corresponding (±) drifting particles) ap-
pear at the boundaries of the (locally homogeneous) region,
as shown. The implied change of the electric field is

δE = −4πne

[
cE

B

] [
(mi +me)c

eB

]
= −E

c2

VA
2

(27)

where

E = E0+δE (28)

is the actual electric field inside the region, which deter-
mines theE×B drift. If the plasma flow is to be essentially
theE×B drift of the imposed electric field (as assumed in
conventional ionospheric theory and in drawing Fig.1), δE

must be negligible in comparison toE0, which requires that
the charged-particle concentrationn be sufficiently low. The
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Fig. 2. Sketch of trajectories and charge locations for initially im-
posed plasma flow with no electric field.+ − indicate charge
separation resulting from the gyromotion, withδE the associated
electric field. The trajectories are drawn for the limit|δE| �

|V 0×B/c|; see text for discussion of the more general case.

quantitative relation of the actual to the initialE is given by
Eqs. (27) and (28) as

E =
VA

2

c2+VA
2

E0 (29)

(whereVA
2 is merely shorthand forB2/4πn(mi +me) and

hence not subject to the constraint≤ c2), showing that only
if the density is so low that (nominally)VA

2/c2
� 1 canδE

be neglected. WhenVA
2/c2

� 1, the electric field is reduced
to a small fraction of its initial value, with corresponding re-
duction of theE×B drift. (For more detailed discussion and
numerical simulation, seeTu et al., 2008).

Figure 2 illustrates the trajectories if ions and electrons
are injected with common initial velocityV 0 but no initial
electric field. As the result now of gyromotion, charge layers
appear at the boundaries as before, with implied electric field

δE = −4πnee
[
V × B̂

] [ (mi +me)c

eB

]
, (30)

theE×B drift of which modifies the initial velocity to

V = V 0+
cδE×B

B2
(31)

From Eqs. (30) and (31), the relations of the actualE (= δE

in this case) andV to the initial velocity are

E =
c2

c2+VA
2

[
−V 0×B

c

]
V =

c2

c2+VA
2

V 0 . (32)

The conventional assumption (implicit in drawing Fig.2)
that, without an imposed electric field, the flow velocity is
reduced to a negligible value (the initialV 0 turning into gy-
romotion) proves to be valid, again, only in the low-density
limit VA

2/c2
� 1. For VA

2/c2
� 1, the flow velocity re-

mains at almost its initial value, and the requisite correspond-
ing electric field is created.

Equations (29) and (32) agree with the qualitative infer-
ences from momentum conservation (Sect.4.1.3). Since
charge separation occurs because the positive and the nega-
tive particles have gyromotions of opposite sense, regardless
of whether they do or do not have different masses, the re-
sults do not depend on the ratiome/mi , provided the Alfv́en
speed is defined on the basis of mass densityρ = n(mi +me).

4.1.2 Maintaining charge quasi-neutrality

On spatial and temporal scales large compared to those of
electron plasma oscillations, the electric field is determined
by the requirement that differential acceleration of ions and
electrons must not separate charges too much (this is the
physical meaning of dropping the∂J/∂t term in the gener-
alized Ohm’s law Eq. (12), discussed in Sect.3.2). The bulk
flow of the plasma is essentially that of the ions, which are
much heavier than electrons, hence the electric field primar-
ily changes the flow of electrons to match that of ions. This is
the simplest argument, quite adequate for the real ionosphere
but not a completely general one; contrary to the impression
it might give, the relation between electric field and plasma
flow does not depend on smallness or otherwise ofme/mi
(redoing the calculations ofBuneman(1992) andVasyliūnas
(2001) with me= mi does not change their results, consistent
with the qualitative description in Sect.4.1.1).

