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Abstract. The appearance of eruptive space plasma pro-
cesses, e.g. in eruptive flares as observed in the solar atmo-
sphere, is usually assumed to be caused by magnetic recon-
nection, often connected with singular points of the magnetic
field.

We are interested in the general relation between the eigen-
values of the Jacobians of the plasma velocity and the mag-
netic field and their relation to the shape of a spatially vary-
ing, localized non-idealness or resistivity, i.e. we are search-
ing for the general solution. We perform a local analysis of
almost all regular, generic, structurally stable non-ideal or re-
sistive MHD solutions. Therefore we use Taylor expansions
of the magnetic field, the velocity field and all other physical
quantities, including the non-idealness, and with the method
of comparison of coefficients, the non-linear resistive MHD
system is solved analytically, locally in a close vicinity of the
null point.

We get a parameterised general solution that provides us
with the topological and geometrical skeleton of the resis-
tive MHD fields. These local solutions provide us with the
“roots” of field and streamlines around the null points of
basically all possible 2-D reconnection solutions. We prove
mathematically that necessarily, the flow close to the mag-
netic X-point must also be of X-point type to guarantee pos-
itive dissipation of energy and annihilation of magnetic flux.
We also prove that, if the non-idealness has only a one-
dimensional, sheet-like structure, only one separatrix line can
be crossed by the plasma flow, similar to known reconnective
annihilation solutions.

Keywords. Space plasma physics (Magnetic reconnection)

1 Introduction

Magnetic reconnection is thought to be a process responsible
for many eruptive plasma phenomena in space plasmas and
astrophysical plasmas, like geomagnetical substorms or solar
flares. Although magnetic reconnection in two dimensions
(2-D) is fairly well understood (e.g. see the comments inBaty
et al., 2009), not much is known about the topological and
geometrical structure of flow and field lines in the vicinity of
the singular points of plasma flow and magnetic field.

The first reconnection scenarios byPetschek(1964) and
Sweet-Parker (see, e.g.Sweet, 1958) proposed a magnetic
null point and a stagnation point flow into the diffusion re-
gion, i.e. the stagnation point is inside this diffusion region.

Later, Priest and Cowley(1975) analysed the case of
incompressible 2-D MHD with constant resistivity. They
showed that either the magnetic field is of hyperbolic type
(“X-type”) and the flow is a shear flow, or the magnetic field
is of higher order (and “sheared”) and the flow has a typical
shape of a stagnation point flow (hyperbolic). In the former
case reconnection takes place, while the latter case results in
so-called annihilation solutions.

Annihilation solutions have further been studied byCraig
and Henton(1995) who chose a special ansatz for the so-
lution of the resistive MHD to get reconnection solutions.
They solved the first order momentum equation and the re-
sistive Ohm’s law, starting with a nonlinear perturbation of
magnetic annihilation solutions. This lead them to so-called
“reconnective annihilation” solutions, where only one of the
two separatrix-lines is crossed, and the other is only tan-
gent to the converging streamlines. The current sheet has a
one-dimensional structure (straight line), while curvilinear

Published by Copernicus Publications on behalf of the European Geosciences Union.



1016 D. H. Nickeler et al.: Topological skeleton close to magnetic null points

current sheets were subsequently studied byTassi et al.
(2002) andTitov et al. (2004). The results found byCraig
and Henton(1995) and Craig and Rickard(1994) confirm
the results found earlier byPriest and Cowley(1975), who
found more “shear-like” flows instead of typical stagnation
point flows.

It was shown byPriest et al.(1994) and later on in ex-
tended form byWatson and Craig(1998) that under certain
circumstances, like constant resistivity or current depend-
ing/anomalous resistivity and sub-Alfvénic flow, etc., recon-
nection is impossible: the so-called anti-reconnection theo-
rems.

What is missing however in the framework of the 2-D re-
sistive reconnection problematics is a detailed analysis on
the relation between the stable topology of magnetic field
and stream lines, and the topology and geometry of any non-
constant, i.e. spatially dependent resistivity. Therefore it re-
stricts every possible solution of the slightly non-ideal MHD
system Eqs. (9)–(15), i.e. in particular we derive a general so-
lution for incompressible resistive MHD in the close vicinity
of the null point of flow and field. We prove in the following
that also “typical” stagnation point flows are possible (“X-
type”), and exclude here the “shear-like” flows.

