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Abstract. As the main result in Ge’s paper, Ge announced
that he proved a formula on the distribution of Morlet wavelet
power spectrum of continuous-time Gaussian white noise in
a rigorous statistical framework. In this paper, we will show
that Ge’s formula is wrong and each step of Ge’s proof is
wrong. Moreover, we give and prove a correct formula in a
rigorous statistical framework.
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1 Introduction

In the past 20 yr, wavelet analysis has been widely applied
in many branches of science and engineering. The contin-
uous wavelet transform possesses the ability to construct a
time-frequency representation of a signal that offers very
good time and frequency localization, so wavelet transforms
can analyze localized intermittent periodicities of potentially
great interest in geophysical time series analysis. At the same
time, significance tests must be applied to distinguish real
features from noise.

A waveletψ is denoted as follows:

ψa,b(t)=
1

√
a
ψ

(
t − b

a

)
.

The wavelet transform of a continuous-time signalx(t) is

T (a,b)=

∞∫
−∞

x(t)ψ∗

a,b(t)dt, (1)

where ψ∗

a,b represents the complex conjugate ofψa,b.

|T (a,b)|2 is defined as the wavelet power spectrum ofx(t).
In application, one often uses the Morlet wavelet with param-
eterω0, which is defined as

ψ(t)= π−
1
4 e−

t2
2 eiω0t . (2)

A continuous-time Gaussian white noisex(t) satisfies

E[x(t)] = 0,

Cov[x(t),x(t ′)] = δ(t − t ′)σ 2,

whereδ is the delta function.
For the distribution of the Morlet wavelet power spectrum

of Gaussian white noise, Ge (2007) announced that “the re-
sults given by Torrence and Compo (1998) are numerically
accurate when adjusted by a factor of the sampling period,
while some of their statements require reassessment.” In fact,
Ge used a wrong argument to give a wrong formula on the
distribution of the Morlet wavelet power spectrum|T (a,b)|2

of continuous-time Gaussian white noisex(t) as follows:

|T ((a,b)|2 ⇒
1

2
δt σ 2χ2

2 (3)
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(see Eq. (18) of Ge’s paper), whereχ2
2 is the chi-squared dis-

tribution with two degrees of freedom andδt is the sampling
period. Hereafter, the symbol⇒ means “is distributed as”.
From Eqs. (1) and (2), we know thatT (a,b) is a function
of the parametersa,b,ω0 and it is independent of sampling
periodδt . Clearly, Ge’s formula is wrong, and so Ge’s cor-
rection for Torrence and Compo’s result is also wrong

In Sect. 2, we will show that each step of Ge’s proof is
wrong. In Sect. 3, in a rigorous statistical framework, we will
give and prove that, for the continuous-time Gaussian white
noisex(t), its Morlet wavelet power spectrum is distributed
as follows:

|T (a,b)|2 H⇒
σ 2

2
(1+ e−ω

2
0)X2

1 +
σ 2

2
(1− e−ω

2
0)X2

2, (4)

whereX1 andX2 are independent Gaussian random vari-
ables with mean 0 and variance 1. If we use a Morlet wavelet
with parameterω0 = 6, we have

e−ω
2
0 = e−36

≈ 0,

and so

|T (a,b)|2 ⇒
σ 2

2
χ2

2 .

Torrence and Compo (1998) use heuristic ideas to reason that
the distribution of|T (a,b)|2 should be a simple chi-squared
function, but they did not derive the above formula from first
principles. In Sect. 4, we do some numerical experiments to
compare our formula with Ge’s formula.

2 Ge’s wrong proof

Ge’s proof for the distribution of wavelet power spectrum
of continuous-time Gaussian white noise (i.e., the proof of
Eq. 3) consists of four steps.

Step 1. The real part Re[T ] and the imaginary part
Im [T ] of wavelet transform are

Re[T ] =

∫
x(t)Re[ψ∗

a,b(t)]dt,

Im [T ] =

∫
x(t)Im [ψ∗

a,b(t) ]dt.

Ge tried to prove that Cov[Re[T ], Im [T ] ] = 0. Ge’s whole
proof is

Cov[Re[T ], Im [T ] ]

= Cov

[∫
x(t)Re[ψ∗

a,b(t) ]dt
∫
x(t)Im [ψ∗

a,b(t) ]dt

]
=

∫ ∫
Cov[x(t),x(t ′)]Re[ψ∗

a,b(t)] Im [ψ∗

a,b(t
′)]dt dt ′

= 0 for t 6= t ′.

