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Abstract. The theory of the Weibel instability is general-
ized for the case of a plasma immersed in a nonzero external
magnetic field. It is shown that the presence of this exter-
nal field modifies the dispersion relation for this mode which
now possesses a nonzero frequency. The explicit expression
for the real and imaginary parts of the frequency is then
calculated. It turns out that the linear growth rate remains
unchanged, whereas the frequency becomes nonzero due to
the finite value of the electron cyclotron frequency. The fre-
quency of the Weibel mode is found to be proportional to the
electron temperature anisotropy. The formal similarity of the
Weibel and drift-mirror instabilities is outlined.
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1 Introduction

The Weibel instability (Weibel, 1959) is one of the most well-
known plasma instabilities. It arises in homogeneous plas-
mas possessing an electron velocity space anisotropy. The
anisotropy can be explicitly described in terms of its perpen-
dicular and parallel velocities, taking a bi-Maxwellian form.
A simplified version of this instability has been considered
by Fried (1959) who pointed out that it can be found in a
plasma with the superposition of counter-streaming beams.
In this respect it becomes similar to the ordinary two-stream
instability (Schlickeiser and Shukla, 2003). The instability
gives rise to the exponential growth of electromagnetic fields
which help to restore plasma isotropy and is often consid-
ered as one of the most important mechanisms for the gener-
ation of magnetic fields in space (Medvedev and Loeb, 1999;
Achtenberg and Wiersma, 2007). When a plasma is either
free from or possesses negligibly small external magnetic
fields, the Weibel wave behaves as a purely zero-frequency
non propagating mode. However, in most plasma configura-
tions, the system is not completely free of magnetic fields,

some noticeable small external component is always present.
The role of the seed perturbations, containing weak random
magnetic fields, in the generation of Weibel instability has
been clarified by Yoon (2007). Treumann and Baumjohann
(2012) recently discussed the problem of the Weibel infrared
catastrophe which arises due to the fact that magnetic field
fluctuations are strongly dependent on their wave numbers
(
〈
δB2

〉
k
∝ k−3). These authors also confirmed that thermal

fluctuations can support a weak, spontaneous magnetic fluc-
tuation background level in plasma and recalculated the ther-
mal level for Weibel instability.

The aim of the present paper is to address another issue:
to understand whether the Weibel instability can operate in a
weak but steady external magnetic field and to determine the
effect on the dispersion relation of the waves.

The paper is organized in the following fashion: in Sect. 2
we formulate the basic equations that describe the Weibel
instability in a nonzero external magnetic field. The corre-
sponding wave dispersion relation is derived in Sect. 3. In
Sect. 3 the similarity between Weibel and drift-mirror insta-
bilities is also pointed out. These results are then discussed
in Sect. 4.

2 Basic equations

We consider a collisionless, uniform plasma composed of
ions and electrons immersed in a nonzero external magnetic
field B0. For the sake of simplicity we select the electron ve-
locity distribution function to be bi-Maxwellian, whereas the
ion distribution is represented by an ordinary Maxwellian.
The components of the perturbed magnetic fieldδB take the
form

δBx = bx(t)e
−iω+ikz, δBy = by(t)e

−iω+ikz

Published by Copernicus Publications on behalf of the European Geosciences Union.



1052 O. A. Pokhotelov and M. A. Balikhin: Weibel instability

and

δBz = 0. (1)

We assume that all perturbed values vary as exp(−iωt + ikz)

for each mode (k,ω), bx,y(t) represents the magnetic field
amplitudes. Furthermore,ω and k are the wave frequency
and wave number, respectively. We use a local Cartesian co-
ordinate system in which the z-axis is directed along the ex-
ternal magnetic fieldB0, and the x- and y-axes are in the
perpendicular plane, completing the triad. Our analysis will
be limited to the most significant case, i.e. when the electron
temperature is much greater than the ion temperature.

