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Abstract. As the main result in Ge’s paper, Ge announcedThe wavelet transform of a continuous-time sign&)) is

that he proved a formula on the distribution of Morlet wavelet o

power spectrum of continuous-time Gaussian white noise in .
a rigorous statistical framework. In this paper, we will show I (@, b) = / x(1) g p (1), )
that Ge’s formula is wrong and each step of Ge’s proof is —00

wrong. Moreover, we give and prove a correct formula in a

" .
rigorous statistical framework. where ¥, represents the complex conjugate ¢f, ;.

. . . |T (a,b)|? is defined as the wavelet power spectrunx ).
Keywords. Meteorology and atmospheric dynamics (clima- |, gpplication, one often uses the Morlet wavelet with param-

tology) eterwg, which is defined as

V() =7 e o, @)

) A continuous-time Gaussian white noisg) satisfies
1 Introduction

E[x(1)] =0,
In the past 20yr, wavelet analysis has been widely applied , "2
in many branches of science and engineering. The continSOVIX(®), x(1)] =8 —1) 0%,
uous wavelet transform possesses the ability to construct avheres is the delta function.
time-frequency representation of a signal that offers very For the distribution of the Morlet wavelet power spectrum

good time and frequency localization, so wavelet transformsof Gaussian white noise, Ge (2007) announced that “the re-

can analyze localized intermittent periodicities of potentially sults given by Torrence and Compo (1998) are numerically
great interest in geophysical time series analysis. At the samaccurate when adjusted by a factor of the sampling period,
time, significance tests must be applied to distinguish realwhile some of their statements require reassessment.” In fact,
features from noise. Ge used a wrong argument to give a wrong formula on the

A waveletys is denoted as follows: distribution of the Morlet wavelet power spectruif(a, b)|2

of continuous-time Gaussian white noisg) as follows:
1 t—>b 1

Vap() = = w( - ) IT (@ b)* = 50t0% x5 3)
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1744 Z. Zhang and J. C. Moore: Comment on Ge (2007)

(see Eqg. (18) of Ge’s paper), Whe;(§ is the chi-squared dis- Cov[Re[T], Im[T]]
tribution with two degrees of freedom aédis the sampling
period. Hereafter, the symbed means “is distributed as”. _ * *
From Egs. (1) and (2), we know that(a, b) is a function = Cov [fx(t)Re[w“’b(t)]dt/x(t)lm[w“’b(t)]dt}
of the parameters, b, wp and it is independent of sampling
periodsz. Clearly, Ge's formula is wrong, and so Ge’s cor- = //COV[X(Z‘),x(l‘/)]Re[lﬁ:’b(I)]|m[1//;k’b(t/)]dt dt’
rection for Torrence and Compo’s result is also wrong
In Sect. 2, we will show that each step of Ge’s proof is =0 for r#1'.

wrong. In Sect. 3, in arigorous statistical framework, we will
give and prove that, for the continuous-time Gaussian white
noisex(t), its Morlet wavelet power spectrum is distributed

as follows: Cov[Re[T], Im[T]]=0

Furthermore, it can be verified that

2 2 for 1) being the Morlet wavelets evenrit= 7'.
IT(a,b)|? = %(1+e*w3)xf+%(1—e*w§)xg, () Vab(1) being

In the above proof, Ge claimed that

where X.l and X, are mde_pendent Gaussian random vari- ov[Re[T], IM[T]]=0 for t£7.
ables with mean 0 and variance 1. If we use a Morlet wavelet

with parametersg = 6, we have However, by the definition of wavelet transform,
Cov[Re[T],Im[T
i 0. [Re[T] [T]]
is a function ofa, b, wg and is independent of, ’. Ge's
and so proof is obviously wrong.
2 Step 2. Ge gave two wrong results for variances of
T (a,b)|? = 7)(22- Re[T]and Im[ T ]. Ge’s statement is as follows:

Torrence and Compo (1998) use heuristic ideas to reason that | Var[Re[T ]] = SIUZ/ Rez[ﬁ,b(t)]dt
the distribution off T (a, b)|? should be a simple chi-squared
function, but they did not derive the above formula from first 2 P
principles. In Sect. 4, we do some numerical experiments to varlim[T]]=éto /Im [0 ]de
compare our formula with Ge’s formula.