4.1.3 Momentum conservation

This is perhaps the most fundamental argument. Bulk flow
carries linear momentum and thus can be produced only by
adding linear momentum to the plasma. The linear momen-
tum density of the plasma medium is

ρV +
1

4πc
E×B (33)

where the first term represents the momentum in bulk flow
of the plasma and the second represents the momentum in
the electromagnetic field. When bulk flow equalsE×B

drift, the ratio (in magnitude) of the second term to the first
is VA

2/c2. If a given electric fieldE is to produce a bulk
flow, its linear momentum suffices only for a flow veloc-
ity of order VA

2/c2 times theE×B drift. Contrariwise, a
given flowV needs to be reduced by subtracting only a small
fractionVA

2/c2, in order to supply the linear momentum for
E = −V ×B/c.

If an electric field is not merely imposed initially but is
maintained at a steady value by some external agency, a cur-
rent must in general be supplied, and theJ ×B force of that
current (notE) is what adds the linear momentum to the
plasma and thereby produces the flow. Note that the current
in question isnot that described by the ionospheric Ohm’s
law Eq. (1), theJ ×B force of which is completely balanced
by plasma-neutral collisions (as discussed in Sect.3.2.1) and
thus does not add linear momentum to the plasma.

The arguments in Sects.4.1.2 and 4.1.3, it should
be noted, are completely independent of any initial-value
considerations.

4.2 How do wind-driven currents arise?

A primary task of ionospheric electrodynamics is to describe
electromagnetic fields and electric currents that result from
motions of the neutral atmosphere (commonly called the
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V. M. Vasyli ūnas: Ionospheric electrodynamics 365

“neutral-wind dynamo” problem). This is a topic of histor-
ical significance (much of the conventional theory was first
developed to explain observed quiet-time geomagnetic vari-
ations as the result of a neutral-wind dynamo) but also one in
which the gap between the usual qualitative explanation and
the physics of the equations may be especially wide.

How does bulk flow of neutral particles give rise to an elec-
tric current? Since the neutral particles themselves do not in-
teract with electromagnetic fields, any electrodynamic effect
can result only from collisions between neutrals and plasma
particles. In the conventional approach, it is generally as-
sumed that a current is produced because, when plasma col-
lides with a flowing neutral medium, different bulk velocities
are imparted to ions and to electrons. Qualitative explana-
tions of how the process works have been suggested in sev-
eral different forms:

1. The current is produced directly by the difference be-
tween ion-neutral and electron-neutral collision fre-
quencies (not proposed explicitly, but hinted at in some
tutorial presentations). This process is easily identified
in the full generalized Ohm’s law Eq. (12) as the contri-
bution to∂J/∂t of the collision term in the second line
of Eq. (13), proportional toνen−νin as expected. What
is not at all apparent, however, is how this leads to the
expression from which the neutral-wind dynamo is cal-
culated in practice, theV n×B term in the ionospheric
Ohm’s law Eq. (1) (note that the current given by this
term doesnot vanish whenνen= νin).

2. The current results from modification ofE×B drift
by collisions, and the modification depends on the ra-
tio of collision frequency to gyrofrequency – obviously
very different for ions and for electrons. This expla-
nation is generally derived from calculations of single-
particle trajectories in givenE andB fields, similar to
those invoked to discuss the relation betweenE andV

(Sect.4.1) and suffers from the same limitation: it may
be a correct description of the relation between quanti-
ties under stress equilibrium but does not specify how
the relation arises physically.

3. The current is described in conventional textbook fash-
ion as arising from motion of a conductor through a
magnetic field. This does lead in a straightforward way
to theV n×B term in Eq. (1), provided one assumes that
the conductor is moving with the neutral-wind velocity
V n. The problem is that in the ionosphere the conductor
is the plasma, which in general doesnot move withV n.

Note that all three explanations make no reference to any spa-
tial gradients; in principle, the processes as envisaged should
produce a current equally well in a strictly homogeneous
medium.

