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Abstract. We study the wave-particle interaction and the
evolution of electromagnetic waves propagating through a
plasma composed of electrons and protons, using two ap-
proaches. First, a quasilinear kinetic theory has been de-
veloped to study the energy transfer between waves and
particles, with the subsequent acceleration and heating of
protons. Second, a one-dimensional hybrid numerical sim-
ulation has been performed, with and without including an
expanding-box model that emulates the spherical expansion
of the solar wind, to investigate the fully nonlinear evolu-
tion of this wave-particle interaction. Numerical results of
both approaches show that there is an anisotropic evolution
of proton temperature.

Keywords. Space plasma physics (Kinetic and MHD the-
ory; Numerical simulation studies; Wave-particle interac-
tions)

1 Introduction

The problem of acceleration and heating of plasmas due to
the interaction of particles with propagating waves has re-
ceived special attention during the last decades, especially
in the field of laboratory and space plasma physics. In the
case of the solar wind (Axford and McKenzie, 1992, 1996;
Kohl et al., 1998; Marsch, 1998; Cranmer et al., 1999a,b;
Esser et al., 1999; Hu and Habbal, 1999; Tu and Marsch,
1999; Cranmer, 2002), recent observations and theoretical
results seem to indicate that most of the acceleration process
occurs within a few solar radii from the Sun and the main

mechanism is due to resonant absorption of ion-cyclotron
waves (Isenberg, 2001; Cranmer, 2002; Hollweg and Isen-
berg, 2002). However, the detailed processes for the en-
ergy transfer between waves and different particle species
are still an open question. To address these issues, we in-
vestigate the wave-particle interaction and evolution of cir-
cularly polarized electromagnetic proton-cyclotron waves
propagating parallel to the background magnetic field. Fur-
ther studies of the solar wind turbulence in the neighbor-
hood of the break of the inertial range spectra as a function
of wave vector, with components parallel (k‖) and perpen-
dicular (k⊥) to the magnetic field, revealed that the fluctu-
ation spectrum is anisotropic and that the power distribu-
tion sometimes is greater at quasi-perpendicular wave vec-
tors(k⊥ � k‖) (Matthaeus et al., 1990; Horbury et al., 2005;
Dasso et al., 2005) than at quasi-parallel propagation(k‖ �

k⊥). However, at very long wavelength (smallerk), there
is still enough energy available for the quasi-parallel prop-
agating waves to dominate the oblique wave modes (where
k‖ � k⊥) (Matthaeus et al., 1990, 1996a,b; Leamon et al.,
2000; Smith et al., 2001, 2006; Horbury et al., 2005, 2008;
Bale et al., 2005, 2009), and we focus our study on this part
of the wave spectrum range.

The analysis presented follows two approaches. First, we
have developed a quasilinear theory (Davidson and Ogden,
1975; Yoon, 1992; Yoon et al., 2003; Isenberg and Vasquez,
2007; Moya et al., 2011; Pavan et al., 2011) to understand
the energy cascade that transfers wave energy from longer
to shorter wave modes, with the subsequent energy trans-
fer to the particles. This analysis corresponds to the first
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nonlinear order in Vlasov’s formalism (Alexandrov et al.,
1984; Krall and Trivelpiece, 1986). Second, we performed
a one-dimensional hybrid simulation (Gary et al., 1997; Of-
man et al., 2001; Araneda et al., 2002) of the system using
an expanding box model (Velli et al., 1990; Liewer et al.,
2001; Matteini et al., 2006; Hellinger and Tŕavnǐceck, 2008;
Ofman et al., 2011) where a thin box of plasma moves away
from the Sun in a moving frame at the local solar wind speed,
in order to investigate the full nonlinear wave-particle inter-
action of the cascade process. All these effects; i.e., energy
cascade, expansion, and nonlinear wave-particle interaction,
are included in the study to show how the shape of the parti-
cle velocity distribution functions is controlled and regulated
in kinetic plasmas.

This article is organized as follows. In Sect.2 we show the
basic equations of the quasilinear theory for the evolution
of the macroscopic parameters of the distribution function,
and we present numerical results for the case of the propa-
gation of circularly polarized electromagnetic waves parallel
to an ambient magnetic field, through a plasma composed
of electrons and protons with thermal anisotropy. In Sect.3
we present the equations and results for the same problem as
in Sect.2, but with the use of unidimensional hybrid simu-
lations with and without the inclusion of expansion effects.
Finally, in Sect.4 we compare the results of Sects.2 and3
and summarize the conclusions of this article.