2 Assumptions and basic equations

2.1 The topological and geometrical structure of the
magnetic field

The topological classification of 2-D vector fields in the
vicinity of their null points is described in the literature (with
connection about phase portraits of dynamical systems, i.e.
systems of ordinary differential equations) (e.g. ofArnold,
1992; Amann, 1995; or Reitmann, 1990). The topological
structure of magnetic fields in the vicinity of null points is de-
scribed, e.g. byParnell et al.(1996) and concerning the con-
struction of ideal MHD flows, e.g. inNickeler et al.(2006).

Our interest is to ask which topology and geometry of the
macroscopicflow correspond to which magnetic topology
and geometry of the magnetic field in the frame of MHD. In
contrast to the analyses mentioned in the previous paragraph,
we here have to investigate the topological and geometrical
properties ofboth vector fields, i.e. that of the plasma flow
and that of the magnetic field. To perform this analysis we
use a Taylor expansion of both fields in the close vicinity of
their null points. As we are interested in the local structure of
the fields only, we neglect all derivatives of the order higher
than one. Such a treatment is justified because we are inter-
ested in how the field and streamlines are rooted in the null
points of flow and field, represented by the eigenvalues of the
Jacobians.

A similar approach for 3-D, but restriced to constant resis-
tivity, was done byTitov and Hornig(2000). In 2-D the re-
striction to constant resistivity would lead to a field-aligned

flow, i.e. without crossing the magnetic separatrices and,
as we will see in the following (Sect. 2.2), to a vanish-
ing electric field. Such a configuration does not allow for
reconnection. In 3-DTitov and Hornig(2000) found addi-
tional non-field-aligned-flows, so-called SFC-flows (spiral-
field-crossing flows). But as the resistivity was constant and
also the current density, the flow can cross the field lines in
the fan-plane, but not cross the fan-plane itself. Also, no flux
transport in the vicinity of the nulls can take place as the non-
idealnessηj is constant. This interesting dynamic is there-
fore close to reconnection, but is not a “classical” reconnec-
tion scenario. In this investigation we will basically follow
the method ofTitov and Hornig(2000), but allow for a spa-
tially varying resistivity.

Some detailed and important remarks concerning the local
use of linear fields or better to say linearized fields are:

Morse-Smale systems are “typical” or generic vector fields
on two-dimensional compact orientable manifolds. They
have basically a non-vanishing real part of the eigenvalues
at the null points, but also periodic orbits (in 2-D elliptic null
point) with zero real part are allowed due to the divergence-
free nature of magnetic fields (see, e.g. the theorem 15.1
in Reitmann, 1990). The inclusion of a guide field would
change the typical character of a 2-D null point topology: the
classical guide field is constant, and would therefore destroy
the generic singular structure in the vicinity of the 2-D mag-
netic null point. If the guide fieldBz depends onx andy and
a magnetic null point should exist, then the situation would
be basically the same in the close vicinity of the null point
as with constant guide field. As an addition of a guide field
would destroy the generic topological properties of the 2-D
case, we will exclude a guide field within this investigation.

Every vector field on a manifold is basically equivalent
to a dynamical system (see, e.g.Arnold, 1992). Dynamical
Systems not having Morse-Smale structure in 2-D are topo-
logically/structurally unstable and will not occur in nature,
as any small perturbation will “destroy” such systems (see,
e.g. Hornig and Schindler, 1996; Bruce and Giblin, 1992
or Reitmann, 1990; and for a mathematical proofPeixoto,
1959). Solutions, depending on singular perturbation theory,
are therefore exceptions and thus, in a general sense, “un-
physical”. As almost all functions are of Morse-type, without
loss of generality, we know that the (effective) resistivity is a
quadratic form, like the flux functionA and the stream func-
tion ψ (see Eqs.3 and34). Our approach, in contrast to the
above mentioned, guarantees reasonable and structurally sta-
ble fields, being necessary to define magnetic reconnection
or similar dynamics.

