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Abstract. The appearance of eruptive space plasma pro-l Introduction
cesses, e.g. in eruptive flares as observed in the solar atmo-
sphere, is usually assumed to be caused by magnetic recoMagnetic reconnection is thought to be a process responsible
nection, often connected with singular points of the magneticfor many eruptive plasma phenomena in space plasmas and
field. astrophysical plasmas, like geomagnetical substorms or solar
We are interested in the general relation between the eigeritares. Although magnetic reconnection in two dimensions
values of the Jacobians of the plasma velocity and the mag¢2-D) is fairly well understood (e.g. see the commenBarty
netic field and their relation to the shape of a spatially vary-et al, 2009, not much is known about the topological and
ing, localized non-idealness or resistivity, i.e. we are searchgeometrical structure of flow and field lines in the vicinity of
ing for the general solution. We perform a local analysis of the singular points of plasma flow and magnetic field.
almost all regular, generic, structurally stable non-ideal or re- The first reconnection scenarios Bgtsche1964 and
sistive MHD solutions. Therefore we use Taylor expansionsSweet-Parker (see, e.§weet 1958 proposed a magnetic
of the magnetic field, the velocity field and all other physical null point and a stagnation point flow into the diffusion re-
guantities, including the non-idealness, and with the methodion, i.e. the stagnation point is inside this diffusion region.
of comparison of coefficients, the non-linear resistive MHD  Later, Priest and Cowley(1979 analysed the case of
system is solved analytically, locally in a close vicinity of the incompressible 2-D MHD with constant resistivity. They
null point. showed that either the magnetic field is of hyperbolic type
We get a parameterised general solution that provides u§'X-type”) and the flow is a shear flow, or the magnetic field
with the topological and geometrical skeleton of the resis-is of higher order (and “sheared”) and the flow has a typical
tive MHD fields. These local solutions provide us with the shape of a stagnation point flow (hyperbolic). In the former
“roots” of field and streamlines around the null points of case reconnection takes place, while the latter case results in
basically all possible 2-D reconnection solutions. We proveso-called annihilation solutions.
mathematically that necessarily, the flow close to the mag- Annihilation solutions have further been studied®saig
netic X-point must also be of X-point type to guarantee pos-and Henton(1995 who chose a special ansatz for the so-
itive dissipation of energy and annihilation of magnetic flux. lution of the resistive MHD to get reconnection solutions.
We also prove that, if the non-idealness has only a oneThey solved the first order momentum equation and the re-
dimensional, sheet-like structure, only one separatrix line carsistive Ohm’s law, starting with a nonlinear perturbation of
be crossed by the plasma flow, similar to known reconnectivenagnetic annihilation solutions. This lead them to so-called
annihilation solutions. “reconnective annihilation” solutions, where only one of the
two separatrix-lines is crossed, and the other is only tan-
gent to the converging streamlines. The current sheet has a
one-dimensional structure (straight line), while curvilinear
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current sheets were subsequently studiedThgsi et al.  flow, i.e. without crossing the magnetic separatrices and,
(2002 andTitov et al. (2004. The results found b¥raig as we will see in the following (Sect. 2.2), to a vanish-
and Henton(1995 and Craig and Rickard1994 confirm ing electric field. Such a configuration does not allow for
the results found earlier biriest and Cowley1975, who reconnection. In 3-Dritov and Hornig(2000 found addi-
found more “shear-like” flows instead of typical stagnation tional non-field-aligned-flows, so-called SFC-flows (spiral-
point flows. field-crossing flows). But as the resistivity was constant and
It was shown byPriest et al.(1994 and later on in ex- also the current density, the flow can cross the field lines in
tended form bywatson and Crai1998 that under certain  the fan-plane, but not cross the fan-plane itself. Also, no flux
circumstances, like constant resistivity or current depend-+ransport in the vicinity of the nulls can take place as the non-
ing/anomalous resistivity and sub-A#uic flow, etc., recon- idealness;j is constant. This interesting dynamic is there-
nection is impossible: the so-called anti-reconnection theofore close to reconnection, but is not a “classical”’ reconnec-
rems. tion scenario. In this investigation we will basically follow