The phase velocity of the Weibel mode is much greater
than the ion thermal speed. As a result the ions do not con-
tribute to the Weibel dispersion relation. They simply act
as a fixed neutralizing background. The linear response of
the electrons to Weibel-type perturbations can be determined
from the Vlasov equation

−i(ω − kv‖)δfω,k + ωc

∂δfω,k

∂α

=
ebv⊥

mk

[
(ω − kv‖)

∂F

v⊥∂v⊥

+ k
∂F

∂v‖

]
exp(∓iα). (2)

We consider that for an undisturbed velocity distribution
functionF that is symmetric betweenvx andvy, the moduli
of the components of the magnetic fieldbx andby are equal,
i.e. |bx| =

∣∣by
∣∣. We may further assume thatbx = ±iby ≡

±ib. We note thatbx = ±by corresponds to a rotation of the
system of reference in the (x, y) plane. The componentsvx
andvy are related tov⊥ and pitch-angleα through the re-
lations vx = v⊥ cosα and vy = v⊥ sinα and v‖ is the com-
ponent of the particle velocity along the external magnetic
field. Furthermore,m is the electron mass,e is the magni-
tude of the electron charge andωc = eB0/m is the electron
cyclotron frequency.

Searching for a solution to Eq. (2) in the form δfω,k =

δf ∓

ω,k exp(∓iα) one finds

δf ∓

ω,k = i
ebv⊥

mk
[

∂F

v⊥∂v⊥

−
∂F

v‖∂v‖

+

ω ∂F
v‖∂v‖

± ωc

(
∂F

v⊥∂v⊥
−

∂F
v‖∂v‖

)
ω − kv‖ ± ωc

]. (3)

Here the± sign corresponds to the clock-wise (right-hand) or
anti-clockwise (left-hand) rotation of the wave polarization
plane.

3 Weibel dispersion relation

Using the distribution function (3), we find the x-component
of the electric current

jx = −i
e2bπ

2mk

∫
v3
⊥
dv⊥dv‖

[
∂F

v⊥∂v⊥

−
∂F

v‖∂v‖

+

ω ∂F
v‖∂v‖

± ωc

(
∂F

v⊥∂v⊥
−

∂F
v‖∂v‖

)
ω − kv‖ ± ωc

]
. (4)

Substituting Eq. (4) into Ampére’s law and neglecting the
contribution of the displacement current, one finds that the
wave dispersion relation takes the form:

k2c2

ω2
p

−
π

n

∫
v3
⊥
dv⊥dv‖

[
∂F

v⊥∂v⊥

−
∂F

v‖∂v‖

+

ω ∂F
v‖∂v‖

± ωc

(
∂F

v⊥∂v⊥
−

∂F
v‖∂v‖

)
ω − kv‖ ± ωc

]
= 0, (5)

wherec is the velocity of light,n is the plasma number den-
sity,ωp = (ne2/mε0)

1/2 is the Langmuir frequency andε0 is
the permittivity of free space. The integration is carried out
over velocity space.

Integrating Eq. (5) overv⊥ by parts we have

I − 1 −
k2c2

ω2
p

+
π

n

∫
v3
⊥
dv⊥dv‖

×

ω ∂F
v‖∂v‖

± ωc

(
∂F

v⊥∂v⊥
−

∂F
v‖∂v‖

)
ω − kv‖ ± ωc

= 0, (6)

where

I = −
π

n

∫
v3
⊥
dv⊥dv‖

∂F

v‖∂v‖

. (7)

Formally, the dispersion relation (6) is somewhat similar to
that for the drift-mirror mode (cf. Hasegawa, 1969 (Eq. 36);
Pokhotelov et al., 1985 (Eq. 46)). A comparison between
these expressions shows that in the case of the Weibel insta-
bility, the role of the finite ion Larmor radius effect is played
by the collisionless skin depthc/ωp, the role of the mirror
force is played by the first two terms in the square brackets
in Eq. (5) and the role of the diamagnetic drift frequency is
replaced by the electron cyclotron frequencyωc.