The topological and geometrical “roots” can be deter-
mined by an arbitrary contracting mapping such that only
the lowest non-trivial orders remain. Then we can express
the class of linear velocity fields with the help of their first
derivatives, i.e. Jacobians:
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Fig. 1.Scenario of a flare loop with an X-point.

v =
↔

V x =

(
V11 V12
V21 V22

)(
x

y

)
, (1)

in analogy to the magnetic fieldB

B =
↔

B x =

(
B11 B12
B21 B22

)(
x

y

)
. (2)

According toParnell et al.(1996), every magnetic field of
the form of Eq. (2) can be rotated such, that it is represented
by a magnetic flux functionA= ax2

+ by2, so that a stan-
dard null point of the magnetic field appears with a constant
current densityjz = j0 = const around the origin, where the
magnetic field is given by

∇A× ez = B . (3)

The corresponding scenario of a flare loop is given in Fig.1.
The current density is given by

∇ × B = −1Aez = µ0jzez , (4)

such that

B =

(
0 2b

−2a 0

)(
x

y

)
≡

(
0 µ0

2 (jt − jz)
µ0
2 (jt + jz) 0

)(
x

y

)
.

(5)

The different topologies of 2-D vector fields are represented
by two independent parameters, the threshold currentjt,

and the eigenvalues of
↔

B , theλB ’s, or jz, the current inz–
direction

λB = ±
µ0

2

√
j2
t − j2

z = ±

(
2
√

−ab
)
, (6)

implying a bijective relation between the variablesa andb
and the thresholdjt and the actual currentjz, to be precise

a = −
µ0

4
(jt + jz) b =

µ0

4
(jt − jz) (7)

⇔ jz = −
2

µ0
(a+ b) jt =

2

µ0
(b− a) . (8)

We will use the four variablesa,b,jt,jz if it is convenient,
i.e. combinations of the four to simplify the corresponding
terms in the equations.

The eigenvalueλB determines the topological structure of
the field and the geometrical shape of the field lines. For a
divergence free case there are only three main types of such
fields:

– the case that the eigenvalue is zero (|jt| = |jz|) corre-
sponds to a field with one-dimensional magnetic field
lines (degenerated case), see Eq. (5), or a vanishing field

– the case that|jt|< |jz| corresponds to field lines being
topological circles (geometrical ellipses), ifjt = 0 (a =

b), then geometrical circles. All the cases mentioned in
the last sentence are so-called O-points, and

– the case of the so-called X-points, where|jt|> |jz|.

Only for the case in the last item a magnetic separatrix exists.
Such separating field lines must exist to enable magnetic re-
connection. A necessary condition for magnetic reconnection
in 2-D is that the plasma flow crosses magnetic separatrices
(see, e.g.Priest and Forbes, 2000; Vasyliunas, 1975; Cow-
ley, 1976; Sonnerup, 1979; or Sonnerup et al., 1984). The
current-free case is given byjz = 0, i.e.a = −b and should
be excluded, as dissipation in such a case would have nothing
to do with the electric current.

2.2 The basic incompressible resistive MHD equations
and assumptions

The following analysis is restricted topure incompressible
and resistive dynamics, i.e. ohmic heating without any other
loss terms like viscosity or heat conduction. The resistivity
η should be localised, obeying the boundary conditions. The
basic non-ideal/resistive stationary MHD equations in 2-D
are given by (following, e.g. Goedbloed and Poedts, 2004)

∇ · (ρv) = 0, (9)

ρ(v · ∇)v = j × B − ∇p, (10)

Ez + vxBy − vyBx = ηjz , (11)

η := N/jz (12)

∇ · v = 0 (13)

∇ × B = µ0j , (14)

∇ · B = 0, (15)

whereN is any non-ideal term and defines the effective resis-
tivity η with jz 6= 0. The non-idealness should be understood
as some kind of spatial variation of a non-classical “resistiv-
ity” that is not necessarily the “classical” anomalous resistiv-
ity, but generating an electric field in that system, comoving
with the plasma. This resistivity should enable the plasma to
cross magnetic separatrices in a usually ideal MHD plasma.
It cannot be expected that any macroscopic mechanism, de-
pending on the macroscopic MHD parameters, can generate
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such a non-idealness or resistivity. As known, in solar flare
reconnections, the resistivity needs to be much greater than
that of classical Coulomb collisions, therefore the anomalous
resistivity is considered. This anomalous resistivity expresses
interactions of current-carrying electrons with electrostatic
and electromagnetic waves generated in flare plasmas, e.g.
by electric current instabilities. However, also the external
electron beam can produce these waves. In both cases, it is
natural to expect that at the saturation state of these waves
their energy level as well as corresponding resistivity will be
varying in space, i.e. having somewhere its maxima and min-
ima (see e.g.Karlický and Jungwirth, 1989or Karlický and
Bárta, 2008). Therefore the resistivity is not a given prop-
erty of the fluid, but a self-interaction of the whole plasma-
electromagnetic field-system. As will be shown in the fol-
lowing, just the locations of these extreme values of the re-
sistivity and their very close vicinity are locations where we
search for reconnection solutions. Our analysis is valid for
every resistivity-model or non-idealness. We generate a local
and necessary condition forv, B andη.