2 Quasilinear approximation

2.1 Dispersion relation

We consider a plasma in an external magnetic fieldB0 = B0ẑ

composed of electrons and protons drifting with velocityV

relative to a fixed frame (the “Lab” frame) along the back-
ground magnetic field.U = V/VAp is the normalized drift
speed of the protons, withVAp = B0/

√
4πnpmp as the pro-

ton Alfvén velocity.mp andnp are the proton mass and den-
sity, respectively. We assume neutrality (i.e., zero net charge
such thatne = np) and impose a zero-current condition along
B0 (Ue = U , whereUe is the drift velocity of the electrons).

The normalized dispersion relation for proton-cyclotron
waves with left polarization, moving in the direction of the
external magnetic field, in the case of a bi-Maxwellian distri-
bution is (Gomberoff and Valdivia, 2002, 2003; Gomberoff
et al., 2004; Moya et al., 2011)

y2
= Ap −xy +yU +

[
(Ap + 1)(xy − 1− yU) + 1

yβ‖

]
Z(ϕy) ,

(1)

where we have assumed thatVAp � c. In Eq. (1), xy =

ωk/�p and y = ck/ωpp are the normalized complex fre-
quency and wave number, respectively, with�p = eB0/mpc

andωpp = (4πnpe
2/mp)

1/2 as the proton cyclotron and plas-
mas frequencies, respectively.e is the proton charge and

c is the speed of light. Also,Z is the plasma dispersion
function (Fried and Conte, 1961), ϕy = xy − 1− yU/yβ‖,
βj = vth,j/VAp wherevth,j =

√
2KBTj/mp, with j =‖,⊥

the parallel and perpendicular (with respect to the back-
ground magnetic field) thermal velocities of protons, re-
spectively, andKB is the Boltzmann constant. Finally, we
defineAp = T⊥/T‖ − 1 = β2

⊥
/β2

‖
− 1 as the proton thermal

anisotropy. Typically, values ofAp between 2 and 5 have
been reported in the solar wind (Kivelson and Russell, 1995;
Kohl et al., 1998; Cranmer, 2002, 2005; Aschwanden, 2006;
Kamide and Chian, 2007).

For now, we shall assumeβ⊥,β‖ � 1, such as in coronal
holes (Gary, 2001; Aschwanden, 2006). Therefore, the argu-
ment of theZ function is much larger than one and we can
use the semi-cold approximation (i.e., large argument asymp-
totic expansion) for protons

Z(ϕy) =
1

ϕy
+ iπe−Re[ϕy]

2
, (2)

and also consider electrons as cold (Gomberoff and Elgueta,
1991; Astudillo, 1996; Gomberoff and Valdivia, 2002, 2003;
Moya et al., 2011). We then writexy = x + iγ and assume
|γ | � |x|. Upon separation of real and imaginary parts of
Eq. (2), we obtain the dispersion relation in the semi-cold
regime. Thus,

y2
=

(x − yU)2

1− (x − yU)
, (3)

and

γ = F(x,y)−1

[
π1/2

yβ‖

]
[Ap(x−1−yU)+x−yU ]e−Re[ϕy]

2
,

(4)

where

F(x,y) =
(x − yU)(2− (x − yU))

(x − 1− yU)2
. (5)

In Fig. 1 we show the branches of the dispersion relation
Eq. (3) for U = 0.3 in the normalizedx-y space. Solid and
dashed lines correspond to the two different solutions of the
dispersion relation in the semi-cold regime.

Figure2 shows the corresponding growth rates for the two
solutions of the dispersion relation obtained from Eq. (3) for
β2

⊥
= 0.05= 5β2

‖
(Ap = 4). The solid and dashed lines corre-

spond to the solid and dashed curves in Fig.1, respectively. It
is observed thatγ (y) is positive only in a narrow region near
y = 1.5, which corresponds to an instability region. Also, for
y > 1.5, the growth rate becomes negative and leads to a res-
onant absorption region. Depending on the magnetic field en-
ergy spectrum these two effects will compete and will change
the shape of the distribution function.
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Fig. 1. Normalized dispersion relation branches. Solid and dashed
curves correspond to the two solutions of Eq. (3) for U = 0.3.