4.2.1 Initial-value development

As in the case of the relation betweenE andV (Sect.4.1),
the simplest way of identifying what produces what (and in
what sequence) is to work through an idealized initial-value
problem as a thought experiment. Consider a small quasi-
homogeneous region (the qualitative explanations, as noted
above, do not require spatial gradients) and assume that lo-
cally the electric fieldE and the plasma bulk flow velocity
V (in the “fixed” frame of reference) as well as the currentJ

and the magnetic disturbance fieldδB are all zero at the ini-
tial time t = 0, but there is a non-zero neutral windV n. For
t > 0, V n is assumed to remain constant at its initial value,
but the time histories of all other quantities are determined
by the fundamental Eqs. (12), (14), (9), (10), which (with
the simplifications mentioned in Sects.3.1.2and3.1.3) are
conveniently rewritten to show the time scales:

∂J

∂t
=

ωp
2

4π
E+neV × B̂�e−J × B̂�e

−νeJ +(νin −νen)ne(V n−V ) (34)
∂V

∂t
=

J

ne
× B̂�i +νin(V n−V ) (35)

∂E

∂t
= −4πJ +c∇ ×δB (36)

∂δB

∂t
= −c∇ ×E . (37)

Hereωp =

√
4πne2/me is the plasma frequency,�e and�i

are electron and ion gyrofrequencies (both defined as posi-
tive), and it is assumed that|δB| � |B|.

Note that only Eqs. (36) and (37) contain spatial gradients
(with light travel time as the associated time scale); also, they
are the only equations in whichδB appears. If spatial gradi-
ents of all quantities are zero (assumption of local homogene-
ity) at t = 0, they remain zero (or negligibly small) for allt <

effective propagation time over the gradient scale length (i.e.
departure from homogeneity); over the same time interval,
an initially zeroδB remains zero. The effective propagation
speed cannot exceed the speed of light and is usually much
slower; in the ionosphere, it is related to the Alfvén speed
significantly modified by the presence of plasma-neutral col-
lisions (Song et al., 2005).

At t = 0, the only non-zero quantity on the RH sides of all
the equations isV n, hence initially from Eqs. (34) and (35)

J ' (νin −νen)t J 0 J 0 ≡ neV n (38)

V ' νint V n . (39)

As soon asJ is non-zero it produces, according to Eq. (36),
an increasingE of opposite sign (this is a general conse-
quence of Maxwell’s equations, includingE from charge ac-
cumulation as a special instance when∇ ·J 6= 0). The op-
positely directedE acts, according to Eq. (34), to reduceJ ,
resulting in oscillatory behavior of both, as can be seen by
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eliminatingE between Eqs. (34) and (36) to obtain an equa-
tion for J alone:

∂2J

∂t2
+ ωp

2
(
J −

c

4π
∇ ×δB

)
+�i�eJ⊥

+(νin −νen)�iJ × B̂ +�e
∂J

∂t
× B̂ +νe

∂J

∂t
(40)

= neνin

[
(νen−νin)(V n−V )+�e(V n−V )× B̂

]
(Eq. (35) has been used to eliminate the∂V /∂t terms). Equa-
tion (40) is clearly a wave equation, with frequency equal to
ωp modified by gyrofrequency terms (see, e.g.Vasyliūnas,
2001).

Averaged over the oscillations,J is given by Eq. (40) as

J =
c

4π
∇ ×δB +

VA
2

c2

νin

�i

(
J 1× B̂ +

νen−νin

�e
J 1

)
+··· J 1 ≡ ne(V n−V ) (41)

to lowest order inVA
2/c2 and with neglected terms+··· of

orderme/mi or νe/ωp (the last term could also be neglected,
since usually(νen−νin)/�e� 1). Without the∇ ×δB term
(which is negligible in the absence of initial spatial gradients,
as noted above), the averagedJ is smaller thanne(V n−V )

by a factor of orderVA
2/c2. TheJ × B̂ term in Eq. (35) is

smaller than the collision term by the same factor, so thatV

evolves according to

V ' V n
[
1−exp(−νint)