Due to stationary Maxwell equations the electric field in
the 2-D case has to be constant, i.e.Ez = const (see, e.g.
Titov et al., 2004). To satisfy one necessary condition for
magnetic reconnection, we have to assumeEz 6= 0. We will
later on see that we are able to separate reconnective annihi-
lation solutions from (complete) reconnection solutions. We
also analyse the resistive MHD system (9)–(15) for the lim-
iting caseEz → 0 or the asymptotical boundary condition
Ez = 0, i.e.v∞ × B∞ = 0 in the asymptotical, ideal region.
The asymptotic boundary conditionv∞ ‖ B∞ enhances the
probability that the stationary flows are stable, at least in
the ideal region (see, e.g.Hameiri, 1998). The assumption
thatEz = 0, or better to sayEz → 0, does not alter the re-
sults. This shows the boundary between nonideal reconnec-
tive flows and non-ideal but nonreconnective flows.

Another constraint in addition to the boundary condi-
tions is the fact that the resistivity should fulfill the con-
dition ηj2

z > 0 or shorterη > 0 to allow for positive dissi-
pation only. We will later on see that this restricts the “al-
lowed” plasma flows severely.

We calculate almost the complete solution space of incom-
pressible resistive or non-ideal MHD close to the null points
of flow field and magnetic field. The aim is to find the gen-
eral correlation between the Jacobians of the plasma velocity
and the magnetic field, and the shape of the Taylor-expanded
resistivity.

A similar method to determine the structure of the
non-ideal term and the flow and the magnetic field has
been proposed and done, but for the casejz = 0 and for
“global” fields, in the frame of a toy model inNickeler and
Fahr(2005).

In Sect.3 we concentrate on the linearized fields and take
only first order terms of the spatial variables into account.
But basically the solutions found here could be also regarded

as an exact solution when the density is completely constant,
and velocity field and magnetic field are completely linear.

With this linear or linearized fields we can draw conclu-
sions with respect to the other MHD quantities, like pressure,
density and resistivity: The lowest order of the magnetic field
is linear, the current density is constant, and therefore the
Lorentz forcej × B is linear inx andy. This is the reason
that all other terms should be also at the most of first order
in the spatial variables. This leads to the conclusion that the
plasma pressurep is at highest order quadratic inx andy, to
allow for a linear pressure force, i.e. we can expressp by

p = p0 +p1x+p2y+p3xy+p4x
2
+p5y

2 , (16)

wherep0 to p5 are constant coefficients.
As the velocity close to the stagnation point can be repre-

sented as a linear term inx andy, thev·∇v term is also linear
in x andy. That means that all terms in the Euler equation
are of first order, implying therefore that the mass density,
ρ, has to be constant in lowest order close to the stagnation
point. This holds even more for completely linear velocity,
magnetic field and quadratic pressure.

Taking into consideration that at the magnetic null point
Ez equalsηjz and if we assume that the resistivity is constant,
thenEz = ηjz everywhere in the vicinity of the neutral point.
This implies that the termvxBy −vyBx equals to zero within
the linear region and therefore the flow is field-aligned every-
wherewithin this regionin lowest order of the spatial vari-
ables. In addition, for our asymptotical boundary conditions
it implies that the resistivity must be zero around the null
point. The same holds for special cases of non-constant resis-
tivity, e.g. if η is a function of the current densityjz only, one
can conclude that in the case of a linear field or in the vicinity
of the null point the current density is constant and therefore
also the functionη = const, asη = η(jz = const)= const.