2.2 Temporal evolution of macroscopic parameters

Assuming that the macroscopic parameters of the distribu-
tion function vary slowly (compared with the wave period) in
time, the nonlinear temporal evolution equation of the proton
distribution functionf0, in the quasilinear approximation,
is given by (Alexandrov et al., 1984; Krall and Trivelpiece,
1986; Yoon, 1992; Moya et al., 2011)

∂f0

∂t
= −

e

mp

∞∫
−∞

dk

(
E−k −

k

ω−k

v × ẑ × E−k

)
·
∂fk

∂v
, (6)

where, in cylindrical coordinates[v =
(
v⊥,φ,v‖

)
],

fµ,k =
ie

√
2mpωk

(
(ωk − kvz)

∂f
(0)
µ

∂v⊥

− kv⊥

∂f
(0)
µ

∂vz

)
(7)

×

(
E+

k eiφ

ωk − kvz + �p
+

E−

k e−iφ

ωk − kvz − �p

)

is the first order perturbation of the distribution function and
Ek is the Fourier spectrum of the electric field.

Because of the bi-Maxwellian form off0, we can de-
fine (Moya et al., 2011)

K1(t) =

∫
vz(∂f0/∂t)dv , (8)

K2‖(t) =

∫
v2

z(∂f0/∂t)dv , (9)

K2⊥(t) =

∫
v2
⊥
(∂f0/∂t)dv , (10)
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Fig. 2. Normalized growth rates of the two solutions of the disper-
sion relation forβ2

⊥
= 0.05= 5β2

‖
(Ap = 4). Solid and dashed lines

correspond to solid and dashed curves in Fig.1, respectively.

and write a set of ordinary differential equations for all the
parameters of the equilibrium distribution function, given by

dU

dτ
= K1(τ ) , (11)

dβ‖

dτ
=

1

β‖(τ )
K2‖(τ ) − 2

U(τ)

β‖(τ )
K1(τ ) , (12)

dβ⊥

dτ
=

1

2β⊥(τ )
K2⊥(τ ) , (13)

where τ = �pt is the normalized time. Of course, at ev-
ery time step, a solution of these equations will require us
to solve the dispersion relation and integrate the functions
Ki(τ ) overk, because they depend on the parameters of the
distribution function and the frequencyωk.

Finally, to close the system of equations, we use the equa-
tion for the temporal evolution of the magnetic field spectral
energy per unit length (Alexandrov et al., 1984; Krall and
Trivelpiece, 1986; Moya et al., 2011)

∂ε

∂τ
= 2γ ε , (14)

where

ε =
ωpp

c

1

2πL

|Bk|
2

B2
0

, (15)

with L as the reference length of the plasma.
Thus, we have expressed the coupled system of Eqs. (11)–

(13) as an integro-differential system, where the temporal
derivatives of the parameters correspond tok-space integrals.
We note that in all the equations, we have both the frequency
and growth rate, thus, to solve the system we need to explic-
itly solvex(y) andγ (x,y) from Eqs. (3) and (4).

2.3 Numerical results

In order to solve the system of quasilinear equations, we use a
discrete grid iny-space withNy = 400 points for−2 < y <
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Fig. 3.Temporal evolution of both proton temperatures with respect
to their initial values. Solid and dashed lines correspond to perpen-
dicular and parallel temperatures, respectively.

2, hence, the separation between points isdy = 0.01. The
origin has been avoided for obvious reasons. The time step is
chosen to bedτ = 0.025. Knowing the magnetic field spec-
trum and the value of the parameters at a timeτ we can solve
the dispersion relation to obtainx andγ , as a function ofy,
at this particular time. Then, we can calculate the integrals
defined in the system of equations (Eqs.11–14), to evaluate
the time derivative of each parameter. So, with that informa-
tion, we use a 4th order Runge-Kutta method (Garćıa, 2000)
to evolve the whole system to the next time stepτ + dτ . Nu-
merical integration is performed fromτ = 0 until τ = 1000
using the Alfv́en branch (solid line in Fig.1). As initial val-
ues we use the same values ofUp andβj used in Figs.1 and
2, and we choose a Gaussian initial magnetic field spectrum