The above two formulas were obtained by Ge through a
wrong proof (see Appendix A of Ge’s paper).
By the definition of wavelet transform, we know that
2 Ge’s wrong proof both VafRe[T']] and Vaf{Im[T]] are independent ofz.
However, Ge’s above result shows that Mae[T]] and
Ge’s proof for the distribution of wavelet power spectrum Var[Im[7 ]] are determined by the sampling peri&dand
of continuous-time Gaussian white noise (i.e., the proof ofare directly proportional téz. Clearly, this is wrong.
Eq. 3) consists of four steps.
Step 3.Ge announced the following:

Step 1. The real part ReT'] and the imaginary part
Im[T ] of wavelet transform are we can show that for the Morlet wavelet

1
[Retvz,m1a = [m2ug, 000 =

Re[T]= / x(HRely, ,(HO]dr,

This should be the main part of the whole proof. However,
Ge does not give any proof. In fact, the computation of the
_ * above integrals is very difficult and the values of the above
M7= /x(t)lm [Vap@ar integrals are also nd.
Ge tried to prove that Cq\Re[ T ], Im[T 1] = 0. Ge'swhole  Step 4. Ge announced the following wrong result that
proof is the distribution of wavelet power spectrum of continuous-
time Gaussian white noise is
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1

1T ((a,b)|*> = 5

Stozxzz.

3 Our proof

1745

So

E[Re[T(a,b)]1IMm[T (a,b)]]

= [ [ Etx@xe)iRew  o1miy ¢ nd

—00 —00

In this section, we will prove Eq. (4) in a rigorous statistical From this and Eq. (5), we have

framework.
A continuous-time Gaussian white noisg) satisfies

E[x(H)]1=0, E[x()x({t)]=0%8(—1'), (5)

wheres is the delta function. Leyr be a Morlet wavelet with
the parameteto:

1. 2
() = 40 g7

(6)
Denote
1 t—>b
Va,b(1) = 7 14 (T) .
The wavelet transform of (¢) is
T(a.b)= / (O, (1), @)

wherey;, represents the complex conjugateyf,. The
wavelet power spectrum is defined as

1T (a,b)|* = (Re[T(a,b) )*>+ (IM[ T (a,b) ])?,

where R¢ T ] and Im[ T ] represent the real part and imagi-
nary part ofT’, respectively. By Eq. (7), we have

oo

Re[T(a,b)] = /x(t)Re[x/f;h(t)]dt,

—00

e ¢]

miT@b)]= [ x@miy, 0.

—00

(8)

and so R¢T(a,b)] and Im[T (a,b)] are both Gaussian
random variables with mean 0.

Proposition 1. For anya >0 and b, Re[T(a,b)] and
IMm[T (a, b)] are independent.

Proof. By Eqg. (8), we have

Re[T(a,b)]1Im[T (a,b)]

=/ /x(l‘)x(l‘/)RE[l//;’b(t)]|m[1/f:’b(t)]dtdt/.

—00 —00

www.ann-geophys.net/30/1743/2012/

E[Re[T(a,b)]IM[T (a,b)]]

= / Im[y;, ()] (/ 028(t—t’)Re[1p;"’b(t)]dt) dr’.

9)

By the definition o function, we know that the intermediate
integral is equal ta? Re[ W;k,b(f/) ]:

o0

/oza(r—t’)Re[w;h(t)]dr=02Re[w;h(t’)].

—0o0

From this and Eq. (9), we get

E[Re[T(a,b)]Im[T (a,b)]]
= 0?2 f Im[y; (") IRe[ ¥, (t') 1d’

ol () e (50 ]

—00

=o? f Im[y* (") IRe[y*(¢")]dr’. (10)

—00

Again, by the Euler formula,
€10 = cogtwo) + i Sin(fwo).
By Eg. (6), we have

a)?

Re[¥* (1) =n"de" "2 cost wo),
1 ()2
Im[y*(t)]=—n"42e" 2 sin(t’ wo).