To avoid such trivial solutions, namely field-aligned flows,
which are non-reconnective in lowest order,the non-ideal
term cannot be chosen at wish to enable the required topo-
logical classes of both, or all three vector fieldsv, B and∇η.
Therefore, to enable reconnection in the vicinity of the null
point, the resistivity cannot be a function of the current den-
sity only. We have to regard the resistivity in resistive Ohm’s
law as a spatially dependent resistivity, i.e.η = η(x,y). Such
spatially dependent resistivities have also been used in sim-
iliar manner, e.g. byAl-Hachami and Pontin(2010), Hornig
and Priest(2003) andWyper and Jain(2011)1. We designate
the functionη = η(x,y) as an “effective” resistivity or short
resistivity. As the current density is constant inside the region
of the linear field approximation, the resistivity is a substitute
expression for a general non-ideal term. The magnetic field
line structure, the structure of the stream lines and the struc-
ture of the non-ideal (resistive) term determine each other!
The plasma should of course be able to cross the magnetic

1In 2-D such a method has not been applied up to now
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separatrices also in the region of constant current2, there-
fore a non-constantη is necessary for magnetic reconnection
close to the null point.

Written with all coefficients and comparing with all orders
of x andy, we get the following system of equations from
the Euler or momentum equation

ρ
(
V 2

11+V12V21

)
+ 2p4 − 2ajz = 0, (17)

ρ
(
V 2

11+V12V21

)
+ 2p5 − 2bjz = 0, (18)

p3 = 0, (19)

p1 = p2 = 0. (20)

The Eqs. (17), (18), and (19) are of first order inx andy,
while Eq. (20) is of zeroth order.

3 Solutions

The general solution of the system (17)–(20) is now repre-
sented by

p4 = −
ρ

2

(
V 2

11+V12V21

)
+ ajz

p5 = −
ρ

2

(
V 2

11+V12V21

)
+ bjz , (21)

with, as it seems, free parametersV11 andV12 and, of course,
the “magnetic parameters” threshold currentjt and actual
currentjz. To guarantee a spontaneous process, i.e. a pro-
cess where energy isonly dissipated, it is necessary that
Econvective· jz ≡ (Ez +v ×B) · jzez > 0. In the following we
will therefore see that the parametersVij are not all free, as
they are determined by the fact that the quadric, representing
the effective resistivity, must be an elliptic paraboloid (nec-
essary critereon). We will therefore have to introduce another
parameters to expressV21 as function ofV12,V11 ands, as
we will see in the following. The elliptic paraboloid is the
only quadric that allows a positive resistivity with one zero,
the vertex of the paraboloid, at the magnetic null point in the
limiting caseEz → 0. This implies necessarily a minimum
for the resistivity in the limiting case. For the caseEz 6= 0
the nullpoint of the vector fields can either be a minimum, or
also a maximum.

All other quadrics can be excluded, with the excep-
tion of the degenerated case of a parabolic cylinder (cylin-
drical paraboloid) (see, e.g.Bartsch, 1984). The quadric
f (x,y,η)= 0, we analyse, is given by the resistive Ohm’s
law Eq. (11)

f (x,y,η)= −
Ez

jz
+

2aV11

jz
x2

+
2aV12+ 2bV21

jz
xy

−
2bV11

jz
y2

+ η ≡ −
Ez

jz
− η0(x,y)+ η , (22)

2namely the region inside the current sheet, where the maximum
of the current is located

where the last part of the equation defines the spatially vary-
ing part of the resistivityη0. Starting point is the fact that
there are four invariants of any quadric (see, e.g.Bartsch,
1984; Bronstein, 1987). The corresponding invariants are
given by:

I.

1 =

∣∣∣∣∣∣∣∣
2aV11/jz (aV12+ bV21)/jz 0 0

(aV12+ bV21)/jz −2bV11/jz 0 0
0 0 0 1

2
0 0 1

2 −Ez/jz

∣∣∣∣∣∣∣∣ (23)

=

[
4abV 2

11+ (aV12+ bV21)
2
]
/j2

z (24)

II.