Let us now analyze the dispersion relation (6) for the case
when the equilibrium electron velocity distribution function
takes a bi-Maxwellian form given by

F =
n

π3/2v2
T⊥

vT||

exp

(
−

v2
⊥

v2
T⊥

−
v2
||

v2
T||

)
, (8)

wherevT⊥(||)
= (2T⊥(||)/m)1/2 is the perpendicular (parallel)

electron thermal velocity andT⊥(||) is the electron perpen-
dicular (parallel) electron temperature. Other investigations
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have dealt with more exotic anisotropic distributions, such as
waterbag (Yoon and Davidson, 1987) or kappa-distributions
(Zaheer and Murtaza, 2007). However, the use of the distri-
bution (8) results in a standard form for the dispersion re-
lation which is useful for various applications. Substituting
Eq. (8) into Eq. (6) and making necessary integrations one
finds

T⊥

T||

− 1 −
k2c2

ωp

+
T⊥

T||

ω ∓ ωc(T||/T⊥ − 1)

|k|vT||

Z

(
ω ± ωc

|k|vT||

)
= 0, (9)

whereZ(ζ ) is the plasma dispersion function given by

Z(ζ ) =
1

π
1
2

∞∫
−∞

e−y2
dy

y − ζ
. (10)

The resonant Weibel instability is found in the low-frequency
limit |ω±ωc| � |kv‖|, where the following expansion holds

Z(ζ ) ' iπ1/2
− 2ζ. (11)

Substituting Eq. (11) into Eq. (9) and decomposing the
frequency into its imaginary and real parts one finds (cf.
Pokhotelov and Amariutei, 2011)

Im(ω) =
|k|vT||

π1/2

T||

T⊥

(
T⊥

T||

− 1−
k2c2

ω2
p

)
, (12)

and

Re(ω) = ±ωc
T||

T⊥

[(
1−

2

π

)(
T⊥

T||

− 1

)
+

2

π

k2c2

ω2
p

]
. (13)

One sees that the instability leads to the excitation of two
circularly polarized waves moving in the opposite directions
along the magnetic field. The maximum growth rate occurs
when

k = kmax =
ωp

31/2c

(
T⊥

T||

− 1

) 1
2

. (14)

Substituting Eq. (14) into Eq. (13) one finds that the fre-
quency of the fastest growing mode is

(Reω)max = ±0.58× ωc(1− T||/T⊥) � ωc. (15)

Thus, under conditions of marginal stability, which were as-
sumed in the derivation presented here, the Weibel mode re-
mains low frequency even in the presence of nonzero external
magnetic field.

4 Discussion and conclusions

In the present study we have investigated the effect of a
nonzero external magnetic field in relation to the Weibel in-
stability. It was shown that the inclusion of this field leads to
the following modifications. First, when the magnetic field
B0 is much smaller than

(
T⊥/T|| − 1

)1/2
(µ0p⊥)1/2 (where

µ0 is permeability of free space andp⊥ is the plasma pres-
sure), the Weibel instability growth rate remains unchanged.
It takes the form (12), which coincides with the classical ex-
pression (e.g. Weibel, 1959; see also Pokhotelov and Amar-
iutei, 2011). One would expect that in stronger, not really
strong, fields not only the frequency will increase coming
closer to the electron cyclotron frequency, but also changes
in threshold and decrease in growth rate will result. In case
of Weibel two-stream instability, the corresponding analysis
was carried out by Hededal and Nishikawa (2005) using PIC
simulations. In this study the external magnetic field reduces
the instability growth rate. However, such an analysis we re-
serve for our future investigations. Second, in the presence of
an external magnetic field, the Weibel mode has nonzero fre-
quency defined by Eq. (13) or Eq. (15) in contrast to the case
of zero external magnetic field. The instability generates two
circularly polarized modes moving in the opposite directions
along the external magnetic field.

One of the interesting features of the Weibel mode in the
presence of nonzero external magnetic field is that Eq. (6) is
mathematically similar to that derived by Hasegawa (1969)
for the drift-mirror mode. The nonlinear theory of the Weibel
instability including a nonzero external magnetic field can be
constructed in a similar way to that carried out by Pokhotelov
et al. (2010) and Pokhotelov and Amariutei (2011).
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