What is missing however in the framework of the 2-D re- the method ofTitov and Hornig(2000, but allow for a spa-
sistive reconnection problematics is a detailed analysis oriially varying resistivity.
the relation between the stable topology of magnetic field Some detailed and important remarks concerning the local
and stream lines, and the topology and geometry of any nonuse of linear fields or better to say linearized fields are:
constant, i.e. spatially dependent resistivity. Therefore it re- Morse-Smale systems are “typical” or generic vector fields
stricts every possible solution of the slightly non-ideal MHD on two-dimensional compact orientable manifolds. They
system Eqs.9)—(15), i.e. in particular we derive a general so- have basically a non-vanishing real part of the eigenvalues
lution for incompressible resistive MHD in the close vicinity at the null points, but also periodic orbits (in 2-D elliptic null
of the null point of flow and field. We prove in the following point) with zero real part are allowed due to the divergence-
that also “typical” stagnation point flows are possible (“X- free nature of magnetic fields (see, e.g. the theorem 15.1
type”), and exclude here the “shear-like” flows. in Reitmann 1990. The inclusion of a guide field would
change the typical character of a 2-D null point topology: the
classical guide field is constant, and would therefore destroy
2 Assumptions and basic equations the generic singular structure in the vicinity of the 2-D mag-
netic null point. If the guide field,; depends on andy and
2.1 The topological and geometrical structure of the a magnetic null point should exist, then the situation would
magnetic field be basically the same in the close vicinity of the null point
as with constant guide field. As an addition of a guide field
The topological classification of 2-D vector fields in the would destroy the generic topological properties of the 2-D
vicinity of their null points is described in the literature (with case, we will exclude a guide field within this investigation.
connection about phase portraits of dynamical systems, i.e. Every vector field on a manifold is basically equivalent
systems of ordinary differential equations) (e.g.Ashold, to a dynamical system (see, eAynold, 1992. Dynamical
1992 Amann 1995 or Reitmann 1990. The topological = Systems not having Morse-Smale structure in 2-D are topo-
structure of magnetic fields in the vicinity of null points is de- logically/structurally unstable and will not occur in nature,
scribed, e.g. byrarnell et al(1996 and concerning the con- as any small perturbation will “destroy” such systems (see,
struction of ideal MHD flows, e.g. iNickeler et al.(2006. e.g. Hornig and Schindler1996 Bruce and Giblin 1992
Our interest is to ask which topology and geometry of theor Reitmann 1990 and for a mathematical prodteixotq
macroscopicflow correspond to which magnetic topology 1959. Solutions, depending on singular perturbation theory,
and geometry of the magnetic field in the frame of MHD. In are therefore exceptions and thus, in a general sense, “un-
contrast to the analyses mentioned in the previous paragraplphysical”. As almost all functions are of Morse-type, without
we here have to investigate the topological and geometricaloss of generality, we know that the (effective) resistivity is a
properties ototh vector fields, i.e. that of the plasma flow quadratic form, like the flux functiod and the stream func-
and that of the magnetic field. To perform this analysis wetion v (see Eqs3 and34). Our approach, in contrast to the
use a Taylor expansion of both fields in the close vicinity of above mentioned, guarantees reasonable and structurally sta-
their null points. As we are interested in the local structure ofble fields, being necessary to define magnetic reconnection
the fields only, we neglect all derivatives of the order higheror similar dynamics.
than one. Such a treatment is justified because we are inter- The topological and geometrical “roots” can be deter-
ested in how the field and streamlines are rooted in the nulmined by an arbitrary contracting mapping such that only
points of flow and field, represented by the eigenvalues of thehe lowest non-trivial orders remain. Then we can express
Jacobians. the class of linear velocity fields with the help of their first
A similar approach for 3-D, but restriced to constant resis-derivatives, i.e. Jacobians:
tivity, was done byTitov and Hornig(2000. In 2-D the re-
striction to constant resistivity would lead to a field-aligned
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Fig. 1. Scenario of a flare loop with an X-point.
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According toParnell et al(1996, every magnetic field of