δ =

∣∣∣∣∣∣
2aV11/jz (aV12+ bV21)/jz 0

(aV12+ bV21)/jz −2bV11/jz 0
0 0 0

∣∣∣∣∣∣= 0 (25)

III.

t =

∣∣∣∣ 2aV11/jz (aV12+ bV21)/jz
(aV12+ bV21)/jz −2bV11/jz

∣∣∣∣+ ∣∣∣∣−2bV11/jz 0
0 0

∣∣∣∣
+

∣∣∣∣0 0
0 2aV11/jz

∣∣∣∣ (26)

= −

[
4abV 2

11+ (aV12+ bV21)
2
]
/j2

z (27)

IV.

s = trace(δ)= 2V11(a− b)/jz . (28)

The condition

1< 0 and t > 0 (29)

is necessary and sufficient for getting an elliptic paraboloid,
and obviously this can be fulfilled, as1= −t . By using the
Eq. (8) for substituting the expression fora and b and by
using one of the inequalities in Eq. (29), the general solution
can then be parameterized by the parametersV11,V12, s

V21 =
jt + jz

jt − jz
V12+ 2sV11

√
j2

t − j2
z

jt − jz
, (30)
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with the restrictions ∈ [−1,1]. The cylindrical paraboloids
are limiting cases withs = ±1, as is shown in the example in
Fig. 2 (here the specific value iss = −1). Multiplication of
Eq. (30) with V12, inserting this expression into the expres-
sion for the eigenvalueλ2

V = V 2
11+V12V21, and completing

the square gives

λ2
V = V 2

11+V12V21

=

V11+ sV12

√
j2

t − j2
z

jt − jz

2

+

(
1− s2

)
V 2

12
jt + jz

jt − jz
≥ 0.

(31)

If |jz|< jt and|s|< 1 are assumed, the magnetic field is of
hyperbolic type and it is guaranteed that the stagnation point
is also of hyperbolic type, i.e. has two purely real eigenval-
ues, namely one positive value and a negative counterpart.
As mentioned already in the introduction, we proved here
that also “typical” stagnation point flows are possible (“X-
type”), and exclude here the discussion of “shear-like” flows.

Let us investigate now the geometry, respectively the
slopes of the separatrices of the flow and the magnetic field.
Defining Jz := jz/jt, the magnetic separatrix is given by
A= 0 andA=

µ0
4

[(
jt − jz)y

2
− (jt + jz)x

2
)]

(we restrict
this to|Jz|< 1) and can therefore be expressed by√

1− Jzy±

√
1+ Jzx = 0 (32)

⇔ y = ±

√
1+ Jz

√
1− Jz

x := ±Kmx , (33)

where±Km is the slope of the both magnetic separatrix lines
or to say the both asymptotes. AsV21 is given by the general
solution, Eq. (30), by defining a stream functionψ via

vx =
∂ψ

∂y
and vy = −

∂ψ

∂x
, (34)

we can integrate the above equations and get for the stream
function

ψ =
V 2

12

2
y2

−
V 2

21

2
x2

+V11xy . (35)

The fluid separatrix is here given byψ = 0, geometrically
these are asymptotes.

We will briefly discuss the problem that the magnetic sepa-
ratrix is partially identical with the hydrodynamic separatrix.
In this case the plasma flow can only take place across one
part of the separatrix, or both separatrix lines are identical
and no reconnection can take place.

One can clearly recognize that in the caseV11 = 0 and thus
(V21/V12)

2
= (1+Jz)/(1−Jz), both corresponding asymtot-

ical branches (= separatrix lines) have the same slope. Thus
the hydrodynamical separatrix and the magnetic separatrix
are identical, the plasma cannot cross the magnetic separa-
trix and therefore no reconnection can take place.

Writing y(x)=KV x (if V11,V12 6= 0), whereKV is the
slope of the hydrodynamic separatrix, and inserting this into

V 2
12
2 y

2
−
V 2

21
2 x

2
+V11xy = 0 with the parametric expression for

V21 in Eq. (30), we get the slopesKV 1,V 2 of the two asymp-
totes/separatrix lines

KV 1,2 = −
V11

V12
±

√
V 2

11+V12V21

V 2
12

=

−V11±

√
V 2

11+ 2sV11V12

√
1−J 2

z
1−Jz

+V 2
12

1+Jz
1−Jz

V12

= −Vrel ±

√
V 2

rel + 2sVrel

√
1− J 2

z

1− Jz
+

1+ Jz

1− Jz
, (36)

whereVrel = V11/V12. ForV12 = 0 6= V11 the asymptotes are
given byx = 0 andy = s

√
(1+ Jz)/(1− Jz)x, and forV12 =

V21 = 0 we getx = 0 andy = 0 as separatrices.
Let V11 = V12(= 1), then

KV 1,2 = −1±

√√√√(1+ s

√
1− J 2

z

1− Jz

)2

(37)

= −1±

(
1+ s

√
1− J 2

z

1− Jz

)
. (38)

There isonecorresponding slope of the flow separatrix with
respect to one of the magnetic separatrix lines ifs = ±1.