]
(42)

as long as spatial-gradient effects remain negligible. The av-
eragedE, obtained from Eq. (34), is

E = −
1

c
V ×B −

me

e
(νin −νen)(V n−V )+··· (43)

where the neglected terms+··· are of orderVA
2/c2. The

second term on the RH side, dominant initially whenV ' 0,
imparts to electrons (by direct electric force) the same ac-
celeration that collisions with neutrals impart to plasma as
a whole. The first term represents the electric field driven
by plasma flow, as discussed in Sect.4.1; it becomes dom-
inant whenV has increased sufficiently, which occurs for
t �∼ �e

−1 according to Eqs. (42) and (43).
The process of collision between a plasma and a neu-

tral wind with different frequencies for ion-neutral and for
electron-neutral collisions thus does indeed produce a cur-
rent proportional toνin −νen and in the direction ofV n. In
the absence of spatial gradients, however, this current lasts
for only a very short time, of orderωp

−1, after which the
electric field resulting from the displacement-current term in
Maxwell’s equations has become sufficiently large, on the
average, to accelerate the electrons to the flow velocity of
the ions. Collisions with neutrals then continue to accelerate
the plasma as a whole, producing an increasing bulk flow de-
scribed by Eq. (42), with associated−V ×B/c electric field
after a time of order�e

−1, but only a small and decreasing

current (determined byJ ' −(1/4π)∂E/∂t), predominantly
in the direction ofV n×B and proportional toνin rather than
νin −νen (cf. Eq.41). If spatial gradients remain negligible,
for t � νin

−1 the plasma flow approaches the neutral flow
V n (with no additionalV n× B̂ term, regardless of the ratio
νin/�i), and the current approaches zero; these limiting val-
ues are easily seen to be the unique steady-state solution of
Eqs. (34)–(37) in the homogeneous limit.

4.2.2 Condition for permanent current

A permanent, non-transient electric current can thus be pro-
duced by a neutral wind only if spatial gradients are present
from the outset. The starting point is Eq. (37): if E given
by Eq. (43) has non-zero curl because of spatial gradients
in any quantities on the RH side,δB is produced, and ifit
has non-zero curl,J given by Eq. (41) is modified, which in
turn modifiesV through Eq. (35), which then further modi-
fiesE, and so on. The process becomes one of wave prop-
agation, similar to that discussed already in Sect.3.2.4. The
associated wave equation forδB can be derived (with the as-
sumption that time scales now of interest are long compared
to ωp

−1) by differentiating Eqs. (37)and (43) with respect to
time, inserting∂V /∂t from Eq. (35), and invoking Amp̀ere’s
law, to obtain as the first step

∂2δB

∂t2
+∇ ×

[
VA

2(∇ ×δB)⊥

]
+

∇ ×νin [(V −V n)×B] +··· = 0 (44)

with neglected terms+··· of order (νin − νen)/�e. As the
second step,V in Eq. (44) must be expressed in terms ofδB,
which in general is complicated and frequency-dependent.
If the time variations are slow compared toνin

−1, however,
Eq. (35) (with ∂V /∂t now neglected) can be invoked to-
gether with Amp̀ere’s law, yielding after some manipulation

∂2δB

∂t2
+νin

∂δB

∂t
+νin∇ ×

[(
νin

−1
)
VA

2(∇ ×δB)⊥

]
+···= νin∇ ×(V n×B)+··· (45)

The RH side of Eq. (45), the source term forδB, indicates the
nature of the required spatial gradient: if the neutral wind is
to produce a permanent electric current (which presupposes
∇ ×δB 6= 0), a necessary condition is

∇ ×(V n ×B) 6= 0 (46)

somewhere within the dynamo region. (If there are no
sources external to the ionosphere and∇ ×(V n ×B) is zero
everywhere, any currents produced will be initial transients
which die away.)