the form of Eq. §) can be rotated such, that it is represented

by a magnetic flux functiom = ax?+ by?, so that a stan-

dard null point of the magnetic field appears with a constant
current densityj; = jo = const around the origin, where the

magnetic field is given by
VAxe;=B. (3)

The corresponding scenario of a flare loop is given in Eig.
The current density is given by

VxB=—AAe;, = uojzez, 4)
such that

1-(%0) ()= (guivsn "% 7)0)

—2a 0 J\y B (je+ j2) 0 )’

(5)

The different topologies of 2-D vector fields are represented

by two independent parameters, the threshold curjgnt

and the eigenvalues § thexp’s, or jz, the current ing—

direction
hp =20

\if— 2= (2v=ab). (6)

implying a bijective relation between the variableand b
and the thresholg; and the actual current, to be precise

a=—%<jt+jz) b=%(ﬁ—jz) (7)

2 2
& jz=——I(@a+b) ji=—(b-a). 8)
1220 12%0]
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We will use the four variables, b, ji, j if it is convenient,
i.e. combinations of the four to simplify the corresponding
terms in the equations.

The eigenvalue.p determines the topological structure of
the field and the geometrical shape of the field lines. For a
divergence free case there are only three main types of such
fields:

— the case that the eigenvalue is zerf| & | j;|) corre-
sponds to a field with one-dimensional magnetic field
lines (degenerated case), see BY.d¢r a vanishing field

— the case thattji| < |j| corresponds to field lines being
topological circles (geometrical ellipses),jif=0 (@ =
b), then geometrical circles. All the cases mentioned in
the last sentence are so-called O-points, and

— the case of the so-called X-points, whejg > | j2|.

Only for the case in the last item a magnetic separatrix exists.
Such separating field lines must exist to enable magnetic re-
connection. A necessary condition for magnetic reconnection
in 2-D is that the plasma flow crosses magnetic separatrices
(see, e.gPriest and Forbe200Q Vasyliunas 1975 Cow-

ley, 1976 Sonnerup1979 or Sonnerup et al.1984. The
current-free case is given by =0, i.e.a = —b and should

be excluded, as dissipation in such a case would have nothing
to do with the electric current.

2.2 The basic incompressible resistive MHD equations
and assumptions

The following analysis is restricted foure incompressible
and resistive dynamics, i.e. ohmic heating without any other
loss terms like viscosity or heat conduction. The resistivity
n should be localised, obeying the boundary conditions. The
basic non-ideal/resistive stationary MHD equations in 2-D
are given by (following, e.g. Goedbloed and Poedts, 2004)

V- (pv) =0, 9)

pw-VYv=jxB—-Vp, (10)

E; +vxBy — vy Bx = 1njz, (11)
n:=N/jz (12)
V-v=0 (13)

V x B = uoj, (14)

V-B =0, (15)