Furthermore, it can be verified that

Cov[Re[T ], Im [T ]] ≡ 0

for ψa,b(t) being the Morlet wavelets even ift = t ′.

In the above proof, Ge claimed that

Cov[Re[T ], Im [T ]] = 0 for t 6= t ′.

However, by the definition of wavelet transform,

Cov[Re[T ], Im [T ]]

is a function ofa, b, ω0 and is independent oft, t ′. Ge’s
proof is obviously wrong.

Step 2. Ge gave two wrong results for variances of
Re[T ] and Im[T ]. Ge’s statement is as follows:

Var[Re[T ] ] = δt σ 2
∫

Re2
[ψ∗

a,b(t)]dt

Var[ Im [T ] ] = δt σ 2
∫

Im2
[ψ∗

a,b(t) ]dt

The above two formulas were obtained by Ge through a
wrong proof (see Appendix A of Ge’s paper).

By the definition of wavelet transform, we know that
both Var[Re[T ] ] and Var[ Im [T ] ] are independent ofδt .
However, Ge’s above result shows that Var[Re[T ] ] and
Var[ Im [T ] ] are determined by the sampling periodδt and
are directly proportional toδt . Clearly, this is wrong.

Step 3.Ge announced the following:

we can show that for the Morlet wavelet∫
Re2

[ψ∗

a,b(t) ]dt =
∫

Im2
[ψ∗

a,b(t) ]dt =
1

2

This should be the main part of the whole proof. However,
Ge does not give any proof. In fact, the computation of the
above integrals is very difficult and the values of the above
integrals are also not12.

Step 4. Ge announced the following wrong result that
the distribution of wavelet power spectrum of continuous-
time Gaussian white noise is
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|T ((a,b)|2 ⇒
1

2
δt σ 2χ2

2 .

3 Our proof

In this section, we will prove Eq. (4) in a rigorous statistical
framework.

A continuous-time Gaussian white noisex(t) satisfies

E[x(t) ] = 0, E[x(t)x(t ′) ] = σ 2δ(t − t ′), (5)

whereδ is the delta function. Letψ be a Morlet wavelet with
the parameterω0:

ψ(t)= π−
1
4 eiω0 t e−

t2
2 . (6)

Denote

ψa,b(t)=
1

√
a
ψ

(
t − b

a

)
.

The wavelet transform ofx(t) is

T (a,b)=

∞∫
−∞

x(t)ψ∗

a,b(t)dt, (7)

whereψ∗

a,b represents the complex conjugate ofψa,b. The
wavelet power spectrum is defined as

|T (a,b)|2 = (Re[T (a,b) ])2 + (Im [T (a,b) ])2 ,

where Re[T ] and Im[T ] represent the real part and imagi-
nary part ofT , respectively. By Eq. (7), we have

Re[T (a,b) ] =

∞∫
−∞

x(t)Re[ψ∗

a,b(t) ]dt,

Im [T (a,b) ] =

∞∫
−∞

x(t) Im [ψ∗

a,b(t) ]dt, (8)

and so Re[T (a,b) ] and Im[T (a,b) ] are both Gaussian
random variables with mean 0.

Proposition 1. For any a > 0 and b, Re[T (a,b) ] and
Im [T (a,b) ] are independent.

Proof. By Eq. (8), we have

Re[T (a,b) ] Im [T (a,b) ]

=

∞∫
−∞

∞∫
−∞

x(t)x(t ′)Re[ψ∗

a,b(t) ] Im [ψ∗

a,b(t) ]dtdt ′.

So

E[Re[T (a,b) ] Im [T (a,b) ] ]

=

∞∫
−∞

∞∫
−∞

E[x(t)x(t ′) ]Re[ψ∗

a,b(t)] Im [ψ∗

a,b(t
′) ]dt dt ′.

From this and Eq. (5), we have

E[Re[T (a,b) ] Im [T (a,b) ] ]

=

∞∫
−∞

Im [ψ∗

a,b(t
′) ]

 ∞∫
−∞

σ 2δ(t − t ′)Re[ψ∗

a,b(t) ]dt

dt ′.

(9)

By the definition ofδ function, we know that the intermediate
integral is equal toσ 2Re[ψ∗

a,b(t
′) ]:

∞∫
−∞

σ 2δ(t − t ′)Re[ψ∗

a,b(t) ]dt = σ 2Re[ψ∗

a,b(t
′) ].