4.2.3 Condition for permanent current (from conven-
tional approach)

Condition (46) for neutral-wind dynamo action can also
be easily derived mathematically from the conventional
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V. M. Vasyli ūnas: Ionospheric electrodynamics 367
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mapping along field lines
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Fig. 3. Schematic diagram of how a neutral-wind dynamo devel-
ops, as understood in the conventional approach.

equations alone: note that ifV n×B/c = ∇9 where9 is
some scalar, Eq. (5) can be written as

∇ ·σ ·∇ (8−9) = 0 (47)

which, for boundary conditions that represent no external in-
put to the ionosphere (J · n̂ = 0 at the boundaries, wherên
is the normal to the boundary), has the solution8−9 = 0,
with V n×B/c cancelled everywhere by an electrostatic
field, hence producing no currents. Condition (46) is thus
valid in the quasi-steady-state as well, independently of any
initial-value arguments. The advantage of the derivation in
Sect.4.2.2is to make clear its physical basis.

5 Neutral-wind dynamo

Neutral-wind dynamo models that are applied to the actual
inhomogeneous ionosphere do, of course, necessarily con-
tain spatial gradients from the beginning. The canonical
problem specifies the neutral winds within some restricted
range of altitudes (typically the E or else the F layer of
the ionosphere) and then calculates electric field, current,
and plasma flow patterns at all ionospheric altitudes (a se-
ries of simple specific examples is listed inRichmond and
Thayer, 2000). The calculation proceeds from the conven-
tional Eqs. (1), (3), (4), (6), (7) and can therefore be assumed
to describe correctly the properties of a quasi-steady equilib-
rium configuration, but it does not describe the process by
which the configuration has been established. It is never-
theless not uncommon (particularly in tutorial presentations,
less so perhaps in research papers) to supplement the calcu-
lated model with a qualitative sketch of what is presumed to
be the physical process.

neutral wind

plasma flow (within dynamo region)

electric field (within dynamo region)

magnetic perturbation - electric current

?

?

?

?

ions by collisions, electrons by transient electric field

generalized Ohm’s law

non-zero curl ( ~E different within and outside dynamo region)

plasma flow (outside dynamo region)

MHD waves propagating along field lines

Fig. 4. Schematic diagram of how a neutral-wind dynamo devel-
ops, as understood on the basis of the complete physical equations.

5.1 Conventional description

A qualitative description of how a neutral-wind dynamo
is established, according to the conventional approach, is
sketched in Fig.3. The assumed neutral wind within the dy-
namo region sets into flow, by collisions, ions but not elec-
trons, thereby creating an electric current. If this current has a
non-zero divergence, the resulting charge accumulation cre-
ates an electric field within the dynamo region, which is then
extended to other regions by potential mapping along mag-
netic field lines. TheE ×B drift creates, together with col-
lision effects, plasma bulk flow both within and outside the
dynamo region. The magnetic perturbation can be calculated
from the current (e.g. for comparison with observations) but
otherwise plays no particular role in the model. In most dis-
cussions, time scales of the various steps in Fig.3 are not
mentioned (they are, of course, not specified by the conven-
tional equations).

5.2 Physical description

As counterpoint to the conventional view of Sect.5.1, the
qualitative description deduced from the fundamental physi-
cal approach of Sect.4.2 is sketched in Fig.4. The assumed
neutral wind within the dynamo region sets the plasma there
as a whole into flow withV = V n, on a time scale∼ νin

−1

(after an initial transient on time scale∼ ωp
−1). The plasma

flow creates the−V ×B/c electric field, on a time scale be-
tween∼ ωp

−1 and∼ �e
−1. The spatial gradient of this elec-

tric field, specifically the difference between the fields within
and outside the dynamo region, implies in general a non-
zero ∇ ×E, which produces a magnetic disturbance field,
the curl of which determines the electric current. The re-
sulting Lorentz force changes the plasma flow, which further
changes the electric field to continue the process. The final
result is that the entire pattern of plasma flow and electro-
magnetic field changes propagates along the magnetic field;
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in this way the plasma flow is established outside the dy-
namo region, on a time scale that is roughly the Alfvén wave
travel time (albeit significantly modified by collision effects,
cf. Song et al., 2005). The magnetic perturbation plays an
essential role in the physical process.