Therefore we can formulate the following theorem (analo-
gous to known anti-reconnection theorems), which is now
restricted to resistive dissipation only, i.e. vanishing non-
resistive dissipation mechanisms.

Theorem

If the flow close to the null point is in good approximation
incompressible, and other kinds of dissipation mechanisms
than the resistive dissipation are negligible, then the plasma
flow cannot cross the magnetic separatrices if for the both
slopes of the both magnetic separatrix linesKm =Km1 =

−Km2 with Km =
√
(1+ Jz)/(1− Jz) and the following is

valid:

I. a)Km =KV 1 ∧ b) −Km =KV 2

or

II . a)Km =KV 2 ∧ b) −Km =KV 1. (39)

If only I.a) or I.b) or II.a) or II.b) is valid, then only one
magnetic separatrix can be crossed, and as the other stream
lines converge to the second magnetic separatrix line without
crossings, one could call this reconnective annihilation (see,
e.g. Priest and Forbes, 2000). The necessary condition for a
complete non-crossing isV11 = 0 for V12 6= 0 and for only
partly crossing flowss = ±1.

For almost all values ofs, heres = 0, the flow in Fig.2
(left column) crosses all four separatrix branches (all two
separatrix lines), the resistivityη0 is positive (only zero at the
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null point, middle panel, the minimum resistivity case)3, and
their isocontours are ellipses (bottom panel). For the special
parameters = −1, it can be seen in Fig.2 (right column) that
the flow, like for the aforementioned magnetic reconnective
annihilation solutions, crosses only the separatrix line with
the positive slope, while it converges to the other magnetic
separatrix, being almost field aligned (top panel), the resistiv-
ity η0 being also positive (middle panel), and the isocontours
of the resistivity are straight lines (bottom panel).

We now focus on the effective resistivity and therefore on
the nature of ohmic heating, i.e. dissipation. As the resistivity
is given by

η =
Ez

jz
+ η0 , (40)

we can now rewriteη0

η0 =
µ0

2

V11

jz

[
(jt + jz)x

2
− 2s

√
j2

t − j2
z xy+ (jt − jz)y

2
]
.

(41)

To ensure that the dissipation is positive, we prove that the

termη0 = (jt + jz)x
2
−2s

√
j2

t − j2
z xy+(jt − jz)y

2 is larger
than zero (or zero) for alls andx,y. LetK1,2 = jt ± jz and
K1,K2 > 0 as required for an X-point. Then

0 ≤

(√
K1x− s

√
K2y

)2

=K1x
2
− 2s

√
K1K2xy+ s2K2y

2

≤K1x
2
− 2s

√
K1K2xy+K2y

2. � (42)

This implies that the sign of the resistivityη depends on the
sign of V11

jz
. If the resistivityη should have a maximum at the

null point, the valuesV11 andjz must have a different sign;
in the case of minimum ofη the parameters must have the
same sign. The first case seems to be the more “physical” or
interesting case. The negativity ofη0 implies that the linear
model is only valid in some small domain, in whichη > 0.
In the next paragraphs we will discuss this problem in detail.
As the dissipation should be positive, i.e.η > 0, the values
V11 andjz must have the same sign in the case of a vanishing
electric fieldEz → 0 in the ideal region.

For s = ±1, it can be recognized from Eq. (41) and
from the bottom panel Fig.2 (for the cases = −1) that
the resistivity contour lines are straight lines given byη0 =

µ0V11/(2jz)(
√
jt + jzx±

√
jt − jzy)

2, and therefore the re-
sistivity has the structure of a one-dimensional sheet. The
cases = ±1 therefore reflects the 1-D character of the non-
idealness, which can also be found, e.g. in the papers ofCraig
and Henton(1995), Tassi et al.(2002), Titov et al. (2004),

3Only the sign of spatially varying part of the resistivityη0, de-
pending onV11/jz, can change. This analysis does not change, i.e.
neither the topology/geometry of the the isocontours of streamlines
and magnetic field lines, nor the isocontours of the resistivity are
changed.
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Fig. 2. Flow lines are thick (blue), thin (red) lines are magnetic
field lines, thick (black) dashed lines are magnetic separatrix lines
(top panels). Flow for the parametersV11 = V12 = 1 ands = 0 (left
column), crossing all four magnetic separatrix branches (left top
panel), ands = −1 (right column), flow lines crossing only two
magnetic separatrix branches (right top panel), shape of the posi-
tive resistivityη0 (middle panels), and the elliptic shaped contours
of the resistivity (bottom panels).

andWatson and Craig(1998). This implies that for complete
crossing of all separatrices, a 2-D shape of the non-ideal term
is necessary.