From this and Eq. (9), we get

E [ Re[T (a,b) ] Im [T (a,b) ] ]

= σ 2

∞∫
−∞

Im [ψ∗

a,b(t
′) ]Re[ψ∗

a,b(t
′) ]dt ′

=
σ 2

a

∞∫
−∞

Im

[
ψ∗

(
t ′ − b

a

)]
Re

[
ψ∗

(
t ′ − b

a

)]
dt ′

= σ 2

∞∫
−∞

Im [ψ∗(t ′) ]Re[ψ∗(t ′) ]dt ′. (10)

Again, by the Euler formula,

eitω0 = cos(tω0)+ i sin(tω0).

By Eq. (6), we have

Re[ψ∗(t ′) ] = π−
1
4 e−

(t ′)2
2 cos(t ′ω0),

Im [ψ∗(t ′) ] = −π−
1
4 e−

(t ′)2
2 sin(t ′ω0).

From this and Eq. (10), we get

σ−2E [ Re[T (a,b) ] Im [T (a,b) ] ]

= −π−
1
2

∞∫
−∞

e−(t
′)2 sin(t ′ω0) cos(t ′ω0)dt

′
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= −
π−

1
2

2

∞∫
−∞

e−(t
′)2 sin(2t ′ω0)dt

′.

Since the integrande−(t
′)2 sin(2t ′ω0) is an odd function, the

above integral vanishes:

∞∫
−∞

e−(t
′)2 sin(2t ′ω0)dt

′
= 0.

So

E [ Re[T (a,b) ] Im [T (a,b) ] ] = 0. (11)

Noticing that

E[Re[T (a,b) ] ] = 0, E[ Im [T (a,b) ] ] = 0, (12)

by Eq. (11), we have

Cov(Re[T (a,b) ], Im [T (a,b) ])

= E[Re[T (a,b) ] Im [T (a,b) ] ]

−E[Re[T (a,b) ] ]E[ Im [T (a,b) ] ]

= 0.

Therefore, Re[T (a,b) ] and Im[T (a,b) ] are independent.�
Next, we find the distributions of Re[T (a,b) ] and

Im [T (a,b) ]. Since we have known that Re[T (a,b) ] and
Im [T (a,b) ] are both Gaussian random variables with mean
0, we only need to compute their variances. For this purpose,
we first prove the following proposition.

Proposition 2. The following results hold:

1. Var(Re[T (a,b) ])= σ 2
∞∫

−∞

(Re[ψ∗

a,b(t) ])
2dt ;

2. Var(Im [T (a,b) ])= σ 2
∞∫

−∞

(Im [ψ∗

a,b(t) ])
2dt .

Proof. By the definition of variances and Eq. (8), we have

Var(Re[T (a,b) ])

= E[(Re[T (a,b) ])2 ] − (E[Re[T (a,b) ] ])2

= E[(Re[T (a,b) ])2 ]

=

∞∫
−∞

∞∫
−∞

E[x(t)x(t ′) ]Re[ψ∗

a,b(t) ]Re[ψ∗

a,b(t
′) ]dt dt ′

= σ 2

∞∫
−∞

∞∫
−∞

δ(t − t ′)Re[ψ∗

a,b(t) ]Re[ψ∗

a,b(t
′) ]dt dt ′

= σ 2

∞∫
−∞

Re[ψ∗

a,b(t) ]

 ∞∫
−∞

δ(t − t ′)Re[ψ∗

a,b(t
′) ]dt ′

 dt

= σ 2

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2 dt

and

Var(Im [T (a,b) ])

= E[(Im [T (a,b) ])2 ] − (E[ Im [T (a,b) ] ])2

= E[(Im [T (a,b) ])2 ]

=

∞∫
−∞

∞∫
−∞

E[x(t)x(t ′) ] Im[ψ∗

a,b(t) ] Im[ψ∗

a,b(t
′) ]dt dt ′

= σ 2

∞∫
−∞

∞∫
−∞

δ(t − t ′) Im[ψ∗

a,b(t) ] Im[ψ∗

a,b(t
′) ]dt dt ′

= σ 2

∞∫
−∞

Im[ψ∗

a,b(t) ]

 ∞∫
−∞

δ(t − t ′)Im[ψ∗

a,b(t
′) ]dt ′

 dt

= σ 2

∞∫
−∞

(
Im[ψ∗

a,b(t) ]
)2 dt.