whereN is any non-ideal term and defines the effective resis-
tivity n with j; # 0. The non-idealness should be understood
as some kind of spatial variation of a non-classical “resistiv-
ity” that is not necessarily the “classical’ anomalous resistiv-
ity, but generating an electric field in that system, comoving
with the plasma. This resistivity should enable the plasma to
cross magnetic separatrices in a usually ideal MHD plasma.
It cannot be expected that any macroscopic mechanism, de-
pending on the macroscopic MHD parameters, can generate
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such a non-idealness or resistivity. As known, in solar flareas an exact solution when the density is completely constant,
reconnections, the resistivity needs to be much greater thaand velocity field and magnetic field are completely linear.
that of classical Coulomb collisions, therefore the anomalous With this linear or linearized fields we can draw conclu-
resistivity is considered. This anomalous resistivity expressesions with respect to the other MHD quantities, like pressure,
interactions of current-carrying electrons with electrostatic density and resistivity: The lowest order of the magnetic field
and electromagnetic waves generated in flare plasmas, e.@ linear, the current density is constant, and therefore the
by electric current instabilities. However, also the externalLorentz forcej x B is linear inx andy. This is the reason
electron beam can produce these waves. In both cases, it that all other terms should be also at the most of first order
natural to expect that at the saturation state of these waveis the spatial variables. This leads to the conclusion that the
their energy level as well as corresponding resistivity will be plasma pressurg is at highest order quadratic inandy, to
varying in space, i.e. having somewhere its maxima and min-allow for a linear pressure force, i.e. we can expresy
ima (see e.gKarlicky and Jungwirth1989or Karlicky and
Barta 2008. Therefore the resistivity is not a given prop- p = po+ pix + p2y + paxy + pax?+ psy?, (16)
erty of the fluid, but a self-interaction of the whole plasma-
electromagnetic field-system. As will be shown in the fol- Wherepg to ps are constant coefficients.
lowing, just the locations of these extreme values of the re- As the velocity close to the stagnation point can be repre-
sistivity and their very close vicinity are locations where we sented as a linear terminandy, thev- Vv termis also linear
search for reconnection solutions. Our analysis is valid forin x andy. That means that all terms in the Euler equation
every resistivity-model or non-idealness. We generate a locaire of first order, implying therefore that the mass density,
and necessary condition for B ands. 0, has to be constant in lowest order close to the stagnation
Due to stationary Maxwell equations the electric field in point. This holds even more for completely linear velocity,
the 2-D case has to be constant, i&.=const (see, e.g. Magnetic field and quadratic pressure.
Titov et al, 2004. To satisfy one necessary condition for Taking into consideration that at the magnetic null point
magnetic reconnection, we have to assufae 0. We will E; equals;j; and if we assume that the resistivity is constant,
later on see that we are able to separate reconnective anniHR€nEz = 1z everywhere in the vicinity of the neutral point.
lation solutions from (complete) reconnection solutions. We This implies that the termy By — vy Bx equals to zero within
also analyse the resistive MHD syste@)+(15) for the lim- the linear region and therefore the flow is field-aligned every-
iting caseE, — 0 or the asymptotical boundary condition Wherewithin this regionin lowest order of the spatial vari-
E; =0, i.e.v5 x Bo = 0 in the asymptotical, ideal region. ables. In addition, for our asymptotical boundary conditions
The asymptotic boundary condition, || Bo, enhances the it implies that the resistivity must be zero around the null
probability that the stationary flows are stable, at least inpoint. The same holds for special cases of non-constant resis-
the ideal region (see, e.glameiri 1998. The assumption tivity, e.g. if  is a function of the current density only, one
that E; = 0, or better to sayE, — 0, does not alter the re- can conclude thatin the case of a linear field or in the vicinity
sults. This shows the boundary between nonideal reconnec@f the null point the current density is constant and therefore
tive flows and non-ideal but nonreconnective flows. also the functiom = const, as) = (j; = consy = const.
Another constraint in addition to the boundary condi- To avoid such trivial solutions, namely field-aligned flows,
tions is the fact that the resistivity should fulfill the con- Which are non-reconnective in lowest ordére non-ideal
dition 12 > 0 or shorterp > 0 to allow for positive dissi- term cannot be chosen at wish to enable the required topo-
pation only. We will later on see that this restricts the “al- logical classes of both, or all three vector fiellsB and V7.
lowed” plasma flows severely. Therefore, to enable reconnection in the vicinity of the null
We calculate almost the complete solution space of incom{oint, the resistivity cannot be a function of the current den-
pressible resistive or non-ideal MHD close to the null points Sity only. We have to regard the resistivity in resistive Ohm’s
of flow field and magnetic field. The aim is to find the gen- law as a spatially dependent resistivity, he= n(x, y). Such
eral correlation between the Jacobians of the plasma velocitgpatially dependent resistivities have also been used in sim-
and the magnetic field, and the shape of the Taylor-expandetiiar manner, e.g. byAl-Hachami and Pontif2010, Hornig
resistivity. and Pries{2003 andWyper and Jairf2011)*. We designate
A similar method to determine the structure of the the functionn =n(x, y) as an “effective” resistivity or short
non-ideal term and the flow and the magnetic field hasresistivity. As the current density is constant inside the region
been proposed and done, but for the cgse- 0 and for of the linear field approximation, the resistivity is a substitute
“global” fields, in the frame of a toy model iNickeler and ~ expression for a general non-ideal term. The magnetic field
Fahr(2005. line structure, the structure of the stream lines and the struc-
In Sect.3 we concentrate on the linearized fields and taketure of the non-ideal (resistive) term determine each other!
only first order terms of the spatial variables into account. The plasma should of course be able to cross the magnetic
But basically the solutions found here could be also regarded