From this and Eg. (10), we get

o ?E[Re[T(a,b)1Im[T(a,b)]]
- / ¢~ sin(¢' wo) cost'wo) dt’

—0o0

Ann. Geophys., 30, 17485Q 2012
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_1 > o0 [es)
= _7T22 / g_(t/)2 sin(Zt’wo) ar’. =O'2 / Re{w;’b(t)] (/ 8(t _l/)Re[w;b(l/)]dl/) d
—00 —00 00
Since the integrantel*(”)2 sin(2t’wp) is an odd function, the 5 n . 2
above integral vanishes: =0 / (Rel vy, (1)])" dr
—00

o0
/ and
/ ¢~ sin(21' wo) dr’ = 0.
—0Q

Var(Im[T (a,b)])

So = E[(IM[T(a,b))*1— (E[IM[T (a,b)]])?
E[Re[T(a,b)1IM[T(a,b)]] = O. (11) ZEOE('TO[T(“’Z’)DZ]

Noticing that =/ fE[x(t)x(t/)]lm[xp;b(t)]Im[l//j’b(t/)]dtdt/
E[Re[T(a,b)]1=0, E[IM[T(a,b)]]=0, (12) T

by Eq. (11), we have =o? / / 8t — ) Imly () 1MLy, (") 1de df’

Cov(Re[T (a,b)], Im[T(a,b)]) 00 o0
= E[Re[T(a,b)]Im[T(a,b)]] Z(’Zflmw:”’(”] (/ w_t/)'m[ﬁ’b(t,)]dﬂ) “

—E[Re[T(a,b)]1E[IM[T (a,b)]] -~ >

o0

-0 :(;2/ (Im[ v, (0)1)° d.
Therefore, ReT (a, b) ] and IM[ T (a, b) ] are independent] —o0
Next, we find the distributions of R& (a,b)] and Proposition 2 is proved.]
Im[T (a,b)]. Since we have known that R&(a,b)] and We again compute two integrals:
Im[T (a, b)] are both Gaussian random variables with mean __
0, we only need to compute their variances. For this purpose, . 2
we first prove the following proposition. / (Re[‘/’a,b(t)]) dr
—00
Proposition 2. The following results hold: and
2 70 2 ®
1. Var(Re[T(a,b)]) =0 (Re[ vy () D*dr; .
£ b / (Im[y:,(1)1)? dr.

o
2. Var(Im[T(a,b)]) =02 [ (IM[y},(1)])?dr.
> Proposition 3. The following results hold:

Proof. By the definition of variances and Eg. (8), we have 1. }o (Re[l,//*b(t)])z dr — % (1+e_wg>;
—00 ’

Var(Re[ T'(a, b) ]) . 2
2. [ (mryz,01) dr=3(1-eF),

= E[(Re[T(a,b)))*]1— (E[Re[ T (a,b)1])? oo

5 wherewy is the parameter of the Morlet wavelets (see
= E[(Re[T(a,b)])"] Eq. 6).
- / / ELx(0x () IRE Y, (1) IRy, (1) 1 ol Proof. By Eq. (6), we deduce that

—00 —00

00 o0 Re[I//:yb(t)] = %Re[w* (%)]
Z"Zf /5(t—t’)Re[w;‘,b(r>]Re[l/f;i,,(r’)]dtdﬂ )

1 _@=h?
_r 4 Coswo(la*b)e 242 ,

—00 —00 T Ja
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and so Now we compute the complex integral:
o0 1 o0 b) § b)2 o
2 t— _ (= .
/ (Relv: 1)  dr = *— [ co2 D) -5y, [ ¢~ (miv0’ gy
’ a a

—00 —00 —00

Lettingu = %, we have Denotez = x +iy. The functione=? is an analytic function

in the whole complex plane. This integral is just the integral

/ (Re[ V() ])2 dr =73 / co< (wott) ¢ du. 2
—00 —00 ¢

By the formulas on the straight line:

z=x—iwg (—00<Xx < 00).

o
1+ cos2wou) 2 . .
co (wou) = — and / e du=m, We use the method of the contour integral to compute it.
% LetI" be a rectangle with four vertices:
we have —R—iwg, R—iwg, R, and —R,
00 2 , ® ) ie.,
i (Re[ 1//:,17(1‘)]> dr = 51 [ 1+ cos2wom) e du
“0 -0 '=T14+T2—-T3-T1,
0 where
= % + # | cos2wou) e du.
T —0oQ