ε(t = 0) = 0.35e−5y2
, −2π < y < 2π . (16)

The range iny-space was chosen in order to compare with
the results of the hybrid simulations shown in the next sec-
tion. The Gaussian profile (Eq.16) of the initial magnetic
energy spectrum was chosen to concentrate most of the wave
energy in low frequency waves, with negligible power for
y > 1 (hencex < 1), e.g., below the proton resonance fre-
quency as has been observed in the solar wind (Cranmer
et al., 1999a,b). Even though the free energy is equally par-
titioned between waves and particles (Moya et al., 2011), it
still has a non-negligible amount of the free energy in the
γ > 0 region as inYoon (1992).

Due to the shape ofγ (x,y) of the solid curve in Fig.2,
only a small portion of the initial waves will effectively in-
teract with the particles. Furthermore, due to the shape of
K1(τ ) in Eq. (11), in every time step the total time deriva-
tive of U is essentially zero, so that the proton drift speed
can be considered essentially a constant. This is due to the
fact that the contribution of the wave momentum to the total
momentum is of the order of(VAp/c)2

� 1. Thus, for low
frequency waves, in this approximation, there is no transfer
of momentum between particles and waves.
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Fig. 4.Proton thermal anisotropy in the quasilinear solution.

It is important to mention that in the quasilinear approxi-
mation, the whole temporal dependence of the macroscopic
parameters of the distribution function depend strongly on
the imaginary part of the frequency. In the case of the chosen
parametersγ ∼ 10−2, thus integrating untilt ∼ 103 is long
enough to observe significant quasilinear effects, but not to
consider higher order nonlinear effects, such as mode cou-
pling, etc.

The temporal evolution of the two temperatures of the pro-
tons, with respect to their initial values, is shown in Fig.3.
We see evidence of a parallel heating (dashed curve in Fig.3)
and a perpendicular cooling (solid curve in Fig.3) of the
plasma. For large times the heating saturates and it seems
that the system is slowly approaching a metastable situa-
tion whereT‖ 6= T⊥. At the end of the integrated interval,
τ = 1000, the parallel temperatureT‖ is T‖ ∼ 1.4T‖(0) and
the perpendicular temperatureT⊥ exhibits a small cooling of
no more than 5 %. Thereby, owing to the changes in both
temperatures, the anisotropy also evolves as time goes on, as
shown in Fig.4. As time progresses,Ap(τ ) decreases but,
due to the slowness of the process, beyondτ ∼ 1000 it is not
possible to draw conclusions about the complete behavior of
the anisotropy for longer times. Towards the end of the nu-
merical integration,Ap decays to a final value ofAp ∼ 2.5.

Finally, to close the quasilinear system of equations, the
total free energy available due to the thermal anisotropy of
the proton distribution function is absorbed by the electro-
magnetic field to preserve the total energy of the system (dur-
ing the integration untilτ = 1000 the total energy of the sys-
tem remained constant to better than 0.1 %). In Fig.5 we
show an amplified portion of the magnetic field energy spec-
trum profile as a function ofy neary = 1.3 (Fig. 5a), and
as a function ofx nearx = 1.1 (Fig. 5b). The initial Gaus-
sian spectrum changes due to the presence of regions of ab-
sorption and instabilities (see Fig.2). Even though the ab-
sorption zone is greater than the instability zone atτ = 0,
there is little energy fory > 2 (x > 1.4) so that the waves
cannot transfer a noticeable amount of energy to the protons.
Thus, the net effect of the propagation of waves through the
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electron-proton plasma is the generation of instabilities for
1 < y < 1.6 (0.9 < x < 1.3). In Fig. 5 it is shown that the
particle energy loss is transfered to the electromagnetic field
as an emergence of wave modes of higher energy density
than the initial ones. Thus, for the initial set of parameters
in this quasilinear approximation, the whole system evolves
by transferring energy from the particles to the waves, slowly
approaching a metastable equilibrium.