1in 2-D such a method has not been applied up to now
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separatrices also in the region of constant cuftetiiere-  where the last part of the equation defines the spatially vary-

fore a non-constant is necessary for magnetic reconnection ing part of the resistivityyg. Starting point is the fact that

close to the null point. there are four invariants of any quadric (see, &grtsch
Written with all coefficients and comparing with all orders 1984 Bronstein 1987. The corresponding invariants are

of x andy, we get the following system of equations from given by:

the Euler or momentum equation

o <V121+ V12V21) +2ps—2aj; =0, 17)
2 .

p (V11+ V12V21) +2ps—2bjz =0, (18) 2aVii/j  (aViz+bV2)/jz 0 0

p3=0, 19) A _ (aVi2+bVa1)/j.  —2bVi1/jz O O (23)

o 0 0 0o 3
p1=p2=0. (20) 1 .
0 0 5 —E7/jz
The Egs. 17), (18), and (9) are of first order inx and y, . P 21 .2
while Eq. Q0) is of zeroth order. - [4abv11+ (@Viz+bVa1) ]/JZ (24)
3 Solutions I
The general solution of the systerh7§—(20) is now repre-
sented by
Pl s _ 2aVi1/jz  (aVi2+bV21)/jz 0
pa = 5 (V11+ V12V21) +ajz §=|(@Via+bV21)/j. —2bVi1/j; 0| =0 (25)
0 0 0

ps = —% (V121+ V12V21) +bjz, (21)
with, as it seems, free parametékg and V2 and, of course,
the “magnetic parameters” threshold currgntand actual M.
current j,. To guarantee a spontaneous process, i.e. a pro-
cess where energy isnly dissipated, it is necessary that
Econvective j. = (Ez +v X B) - jze; > 0. In the following we B 2aVi1/j. (@Vi2+bV1)/jz —2bV11/jz 0
will therefore see that the parametéfs are not all free, as ' = |(aVio+bVo1)/j.  —2bVia/js 0 0
they are determined by the fact that the quadric, representing 0
the effective resistivity, must be an elliptic paraboloid (nec- o2y /i (26)
essary critereon). We will therefore have to introduce another 11/Jz
parametes to express/», as function ofVi,, Vi1 ands, as =_ [4abV121+ (aVio+ bV21)2] /j? (27)

we will see in the following. The elliptic paraboloid is the
only quadric that allows a positive resistivity with one zero,
the vertex of the paraboloid, at the magnetic null point in the
limiting caseE; — 0. This implies necessarily a minimum V.
for the resistivity in the limiting case. For the caBe # 0
the nullpoint of the vector fields can either be a minimum, or
also a maximum. _ _ ;
All other quadrics can be excluded, with the excep- § =Mraced) =2V —b)/jz- (28)
tion of the degenerated case of a parabolic cylinder (cylin-The condition
drical paraboloid) (see, e.dartsch 1984. The quadric