I'': z=x—iwg (—R<x<R),
(13)
I'2: z=R+iy (-wp=<y=<0),
Now we compute the final integral in the above formula. By I
3:

the Euler formula, L= (—R=x=R),
F4: z=—R+iy (—wo<y<0).
7 —u? < 2i wout —u? . 2. ..
J cos2wou)e™ du = [ (Ree® o) ™" du Sincee™*" is analytic in the whole complex plane, by the
- e Cauchy theorem, we have
oo 2,5 2
P T
—00
r
Since From this, we deduce that
—u? + 2iwou = —(u? — 2iwou) R 0
/e—(x—ia)o)zdx + / o (RFiy)? dy
= —(u? - 2iwou + (iwg)? — (iwo)?) R A
= —(u—ia)o)z—a)g, R 0
h —/e_xzdx— / e~ (RHI? gy
we have
—R —wQ
® —u? ® —(u—ia)o)z —w?
J coswpmye™ du =Re{ [ e e o du = I1(R) + I2(R) — I3(R) — 1a(R) = 0. (15)

Noticing thatle 2 ®Y| = 1 and for—wg < y <0,

—w? < —(u—iwo)2
=e¢ “0Re _{O e du ). o—(R+i)? | _ ’e—RZ—ZiRy-&-.VZ
(14)
S |e—2iRy |
The problem is reduced to computation of the integral of the
complex-valued functioa——i0)”, < o R*+ef

www.ann-geophys.net/30/1743/2012/ Ann. Geophys., 30, 174850 2012
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we deduce that So we have
0 ., 00
()| = | [ e=R+iDdy / e~mion? gy /7
—
° —00
< }) e—(R+iy)2’ dy < woe~Ko+d By Eq. (14), we have
o
o
— wpeh e F? / cos(Zth)e"2 dr = ﬁe‘“’g. (19)
—0o0
and

By Eg. (13), we get

e R2—>O(R—>+oo).

T 1 1 1
So we have f (Re[ Iﬂ;kyb(t)])z =5 + Ee—a% = §(1+ e—wé)_
L(R) >0  (R— +00). @
(i) is proved.

Noticing that|e?®Y| = 1 and We will prove (ii). By Eq. (6), we deduce that

o im(v;, 01 = Lim[yz, (59)]

_ ‘ o—R¥+2i Ry+y?

_ —R2+y2 2i Ry —R%24? 1 _(@=h)?
we deduce that
and so
0
N2
[Ia(R)| = | [ e~ RT dy ? -3 7 f_b) a2
o / ('f’”[l/f;kh(t)])2 a="2" / sip R0 -y,
’ a a
0 —00 —00
- —(~R+iy)? ‘ dy < wge~ Ko+b
- ,io ¢ Yy =woe Lettingu = =2, we have
2 2 o0 [ee]
= wge® e R
0 / (|m[l/f;,h(t)])2 dr =73 / Sil’lz(a)ou)(f“2 du.
and 5 %
e L 0(R— 400). By the formulas
. 1-—cog2
So we have sirP(wou) = ;( wolt)
I4(R) —> 0 (R — +00). a7
and
With a known result of s
00 f e du = VT,
f e_xz dx = «/;, —00
e we get
we get o 5 ~
i (|m[1//*b(t)]> =1 [ (1-cos2wou)) e du
I3(R) > V7T (R— 400). (18)  _% @ 2V

Letting R — 400 in Eq. (15), we deduce by Egs. (16)—(18) 1 . .
that =35 ﬁ,{o co2wou) e ™ du.
RILmOO L(R) = /7. By Eq. (19), we get (ii). Proposition 3 is proved.

Ann. Geophys., 30, 1743t75Q 2012 www.ann-geophys.net/30/1743/2012/
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Table 1.Mean of wavelet power spectrurb £ 0.5, 6t = ﬁz‘) Table 2.95 % confidence level of wavelet power spectrum=(0.5,
. .5, . 1
8t = 1052)-
Scale a=03 a=05 a=07
Scale a=03 a=05 a=07
Monte-Carlo method  0.9996  0.9991  1.0003
Our formula 1.000 1.000 1.000 Monte-Carlo method  3.002 3.003 3.001
Ge's formula 0.001  0.001  0.001 Our formula 2.996 2996  2.996
Ge’s formula 0.003 0.003 0.003

From Propositions 2 and 3, we deduce that 2
For largewo (e.9.,wp = 6), we havee™“0 ~ 0. By Theo-

00 2 rem 4, we get
Var(Re[ T (a,b)]) = o2 [ (Re[lﬁ;’b(t)]) dr

2
o
IT(a,b)]? = 7(X%+X§),
_ o2 (1+ _wg>
=5 e

ie.,
and 5 0?2 ,
o ) IT(a,b)] = 5 X2
varim(T (b)) = o2 [ (Im{y;,01)" dr
—o0 ' where X22 is the chi-squared distributed with 2 degrees of
freedom.