Proposition 2 is proved.�
We again compute two integrals:

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2 dt

and

∞∫
−∞

(
Im[ψ∗

a,b(t) ]
)2 dt.

Proposition 3.The following results hold:

1.
∞∫

−∞

(
Re[ψ∗

a,b(t) ]
)2

dt = 1
2

(
1+ e−ω

2
0

)
;

2.
∞∫

−∞

(
Im[ψ∗

a,b(t) ]
)2

dt = 1
2

(
1− e−ω

2
0

)
,

whereω0 is the parameter of the Morlet wavelets (see
Eq. 6).

Proof. By Eq. (6), we deduce that

Re[ψ∗

a,b(t) ] =
1

√
a

Re
[
ψ∗
(
t−b
a

)]
=

π
−

1
4

√
a

cosω0(t−b)
a

e
−
(t−b)2

2a2 ,
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and so

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2 dt =

π−
1
2

a

∞∫
−∞

cos2
ω0(t − b)

a
e
−
(t−b)2

a2 dt.

Lettingu=
t−b
a

, we have

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2 dt = π−

1
2

∞∫
−∞

cos2(ω0u)e
−u2

du.

By the formulas

cos2(ω0u)=
1+ cos(2ω0u)

2
and

∞∫
−∞

e−u
2
du=

√
π,

we have

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2

dt =
1

2
√
π

∞∫
−∞

(1+ cos(2ω0u))e
−u2

du

=
1
2 +

1
2
√
π

∞∫
−∞

cos(2ω0u)e
−u2

du.

(13)

Now we compute the final integral in the above formula. By
the Euler formula,

∞∫
−∞

cos(2ω0u)e
−u2

du =

∞∫
−∞

(
Ree2iω0u

)
e−u

2
du

= Re

(
∞∫

−∞

e−u
2
+2iω0udu

)
.

Since

−u2
+ 2iω0u = −(u2

− 2iω0u)

= −(u2
− 2iω0u+ (iω0)

2
− (iω0)

2)

= −(u− iω0)
2
−ω2

0,

we have

∞∫
−∞

cos(2ω0u)e
−u2

du = Re

(
∞∫

−∞

e−(u−iω0)
2
e−ω

2
0 du

)

= e−ω
2
0 Re

(
∞∫

−∞

e−(u−iω0)
2
du

)
.

(14)

The problem is reduced to computation of the integral of the
complex-valued functione−(u−iω0)

2
.

Now we compute the complex integral:

∞∫
−∞

e−(x−iω0)
2
dx.

Denotez= x+ iy. The functione−z
2

is an analytic function
in the whole complex plane. This integral is just the integral
of

e−z
2

on the straight line:

z= x− iω0 (−∞< x <∞).

We use the method of the contour integral to compute it.
Let 0 be a rectangle with four vertices:

−R− iω0, R− iω0, R, and −R,

i.e.,

0 = 01 +02 −03 −04,

where

01 : z= x− iω0 (−R ≤ x ≤ R),

02 : z= R+ iy (−ω0 ≤ y ≤ 0),

03 : z= x (−R ≤ x ≤ R),

04 : z= −R+ iy (−ω0 ≤ y ≤ 0).

Sincee−z
2

is analytic in the whole complex plane, by the
Cauchy theorem, we have∫
0

e−z
2
dz= 0.

From this, we deduce that

R∫
−R

e−(x−iω0)
2
dx+

0∫
−ω0

e−(R+iy)2 dy

−

R∫
−R

e−x
2
dx−

0∫
−ω0

e−(−R+iy)2 dx

= I1(R)+ I2(R)− I3(R)− I4(R)= 0. (15)

Noticing that|e−2iRy
| = 1 and for−ω0 ≤ y ≤ 0,∣∣∣e−(R+iy)2

∣∣∣ =

∣∣∣e−R2
−2iRy+y2

∣∣∣
= e−R

2
+y2 ∣∣e−2iRy

∣∣
≤ e−R

2
+ω2

0,
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we deduce that

|I2(R)| =

∣∣∣∣∣ 0∫
−ω0

e−(R+iy)2 dy

∣∣∣∣∣
≤

0∫
−ω0

∣∣∣e−(R+iy)2
∣∣∣ dy ≤ ω0e

−R2
+ω2

0

= ω0e
ω2

0 e−R
2

and

e−R
2
→ 0 (R → +∞).