3 Hybrid model

Due to the large difference in mass between electrons and
protons, an efficient, and very common way to model a
plasma system is to consider electrons as a massless fluid.
Thus, we can consider protons as kinetic particles with a cer-
tain velocity distribution function and electrons as a charged
fluid with bulk velocityUe. As a fluid, the temporal evolution
for Ue is given by the momentum equation

mene
dUe

dt
= −ene

(
E +

Ue

c
× B

)
− ∇Pe, (17)

whereme is the electron mass andPe = nekBTe is the pres-
sure of the electron fluid. Here,Te is the electron temper-
ature and we have assumed the quasi-neutrality condition
ne ≈ np ≈ n, wheren is the average density of the plasma.

In addition to the evolution of particles, we are also in-
terested in following the space and time evolution of the
electromagnetic field. This temporal evolution is given by
Maxwell’s equations:

∇ ·B = 0, ∇ ·E = 4πρ , (18)
∂B

∂t
= −c∇ ×E ,

∂E

∂t
= c∇ ×B − 4πJ , (19)

whereρ andJ are the charge and current densities, respec-
tively. Since we are interested in low frequency waves, it can
be shown that the displacement current term in Ampere’s
equation is of orderO((VAp/c)2) and it can be neglected.
Thus, we can deduce an expression for the current in terms
of the curl of the magnetic field

J =
c

4π
∇ ×B . (20)

Similarly, the current density of a plasma with electrons and
ions is given by the vectorial sum of proton and electron cur-
rentsJ = en(Up − Ue). Here,Up is the fluid bulk velocity
of protons. Thus, neglecting the LHS of Eq. (17), solving the
equation forE, and using Maxwell’s equations (Eqs.19), we
obtain a set of equations for the hybrid model:

dx i

dt
= vi , (21)

dvi

dt
=

e

mp

(
E +

vi

c
× B

)
, (22)
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Fig. 5. Normalized magnetic field energy spectrumε for τ = 250
(solid), τ = 500 (dashed),τ = 750 (dotted) andτ = 1000 (dot
dashed). It is observed that as time advances, there is an emergence
of waves at higher modes than what was originally available.(a) ε

as a function of the wave numbery. (b) ε as a function of the fre-
quencyx.

E = −
1

c
Up × B +

1

4πen
(∇ ×B) × B −

kBTe

en
∇n, (23)

∂B

∂t
= ∇ ×

(
Up × B

)
−

c

4πen
∇ × [(∇ ×B) × B] , (24)

wherexi andvi are the position and velocity of thei-th pro-
ton and, in this approximation, electron temperatureTe re-
mains constant and equal to zero.

3.1 Hybrid expanding box model

Numerical simulation of plasmas in intrinsically spherical
geometry has always been complicated due to the problem
of self-forces and the selection of the shape function for
the macroparticles (Dawson, 1983; Birdsall and Langdon,
1985; Matsumoto and Omura, 1993). Recently, a formalism
in which a plasma in spherical expansion, like the solar wind,
has been modeled in a Cartesian system. In thisexpanding
box model, a thin shell of plasma (the box) is considered
moving radially away from the origin of certain frameS with
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coordinatesx ,y ,z at a constant velocityU0x̂ (Velli et al.,
1990; Grappin and Velli, 1996; Liewer et al., 2001). The ra-
dial position of the box, relative to the origin ofS is given by
R = R(t) = R0 + U0t , whereR0x̂ is the position of the box
at t = 0. Then, to transform coordinates to a frame moving
with the box (theS′ frame with coordinatesx′,y′,z′) a two
step transformation process is done. First, a Galilean shift
betweenx andx′, and then a stretching iny andz. Namely,

x = x′
+ R, (25)

y = ay′ , (26)

z = az′ , (27)

wherea = 1+ U0t/R0.
These transformations imply that, for an observer moving

within the box, the box does not change its volume, but for
an observer at rest with respect to theS frame, the box is ex-
panding as it moves away from the origin. Then, using these
transformations (25)–(27) it is possible to represent the time
and the spatial derivatives in theS′ frame, and then to ex-
press Eqs. (21)–(24) for the hybrid model in the expanding
box frame (Liewer et al., 2001) as

dx′

i

dt
= A(t) · v′

i , (28)

dvi

dt
=

dv′
i

dt ′
+

U0

R0
P · v′

i , (29)

E′
= −

1

c
U ′

p ×B ′
+

1

4πen

(
∇

′
× B ′

)
×B ′

−
kBTe

en
∇n, (30)