f(x,y,n) =0, we analyse, is given by the resistive Ohm's A <0 and >0 (29)
law Eq. A1) is necessary and sufficient for getting an elliptic paraboloid,
E; 2aVi1 5 2aVip+2bVo and obviously this can be fulfilled, as = —z. By using the
fxy.m) = T + i + Tz *y Eq. @) for substituting the expression far and b and by
2bV11 E, using one of the inequalities in EQRY), the general solution
—Ty +n= 5, no(x,y)+n, (22)  canthen be parameterized by the parametersVio, s
Z V4
2namely the region inside the current sheet, where the maximum Jt+ Jz vV jt2 - jz2
of the current is located Va1 = =2 Viz+2sVi1 = (30)

www.ann-geophys.net/30/1015/2012/ Ann. Geophys., 30, 101623 2012
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with the restrictions € [—1, 1]. The cylindrical paraboloids V7122y2—‘%21x2+vllxy = 0 with the parametric expression for
are limiting cases with = £1, as is shown in the example in V5,3 in Eq. (30), we get the slope& y1 v of the two asymp-
Fig. 2 (here the specific value is= —1). Multiplication of  totes/separatrix lines

Eq. 30) with V12, inserting this expression into the expres-

sion for the eigenvalug?, = V2 + V12V»1, and completing K Vi N VZ + ViV
the square gives viz Viz VZ,

)L%/ = V121+ V12V21 Ty
.2 —Vir VA + 25V Vi 2 + szij—jz
Jt —J i 7 =
= | vi+sv 2| + (1— s2> Vlzzj.l - 2 >0. Vi2
Jt — Jz Jt — Jz
J1—J2 147
(31) = —Viel£ | V2 + 25 Viel L2 (36)
1-J, 1—J,

If |jz| < jt and|s| < 1 are assumed, the magnetic field is of
hyperbolic type and it is guaranteed that the stagnation poinfh€réVrel = V11/ V1. For Vi = 0 # V13 the asymptotes are
is also of hyperbolic type, i.e. has two purely real eigenval-9iven byx =0andy = s+/(1+ Jz)/(1 - Jz)x, and forVi, =
ues, namely one positive value and a negative counterpart/21 = 0 we getr =0 andy = 0 as separatrices.
As mentioned already in the introduction, we proved here Let Vi1 = Via(= 1), then
that also “typical” stagnation point flows are possible (“X- 5
type”), and exclude here the discussion of “shear-like” flows. K 14 14 V1-J2 37)
Let us investigate now the geometry, respectively the viz= 1-J;
slopes of the separatrices of the flow and the magnetic field.
Defining J; := j;/ji, the magnetic separatrix is given by _ 1-J¢?
HOT( s sn D s a2 : =—-1+(1+s—-+=). (38)
A=0andA=52[(ji — joy?— (jt+ j2)x?)] (we restrict 1—J,
this to|Jz| < 1) and can therefore be expressed by

There isonecorresponding slope of the flow separatrix with

Vi—Jy+/14+ Lx=0 (32)  respect to one of the magnetic separatrix lines=f+1.
/T+ T, Therefore we can formulate the following theorem (analo-
& = imx i=EKmx, (33)  gous to known anti-reconnection theorems), which is now

_ ) ~_ restricted to resistive dissipation only, i.e. vanishing non-
where+Kn is the slope of the both magnetic separatrix lines yesjstive dissipation mechanisms.

or to say the both asymptotes. Xs; is given by the general

solution, Eq. 80), by defining a stream functiog via Theorem
d ad S . .