So we have

I2(R)→ 0 (R → +∞). (16)

Noticing that|e2iRy
| = 1 and∣∣∣e−(−R+iy)2

∣∣∣ =

∣∣∣e−R2
+2iRy+y2

∣∣∣
= e−R

2
+y2 ∣∣e2iRy

∣∣≤ e−R
2
+ω2

0,

we deduce that

|I4(R)| =

∣∣∣∣∣ 0∫
−ω0

e−(−R+iy)2 dy

∣∣∣∣∣
≤

0∫
−ω0

∣∣∣e−(−R+iy)2
∣∣∣ dy ≤ ω0e

−R2
+ω2

0

= ω0e
ω2

0 e−R
2

and

e−R
2
→ 0 (R → +∞).

So we have

I4(R)→ 0 (R → +∞). (17)

With a known result of

∞∫
−∞

e−x
2
dx =

√
π,

we get

I3(R)→
√
π (R → +∞). (18)

LettingR → +∞ in Eq. (15), we deduce by Eqs. (16)–(18)
that

lim
R→∞

I1(R)=
√
π.

So we have

∞∫
−∞

e−(x−iω0)
2
dx =

√
π.

By Eq. (14), we have

∞∫
−∞

cos(2ω0t)e
−t2 dt =

√
π e−ω

2
0. (19)

By Eq. (13), we get

∞∫
−∞

(
Re[ψ∗

a,b(t) ]
)2

=
1

2
+

1

2
e−ω

2
0 =

1

2
(1+ e−ω

2
0).

(i) is proved.
We will prove (ii). By Eq. (6), we deduce that

Im [ψ∗

a,b(t) ] =
1

√
a

Im
[
ψ∗

a,b

(
t−b
a

)]
= −

π
−

1
4

√
a

sinω0(t−b)
a

e
−
(t−b)2

2a2 ,

and so

∞∫
−∞

(
Im [ψ∗

a,b(t) ]
)2 dt =

π−
1
2

a

∞∫
−∞

sin2 ω0(t − b)

a
e
−
(t−b)2

a2 dt.

Lettingu=
t−b
a

, we have

∞∫
−∞

(
Im [ψ∗

a,b(t) ]
)2 dt = π−

1
2

∞∫
−∞

sin2(ω0u)e
−u2

du.

By the formulas

sin2(ω0u)=
1− cos(2ω0u)

2

and

∞∫
−∞

e−u
2
du=

√
π,

we get

∞∫
−∞

(
Im [ψ∗

a,b(t) ]
)2

=
1

2
√
π

∞∫
−∞

(1− cos(2ω0u))e
−u2

du

=
1
2 −

1
2
√
π

∞∫
−∞

cos(2ω0u)e
−u2

du.

By Eq. (19), we get (ii). Proposition 3 is proved.�
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Table 1.Mean of wavelet power spectrum (b = 0.5, δt = 1
1024).

Scale a = 0.3 a = 0.5 a = 0.7

Monte-Carlo method 0.9996 0.9991 1.0003
Our formula 1.000 1.000 1.000
Ge’s formula 0.001 0.001 0.001

From Propositions 2 and 3, we deduce that

Var(Re[T (a,b) ]) = σ 2
∞∫

−∞

(
Re[ψ∗

a,b(t) ]
)2

dt

=
σ2

2

(
1+ e−ω

2
0

)
and

Var(Im [T (a,b) ]) = σ 2
∞∫

−∞

(
Im [ψ∗

a,b(t) ]
)2

dt

=
σ2

2

(
1− e−ω

2
0

)
.

Again, since Re[T (a,b) ] and Im[T (a,b) ] are both Gaus-
sian random variables with mean 0, we know that
Re[T (a,b)] is distributed as follows:

Re[T (a,b) ] H⇒

(
σ 2

2
(1+ e−ω

2
0)

) 1
2

X1, (20)

and Im[T (a,b)] is distributed as follows:

Im [T (a,b) ] H⇒

(
σ 2

2
(1− e−ω

2
0)

) 1
2

X2, (21)

whereX1 andX2 are Gaussian random variables with mean
0 and variance 1.

Since the wavelet power spectrum ofx(t) is

|T (a,b)|2 = |ReT (a,b)|2 + |ImT (a,b)|2,

by Proposition 1 and Eqs. (20), and (21), we get the follow-
ing theorem.