∂B ′

∂t ′
+ B ′(∇ ′

· U ′
p) − (B · ∇

′)U ′
p + (U ′

p · ∇
′)B ′

+
c

4πen
∇

′
×
[(

∇
′
× B ′

)
× B ′

]
= −

U0

R
L · B ′ , (31)

where the′ quantities are measured in the moving frame. The
derivative operators are given by

∇
′
= x̂

∂

∂x′
+ŷ

1

a

∂

∂y′
+ ẑ

1

a

∂

∂z′
,

∂

∂t
≡

∂

∂t ′
−U0·∇

′ , (32)

and P = diag(0,1,1), L = diag(2,1,1) and A(t) =

diag(1,1/a,1/a) are diagonal matrices. Also,a can be
written asa = 1+ ετ , whereτ is the time normalized to the
proton cyclotron frequency�p, andε = U0/(R0�p).

3.2 Numerical results

As a first approximation to the problem, and to compare with
the quasilinear results, we have performed a standard numer-
ical hybrid simulation in one spatial dimension (thex coordi-
nate) and three dimensions in velocity space, in the presence
of a background magnetic fieldB0 = B0x̂. To solve the fields

equation, we use a periodic system inx, with Nx = 512 cells
of sizedx = 0.5 and 1000 particles per cell, where we have
chosen the same spatial normalization as in the quasilinear
case, namely the ion inertial lengthλp = VAp/�p. The par-
ticle and field equations are integrated in time using a ratio-
nal Runge-Kutta method (Ofman et al., 2001, 2011), whereas
the spatial derivatives are calculated using a pseudo-spectral
fast Fourier transform method. The time step used wasdτ =

0.025 and the simulation was performed untilτ = 1000.
In the case of standard hybrid simulations, the natural

choice for a reference frame is the electron frame. Thus,
to keep quasi-neutrality and parallel zero current, the initial
condition for proton drift isU = 0. The velocity distribution
function is initialized as a bi-Maxwellian using a random
number generator and, in order to compare the quasilinear
and hybrid models, we choose the same initial values for both
proton temperaturesβ2

⊥
= 0.05= 5β2

‖
andTe = 0 for elec-

trons. The parallelx component of the magnetic field remains
constant, equal toB0, throughout the simulations. For the ini-
tial parameters mentioned, we have performed simulations
with an initial Gaussian perpendicular magnetic field with
random phases, where, in order to compare, the amplitude
and exponent of the Gaussian was chosen to have the same
magnetic spectrum as in the quasilinear method (Eq.16).

In Fig. 6a, we show the time dependence of perpendicu-
lar and parallel temperatures during the simulation for the
hybrid models. Comparing with the quasilinear method, the
figure shows that in the case of the standard hybrid simula-
tion, parallel heating (dashed curve in Fig.6) is slower, and
perpendicular cooling (solid curve in the figure) is similar
to the quasilinear solution, due to the fully nonlinear res-
onant absorption present in hybrid models. Thus, as it can
be seen in Fig.6b, the final values obtained correspond to
T⊥ ∼ 0.95T⊥(0) and T‖ ∼ 1.1T‖(0) for perpendicular and
parallel temperatures, respectively. However, the combined
effects produce a final, nonzero value (Ap ∼ 3.4) of the ther-
mal anisotropy. Compared to the quasilinear case, as shown
in Fig. 7, it is observed that, although the time evolution of
both curves does not match, the slopes of both curves are
similar. Thus, qualitatively the two approaches agree. Also,
like in the quasilinear approach, in our simulations the fluid
drift U had no significant changes. It is important to mention
that it is expected that both models differ. In the quasilinear
approach, we follow just one solution (the Alfvén branch) of
the dispersion relation and the nonlinear terms are approxi-
mated by the quasilinear theory. On the other hand, in hybrid
models, the simulations consider all the branches of the dis-
persion relation, including the instabilities propagating anti-
parallel to the background magnetic field. Also, being com-
pletely nonlinear, hybrid simulations include several nonlin-
ear effects as coupling (wave-wave interaction) between all
the modes allowed by the dispersion relation.