This approach shows that what ultimately creates the (non-
transient) dynamo current is an imbalance between the fric-
tional force of plasma-neutral collisions, exerted by the neu-
tral wind in the dynamo region, and the mechanical stresses
exerted at other locations along the magnetic field line. If
a quasi-steady state exists, the mechanical and the magnetic
stresses must be in balance at each point, which requires an
appropriate deformation of the magnetic field, and the curl
of that deformation is what constitutes the current. Without
opposing stresses elsewhere, the neutral wind would simply
carry the plasma with it, giving

V = V n cE = −V n×B J = 0 (48)

which is a solution of Eqs. (1), (3), (4), (6), and (7).
To have dynamo action (J 6= 0, by definition) Eq. (48)
must not be a valid solution, which requires that either
(1) ∇ ×(V n×B) 6= 0 (noted already in Sects.4.2.2 and
4.2.3), or (2) the boundary conditions on8 are incompat-
ible with J = 0, or both. The first implies that the im-
posed plasma flow deforms the magnetic field and creates
stresses within the ionosphere; the second implies that there
are stresses exerted on the magnetic field outside the iono-
sphere.

6 Conclusions

The conventional equations of ionospheric electrodynam-
ics are obtained by neglecting all acceleration terms in the
momentum equations and all time derivatives in Maxwell’s
equations; only slow time variations are considered, e.g.
from varying external influences, or from density or temper-
ature profile changes due to aeronomic processes. The equa-
tions state how the various quantities must be related numer-
ically if a quasi-steady-state stable stress balance exists; they
say nothing about how the quantities are related causally, or
how the stress equilibrium is established and on what time
scales.

Despite the above limitation, an extensive folklore appears
to have grown up within the ionospheric community, sup-
plying qualitative or even semiquantitative descriptions of
causal relations and temporal sequences that are supposed
to be the underlying physics of the conventional equations –
descriptions derived mostly from ordinary E&M arguments.
A more rigorous treatment, however, starting from the com-
plete fundamental equations, shows that the regime of iono-
spheric, magnetospheric, space, and astrophysical plasmas
can be quite different from the ordinary E&M environment
(e.g.Parker, 2007; Vasyliūnas, 2011, and references therein).
The essential difference is the large number (because of the

large spatial scales) of free charged particles and the con-
sequent overriding importance of self-consistency between
their distributions and the electromagnetic fields, described
by Maxwell’s equations.

For the electrodynamics of the ionosphere, the main differ-
ences between the conventional approach and the more rig-
orous physical approach are the following:

1. Electric fields do not produce plasma flows; they are
a consequence of plasma flow and other terms in the
generalized Ohm’s law.

2. The electric current is determined, in a quasi-steady
state, by the requirement that the magnetic stress bal-
ance the mechanical stress (specifically for the iono-
sphere, the collisional friction between plasma and
neutrals).

3. There is no “mapping” process along magnetic field
lines; changes of plasma flow and electric field are prop-
agated by appropriate (mostly MHD) waves.

4. Neutral winds do not create electric currents directly;
they create plasma motions, which then deform the
magnetic field, and the current arises to match the curl
of the deformed field.

5. Conventionally, ionospheric electrodynamics is viewed
as a problem of electrostatic/magnetostatic balance,
arising out of mechanical stresses. In reality it is more
a problem of mechanical stress balance, mediated by
electromagnetic fields.

Although the two viewpoints usually give essentially the
same results in many cases where quasi-steady equilibrium
exists, the radically different understanding of the underly-
ing physics may imply different predictions for shorter time
scales and more detailed phenomena. (For modeling of some
specific aspects, see, e.g.Song et al., 2009; Tu et al., 2011).
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