2 —?
= > (l—e 0) .
Again, since R¢T (a,b)] and Im[T (a, b)] are both Gaus-

sian rando_md_va_rlljableds V\:‘ItTI mgan 0, we know that,, yg section, we will do some numerical experiments. For a
RET (a,b)] is distributed as follows: continuous-time Gaussian white noisg) with autocovari-
ance,

2 2
Re[T(a,b)]=>(%(1+e“’5)) X1, (20)  Cov[x(t), x(t)] =8t — )2, (22)

4 Numerical experiments

we will compute its wavelet power spectruffi(a, b)|? by
using Monte-Carlo method, our formula and Ge’s formula.
) 3 The wavelet we use is the Morlet wavelet with parameter
o —a? wo = 6.
ImIT(a.b)] = (7(1 —¢ O)) X2, (21) When we use Monte-Carlo method to approximately com-
pute wavelet power spectrum, we will use the sampling pe-
whereX; and X, are Gaussian random variables with meanriod 8¢ = ﬁ to sample continuous-time Gaussian white

and In{T (a, b)] is distributed as follows:

0 and variance 1. noisex(t). The autocovariance of Gaussian white noise is
Since the wavelet power spectrumugf) is defined by the delta functiod(z), wheres(¢) is defined as
|T(a,b)|? = |ReT (a,b)|* + |ImT (a, )%, @
/ 50)f(1)dt = £(0)
by Proposition 1 and Egs. (20), and (21), we get the follow- -

ing theorem.

for any smooth functiory (¢). It is well known that, for the
Theorem 1. Let x(¢) be the continuous-time Gaussian Sequence of functiong (1),
white noise, which is stated in Eq. (5), agdbe a Morlet 1 € €
wavelet with parameterwg. Denote the Morlet wavelet ge(f)=-, te€ [_5’5]
transform of x(¢) by T(a,b). Then the wavelet power €

spectrumT (a, b)|? is distributed as follows: and
€ €
2 2 gé(t):07 te [—OO,——) (—,OO], (23)
IT(a,b)|? = "7(1+e—“’3)X%+"7<1—e—“5>X§, ?UG
one has
where X1 and X, are independent Gaussian random vari-
ables with mean 0 and variance 1. 6'[‘]086 (1) =38()

www.ann-geophys.net/30/1743/2012/ Ann. Geophys., 30, 174850 2012
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15 w w wavelet power spectrum of continuous-time Gaussian white
® Monte-Carlo method .
Our formula noise. . .
““““ Ge's formula Ge (2007) indicated that wavelet power spectrum of
15-0-6-6-6-6-0-0-0-0-0-5-6-6-0-0-0-0-0-9-6-6-0-0-0-0-000-0-0 continuous-time Gaussian white noise is distributed as fol-
lows:
2. .9 2 2.2
IT((a,b)|” = —8to“ x5
0.5f g 2

(see Eqg. 18 of Ge’s paper).

In Theorem 1, we have proved that the wavelet power
D spectrum of continuous-time Gaussian white noise is dis-
tributed as follows:

Mean of wavelet power spectrum |T(z:1,b)|2

2 2
IT@b)? = T A+e™8) X+ -1 —e76) X3,

-0.5
0.2 0.4 0.6 0.8
Scale a i
If we use a Morlet wavelet with parametgg = 6, we have
4 T

Nﬁf ®  Monte-Carlo method 2 02 2
2 35l our formula | T (a.b)? = —x3.
E ““““ Ge's formula 2
g 300000000ttt ettt Without loss of generalization, we take= 1 andb = 0.5.
2 sl Tables 1 and 2, and Fig. 1 show the mean and 95 % con-
g fidence level of wavelet power spectrum of Gaussian white
3 2r noise obtained by Monte-Carlo method, our formula and
g sl Ge’s formula. It is clear that our result on wavelet power
}6) spectrum is consistent with that obtained by Monte-Carlo
3 1 1 method. Ge’s formula is quite different from that obtained
% 05 by Monte-Carlo method or our method. From here, we can
£ also see that Ge’s formula is wrong.
=}
D\g O v v
g
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Finally, with the help of Monte-Carlo method and numeri-
cal integral, we can approximately obtain the distribution of
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