Theorem 1. Let x(t) be the continuous-time Gaussian
white noise, which is stated in Eq. (5), andψ be a Morlet
wavelet with parameterω0. Denote the Morlet wavelet
transform of x(t) by T (a,b). Then the wavelet power
spectrum|T (a,b)|2 is distributed as follows:

|T (a,b)|2 H⇒
σ 2

2
(1+ e−ω

2
0)X2

1 +
σ 2

2
(1− e−ω

2
0)X2

2,

whereX1 andX2 are independent Gaussian random vari-
ables with mean 0 and variance 1.

Table 2.95 % confidence level of wavelet power spectrum (b = 0.5,
δt = 1

1024).

Scale a = 0.3 a = 0.5 a = 0.7

Monte-Carlo method 3.002 3.003 3.001
Our formula 2.996 2.996 2.996
Ge’s formula 0.003 0.003 0.003

For largeω0 (e.g.,ω0 = 6), we havee−ω
2
0 ≈ 0. By Theo-

rem 4, we get

|T (a,b)|2 ⇒
σ 2

2
(X2

1 +X2
2),

i.e.,

|T (a,b)|2 H⇒
σ 2

2
χ2

2 ,

whereχ2
2 is the chi-squared distributed with 2 degrees of

freedom.

4 Numerical experiments

In this section, we will do some numerical experiments. For a
continuous-time Gaussian white noisex(t) with autocovari-
ance,

Cov[x(t),x(t ′)] = δ(t − t ′)σ 2, (22)

we will compute its wavelet power spectrum|T (a,b)|2 by
using Monte-Carlo method, our formula and Ge’s formula.
The wavelet we use is the Morlet wavelet with parameter
ω0 = 6.

When we use Monte-Carlo method to approximately com-
pute wavelet power spectrum, we will use the sampling pe-
riod δt = 1

1024 to sample continuous-time Gaussian white
noisex(t). The autocovariance of Gaussian white noise is
defined by the delta functionδ(t), whereδ(t) is defined as

∞∫
−∞

δ(t)f (t)dt = f (0)

for any smooth functionf (t). It is well known that, for the
sequence of functionsgε(t),

gε(t)=
1

ε
, t ∈ [−

ε

2
,
ε

2
]

and

gε(t)= 0, t ∈ [−∞,−
ε

2
)
⋃
(
ε

2
,∞], (23)

one has

lim
ε→0

gε(t)= δ(t)
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Fig. 1.The mean and 95 % confidence level of wavelet power spec-
trum |T (a,b)|2 are computed by Monte-Carlo method, our formula
and Ge’s formula, where 0< a < 1,b = 0.5, andδt = 1

1024.

in the sense of generalized functions. Take

ε = δt,

whereδt is the sample period, so

δ(t)≈ gδt (t).

Again, by Eqs. (22) and (23), we have

Cov[x(nδt),x(mδt)] = δ(nδt −mδt)σ 2

≈ gδt (nδt −mδt)σ
2

=


1
δt
σ 2 form= n,

0 form 6= n.

Finally, with the help of Monte-Carlo method and numeri-
cal integral, we can approximately obtain the distribution of

wavelet power spectrum of continuous-time Gaussian white
noise.

Ge (2007) indicated that wavelet power spectrum of
continuous-time Gaussian white noise is distributed as fol-
lows:

|T ((a,b)|2 ⇒
σ 2

2
δt σ 2χ2

2

(see Eq. 18 of Ge’s paper).
In Theorem 1, we have proved that the wavelet power

spectrum of continuous-time Gaussian white noise is dis-
tributed as follows:

|T (a,b)|2 H⇒
σ 2

2
(1+ e−ω

2
0)X2

1 +
σ 2

2
(1− e−ω

2
0)X2

2.

If we use a Morlet wavelet with parameterω0 = 6, we have

|T (a,b)|2 ⇒
σ 2

2
χ2

2 .

Without loss of generalization, we takeσ = 1 andb = 0.5.
Tables 1 and 2, and Fig. 1 show the mean and 95 % con-
fidence level of wavelet power spectrum of Gaussian white
noise obtained by Monte-Carlo method, our formula and
Ge’s formula. It is clear that our result on wavelet power
spectrum is consistent with that obtained by Monte-Carlo
method. Ge’s formula is quite different from that obtained
by Monte-Carlo method or our method. From here, we can
also see that Ge’s formula is wrong.
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