If the electric field is non-zero, we have to distinguish two
cases:

1. V11/jz > 0 the resistivity is positive definite, (as
Ez/jz > 0 everywhere), the elliptic paraboloid is di-
rected upwards and represents therefore a local mini-
mum of the resistivity, or

2. V11/jz < 0 (Ez/jz > 0 everywhere) the case that the
resistivity-paraboloid in this case is directed upside
down, and represents therefore a maximum with a shift
depending onEz:

η(x,y)= Ez/jz + η0(x,y) (43)

As η has a maximum, the validity of the local model is of
course given by the ellipseη = 0. Outside this ellipse the
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resistivity is not defined, as it represents only the lowest or-
der parts of a Taylor expansion. Formally the resistivity is
getting negative, as the elliptic paraboloid touches theη = 0-
plane. With the help of the principal axis transformation, one
can calculate the small axis of the ellipse (a), and the large
axis (b)

(a) l21 = −
2Ez/jz

µ0V11
jt
jz

− |µ0V11|

√
1− s2 + s2 j

2
t
j2
z

(44)

(b) l22 = −
2Ez/jz

µ0V11
jt
jz

+ |µ0V11|

√
1− s2 + s2 j

2
t
j2
z

(45)

In the case thats → ±1, we get the case of reconnective anni-
hilation with the large axisl2 → ∞. Due to the “infinite” axis
the flow can only cross one part of the magnetic separatrix,
as can be seen in the bottom panel of Fig.2 (for the case
s = −1). The minimum value of the smallest axis, represent-
ing the scale on which the linear field approximation can be
valid, is then given byl < l1,min = Ez/(µ0|V11|jt).

4 Discussion and conclusions

We analyse the system of stationary, slightly resistive/non-
ideal magnetohydrodynamics (MHD) in the vicinity of sin-
gular points of flow and field to determine the boundary
between reconnection solutions and non-reconnective solu-
tions. This is an important point, because not every non-ideal
term or resistivity guarantees a reconnection process (see,
e.g.Schindler et al., 1988or Hornig and Schindler, 1996).

To consider structurally stable fields in 2-D, so-called
“generic fields”, it is necessary that the corresponding stream
and flux functions are of Morse type, i.e. the corresponding
vector fields in the vicinity of null pointsmust depend lin-
early on the coordinates. This implies that the non-ideal or
resistive term is a quadric in the vicinity of the null point.
Thus our mathematical proofs in this manuscript have to be
regarded as a tool for analysing all generic solutions with a
small non-idealness around the null point. It gives the nec-
essary conditions for all structurally stable solutions in the
vicinity of the null point.

Reconnection is defined as a process where plasma crosses
magnetic boundaries (separatrices) and shows a constant
electric field in the invariant direction (Ez = const). We
proved that crossing of magnetic separatrices requires also
an X-type stagnation point flow if the effective resistivity and
thus the dissipation should be positive. The existing analyt-
ical solutions, done for constant resistivity, show a structure
called reconnective annihilation: these solutions allow the
plasma flow only to cross one of the two separatrix lines. We
proved mathematically that this property of the plasma flow
is connected with the one-dimensional structure of the non-
idealness. We also proved that spatial structure of the resis-
tivity or non-idealness must be two-dimensional to allow the

plasma to cross both separatrix lines. If the non-idealness has
a one-dimensional, sheet-like structure, the plasma flow can
only cross one part of the separatrix, similar to well known
magnetic reconnective annihilation solutions. Therefore, our
mathematical model proves and explains well the properties
of analytical reconnective annihilation solutions ofCraig and
Henton(1995), Tassi et al.(2002), Titov et al. (2004), and
Watson and Craig(1998). Our model delivers a necessary
condition for all existing 2-D models of magnetic reconnec-
tion.

The analyses started by us here will be extended to con-
figurations that have a saddle point of the resistivity. This
extension will maybe provide us with a deviation from pure
(X-type) stagnation point flow.
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