vy = w and vy = ——w, (34) If the flow close to the null point is in good approximation
dy 9x incompressible, and other kinds of dissipation mechanisms

we can integrate the above equations and get for the streaman the resistive dissipation are negligible, then the plasma

function flow cannot cross the magnetic separatrices if for the both
V2 V2 slopes of the both magnetic separatrix linEg, = Km1 =

v = %yz - 721)52 + V11xy. (35)  —Kmz with K = /(1+ J7)/(1— J;) and the following is

valid:
The fluid separatrix is here given by = 0, geometrically
these are asymptotes. L) Km=Ky1 A b)—Km=Ky2
We will briefly discuss the problem that the magnetic sepa- or
ratrix is partially identical with the hydrodynamic separatrix. I.a)Km=Kyz A b)—Kmn=Kyy. (39)

In this case the plasma flow can only take place across one

part of the separatrix, or both separatrix lines are identicallf only I.a) or I.b) or Il.a) or Il.b) is valid, then only one

and no reconnection can take place. magnetic separatrix can be crossed, and as the other stream
One can clearly recognize that in the c&e= 0 and thus  lines converge to the second magnetic separatrix line without

(Va1/V12)? = (14 J5)/(1— J3), both corresponding asymtot-  crossings, one could call this reconnective annihilation (see,

ical branches=£ separatrix lines) have the same slope. Thuse.g. Priest and Forbes, 2000). The necessary condition for a

the hydrodynamical separatrix and the magnetic separatricomplete non-crossing 811 = 0 for Vi2 # 0 and for only

are identical, the plasma cannot cross the magnetic separgartly crossing flows = +1.

trix and therefore no reconnection can take place. For almost all values of, heres =0, the flow in Fig.2
Writing y(x) = Kyx (if V11, V12 #0), whereKy is the  (left column) crosses all four separatrix branches (all two

slope of the hydrodynamic separatrix, and inserting this intoseparatrix lines), the resistivity is positive (only zero at the

Ann. Geophys., 30, 1015:023 2012 www.ann-geophys.net/30/1015/2012/
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null point, middle panel, the minimum resistivity ca¥eind
their isocontours are ellipses (bottom panel). For the special
parametes = —1, it can be seen in Fi@. (right column) that 05
the flow, like for the aforementioned magnetic reconnective
annihilation solutions, crosses only the separatrix line with™
the positive slope, while it converges to the other magnetic
separatrix, being almost field aligned (top panel), the resistiv-
ity no being also positive (middle panel), and the isocontours
of the resistivity are straight lines (bottom panel).

We now focus on the effective resistivity and therefore on
the nature of ohmic heating, i.e. dissipation. As the resistivity
is given by

0

-0.5

E
n=—+no, (40)
Jz
we can now rewriteyg
moVit| . .. o 2 .9 2
no = 7 ]_ (]t + ]Z) X — 2S ]t - ]Z Xy + (.]t - ]Z) y . Resistivity contours . Resistivity contours
z

|

w |

0.

o

0.5
To ensure that the dissipation is positive, we prove that the

termno = (ji+ j2) x2—2s\/ j¢ — j2xy+(jt— jo) y?is larger
than zero (or zero) for all andx, y. Let K12 = ji £ j; and

-05 -0.5
K1, K> > 0 as required for an X-point. Then \ / \
2 -1 -1 \

0 E(\/EX—S\/E}’) -1 1 - =050 05 1

= lez — 25/ K1Koxy +s2K2y2 Fig. 2. Flow lines are thick (blue), thin (red) lines are magnetic

field lines, thick (black) dashed lines are magnetic separatrix lines
2 [ K 2
< K1x® =25y K1Koxy + Koy®. U (42) (top panels). Flow for the parametdrs; = V12 =1 ands = 0 (left

column), crossing all four magnetic separatrix branches (left top

sign of Y& If the resistivityn should have a maximum at the panel), _ands - —1_(r|ght column_), flow lines crossing only two )
magnetic separatrix branches (right top panel), shape of the posi-

.Jz X K Lo
_nuII point, the Va!u_eg/ll and j, must have a different sign; tive resistivityng (middle panels), and the elliptic shaped contours
in the case of minimum of) the parameters must have the e resistivity (bottom panels).

same sign. The first case seems to be the more “physical” or

interesting case. The negativity g§ implies that the linear

model is only valid in some small domain, in whigh> 0. ~ andWatson and Crai¢l998. This implies that for complete

In the next paragraphs we will discuss this problem in detail.crossing of all separatrices, a 2-D shape of the non-ideal term
As the dissipation should be positive, ie> 0, the values IS necessary.