On the other hand, for the case of the expanding box hy-
brid simulations, Fig.6 shows how the expansion induces an
increase in the perpendicular cooling of the plasma. While
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Fig. 6. (a)Normalized proton temperatures as a function of time for
both hybrid simulations (with and without expansion). Dotted and
dot-dashed curves correspond to parallel and perpendicular temper-
atures in the expanding box model simulation (withε = 10−4), re-
spectively. On the other hand, dashed and solid curves correspond
to parallel and perpendicular temperatures for simple hybrid simu-
lations (ε = 0). (b) The same evolution shown in panel(a), but with
respect to the initial values of both temperatures for the simple and
expanding box simulations.

there are no significant differences between both models in
the time dependence of parallel temperatures (dashed and
dotted curves in Fig.6a), the expansion hastens the decline
in this quantity as time evolves in the case of perpendicu-
lar temperature (dot-dashed curve). Also, in Fig.6b we show
both temperatures with respect to their initial values. The fig-
ure shows that parallel temperature increases by 5 % while
the perpendicular temperature decreases approximately to a
value ofT⊥ ∼ 0.8T⊥(0). Thus, the thermal anisotropy in the
expansion model relaxes faster than in the standard model
without expansion, as it can be seen in Fig.7, reaching a
value ofAp(τ = 1000) ∼ 2.9. Also, as the expansion is reg-
ulated bya(τ) = 1+ ετ (in our simulations we choseε =

10−4) from the figure it is clear that notable effects only oc-
cur at long enough timesτ ∼ 200. It is important to mention
that in the case of the solar corona and solar wind, that corre-
spond to spherically expanding plasmas,ε ∼ 10−5. However,
if we can see qualitative differences between the simple and
the expanding box hybrid models at times of orderτ ∼ 103

we need to amplify theε parameter to be able to draw con-
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Fig. 7.Proton thermal anisotropy for standardε = 0 (solid) and ex-
panding boxε = 10−4 (dashed) hybrid simulations. Here it can be
seen that the expansion effects are notable only from long enough
times during the simulation. In order to compare, the anisotropy for
the quasilinear solution is also included (dotted curve).
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Fig. 8. Temporal evolution of the perpendicular magnetic field en-
ergy in simple (solid) and expanding box (dashed) hybrid models.
Note that significant effects appear only afterτ ∼ 200 as in the case
of thermal anisotropy.

clusions about the differences and similarities between both
methods (Liewer et al., 2001).

The acceleration in the relaxation of the temperatures, due
to the spherical expansion of the plasma, also influences the
behavior of electromagnetic waves. In Fig.8 we show the
time evolution of the perpendicular magnetic field energy
until the end of the simulation. Owing to the interaction be-
tween protons and waves, for times belowτ ∼ 200, the av-
erage perpendicular magnetic field energy increases mono-
tonically. For larger times, the influence on the expanding
box parametera begins to be relevant, so that there is a con-
siderable decrease in the perpendicular magnetic field energy
compared to the case of the standard hybrid simulation (solid
curve in the figure).
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4 Discussion and conclusions

Starting from two different kinetic approaches, the first the-
oretical based on quasilinear theory and the second based on
computational simulations of hybrid models, we have done
numerical studies on the interaction of waves and protons.

For the chosen parameters, our results indicate that, due to
the shape of theKj functions in our quasilinear method, the
main change occured in the parallel temperature, while in the
case of the hybrid code without expansion, the main effect of
the interaction between particles and waves was a decrease of
the perpendicular temperatures. However, the quasilinear and
the standard hybrid simulations agree on the macroscopic
evolution of the drift velocity parallel to the ambient mag-
netic field, and also agree on the evolution of the slope of the
thermal anisotropy, even when both approaches differ in the
absolute time profile of the temperatures and anisotropies.

We also performed numerical simulations using an ex-
panding box hybrid model using the same initial parameters
as in the quasilinear and standard hybrid models. Our results
show how the expansion produces a relaxation of the system
in the perpendicular plane. This model shows a decrease of
the average magnetic field energy and also the typical cool-
ing of an expanding gas. Nevertheless, due to thea = 1+ τε

parameter, those effects are significant only for long enough
times.

In conclusion, our results allow us to obtain and compare
the basic properties of the wave-particle interaction, in sim-
ple electron-proton plasmas, using different models. Numer-
ical results show that both quasilinear and nonlinear meth-
ods qualitatively agree in the evolution of the macroscopic
plasma parameters, and this seems to suggest that resonant
absorption and the energy cascade mentioned above may be
relevant in the heating of solar wind plasma.
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