V11 andj, must have the same sign in the case of a vanishing If the electric field is non-zero, we have to distinguish two

This implies that the sign of the resistivitydepends on the

electric fieldE; — 0 in the ideal region. cases:

For s =+1, it can be recognized from Eq4Y) and 1. Vi1/j. > 0 the resistivity is positive definite, (as
from the bottom panel Fig2 (for the cases = —1) that E,/j» > O everywhere), the elliptic paraboloid is di-
the resistivity contour lines are straight lines givenriay= rected upwards and represents therefore a local mini-
noV11/(2jz) (W jt + jzx £/ ji — jzv)<, and therefore the re- mum of the resistivity, or

sistivity has the structure of a one-dimensional sheet. The
cases = +1 therefore reflects the 1-D character of the non- 2. V11/jz <0 (Ez/jz > 0 everywhere) the case that the
idealness, which can also be found, e.g. in the papetsaif resistivity-paraboloid in this case is directed upside

and Henton(1999, Tassi et al(2002, Titov et al. (2009, down, and represents therefore a maximum with a shift
depending orE;:

3Only the sign of spatially varying part of the resistivijy, de-
pending onVq1/jz, can change. This analysis does not change, i.e. n(x,y) = Ez/jz+no(x,y) (43)
neither the topology/geometry of the the isocontours of streamlines
and magnetic field lines, nor the isocontours of the resistivity areAs n has a maximum, the validity of the local model is of

changed. course given by the ellipsg = 0. Outside this ellipse the

www.ann-geophys.net/30/1015/2012/ Ann. Geophys., 30, 101623 2012



1022 D. H. Nickeler et al.: Topological skeleton close to magnetic null points

resistivity is not defined, as it represents only the lowest or-plasma to cross both separatrix lines. If the non-idealness has
der parts of a Taylor expansion. Formally the resistivity is a one-dimensional, sheet-like structure, the plasma flow can
getting negative, as the elliptic paraboloid touchesthe0- only cross one part of the separatrix, similar to well known
plane. With the help of the principal axis transformation, one magnetic reconnective annihilation solutions. Therefore, our
can calculate the small axis of the ellipse (a), and the largenathematical model proves and explains well the properties

axis (b) of analytical reconnective annihilation solutiongiig and
) 2E,/js Henton (1995, Tassi et al(2002), Titov et al. (2004, and
@ If1=- (44)  watson and Craig1999. Our model delivers a necessary
Movllfl —luoVaal /152 +s2§é condition for all existing 2-D models of magnetic reconnec-
‘ z tion.
(b) l% _ 2E7/jz (45) The analyses started by us here will be extended to con-
i Y figurations that have a saddle point of the resistivity. This
noViry, +luoVial [1—s+s5 extension will maybe provide us with a deviation from pure

. . (X i int flow.
Inthe case that — +1, we get the case of reconnective anni- (X-type) stagnation point flow

hilation with the large axi% — oo. Due to the “infinite” axis
the flow can only cross one part of the magnetic separatrix,
as can be seen in the bottom panel of Figfor the case  AcknowledgementsD. H. Nickeler acknowledges financial support

ing the scale on which the linear field approximation can beGA(T3R ,gr‘"’l‘”é(;\_lo' 32023070; hanks th . .
Valid, is then given by < ll,min _ EZ/(MO|V11|jt)- opical itor R. orsyt thanks three anonymous reterees for

their help in evaluating this paper.
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