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Abstract. The properties of the instability of combined
gravity-inertial-Rossby waves on aβ-plane are investigated.
The wave-energy exchange equation shows that there is an
exchange of energy with the background stratified medium.
The energy source driving the instability lies in the back-
ground enthalpy released by the gravitational buoyancy
force.

It is shown that if the phase speed of the westward propa-
gating low frequency-long wavelength Rossby wave exceeds
the Poincaŕe-Kelvin (or “equivalent” shallow water) wave
speed, instability arises from the merging of Rossby and
Poincaŕe modes. There are two key parameters in this insta-
bility condition; namely, the equatorial/rotational Mach (or
Froude) numberM and the latitudeθ0 of the β-plane. In
general waves equatorward of a critical latitude for givenM

can be driven unstable, with corresponding growth rates of
the order of a day or so. Although these conclusions may
only be safely drawn for short wavelengths corresponding to
a JWKB wave packet propagating internally and located far
from boundaries, nevertheless such a local instability may
play a significant role in atmosphere-ocean dynamics.
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1 Introduction

In this paper we extend some aspects of an instability of com-
bined gravity-inertial-Rossby waves on aβ-plane (McKen-
zie, 2009) to include the equatorial waveguide and the case
of prescribed meridional wave numbers. The instability
arises from the merging of westward propagating Rossby and
Poincaŕe modes. The two key parameters in the problem,
namely the equatorial rotational Mach (or Froude) number
M and the latitudeθ0 on which theβ-plane is constructed,
define, through the marginal stability condition, the unsta-
ble region as lying equatorward of a critical latitude for any
givenM.

The governing equations given in the next section re-
duce to a single partial differential wave equation which,
for Fourier type plane wave modes, becomes an ordinary
second order differential equation describing the latitudinal
structure of the perturbations. It is shown that the wave en-
ergy equation may be cast into a wave energy-exchange form
from which it is evident that there is indeed an energy ex-
change with the inhomogeneous, stratified background. The
energy source which may drive an instability is identified as
the background enthalpy released by gravitational buoyancy.

In Sect. 4 we present a local stability analysis based on
JWKB solutions of the wave structure equation. These so-
lutions describe the propagation of “short wavelength” wave
packets located well within boundaries and therefore bound-
ary terms (conditions) are surely irrelevant to the properties
of these waves. The corresponding local dispersion equation
shows that a wave coupling instability sets in when the low
frequency-long wavelength Rossby wave speed exceeds the
Poincaŕe-Kelvin (or “equivalent” shallow water) wave speed.
If the β-plane is centred on the equator a waveguide system
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can be formed, and analytic solutions in terms of Hermite
polynomials are available which yield eigenvalues which do
not exhibit instability. However these solutions are good ap-
proximations only if the effective rotational Mach number is
large, to ensure that the first reflection point lies well inside
the Tropics. For moderate Mach numbers ofO(1) the lo-
cal JWKB solutions, appropriate to “short wavelength” wave
packets, may exhibit instability. The mid-latitude case reiter-
ates the previous analysis (McKenzie, 2009), however using
a different normalization, which now also includes the equa-
torial case, as well as prescribed meridional wave numbers.
In the latter case it is shown that the unstable region is fur-
ther diminished to a fairly narrow belt around the equator for
moderate values of that wave number. On the other hand for
waves evanescent about a given latitude the unstable region
is extended.

The work is summarized in Sect. 5 in which we refer to
pertinent recent work (Maas and Harlander, 2007; Paldor et
al., 2007). Further work on full wave solutions of the wave
equation for freely propagating waves will be important in
the possible extension of the present conclusions based on lo-
cal JWKB solutions. It may well be that the instability is of a
local nature and that globally the system is stable. However,
that does not imply that the instability should be dismissed as
insignificant. After all, the Schwarzschild criterion for atmo-
spheric stability,N2 > 0, predicts local instability (N2 < 0),
the onset of overturning and the development of the convec-
tion zone of the Sun which is itself globally stable. Hence,
the non-linear evolution of this instability may play an im-
portant, hitherto unrecognised, role in atmosphere-ocean dy-
namics.

2 Governing equations

The linearized equations of motion for small amplitude per-
turbations about a background atmosphere stratified hydro-
statically and rotating with frequency�ẑ may be written (e.g.
Eckart, 1960; Gill , 1982; Pedlosky, 1987) as

∂q

∂t
+f ×q = −∇pe +ρeg, (1)

in which q = ρ0u is the perturbation mass flux or momen-
tum density (the background densityρ0 multiplied by the
perturbation fluid velocityu), pe is the pressure perturbation
andρeg is the buoyancy force. In theβ-plane approximation
the Coriolis parameter (or frequency)f , at any latitudeθ , is
given by

f = f ẑ, (2)

in which:

f = 2�sinθ
.
= f0+βy, (3a)

f0 = 2�sinθ0, (3b)

β = 2�cosθ0/a, (3c)

wherey = aδθ , θ = θ0+δθ anda is the radius of the planet.
The spherical geometry is replaced by aβ-plane constructed
tangential to the planet at a given latitudeθ0 in which the lo-
cal Cartesian co-ordinates arex directed eastward,y north-
ward andz vertically. In the Boussinesq approximation the
continuity equation assumes the incompressible form

div q = 0. (4)

The small amplitude density perturbation,ρe, however
evolves according to the buoyancy-adiabatic condition
(Eckart, 1960; Lighthill , 1980),

g
∂ρe

∂t
= N2qz, (5)

and

N2
= −g

(
ρ′

0(z)

ρ0(z)
+

g

c2
0

)
(6)

wherec2
0 = γp0/ρ0. We shall assume that the atmosphere

is stably stratified so that the square of the Brunt-Vaisälä
frequencyN2 > 0. In effect the Boussinesq approximation
ignores the variations in the perturbation densityρe, unless
multiplied by g as in the buoyancy force, and therefore fil-
ters out higher frequency acoustic waves. The background
densityρ0(z) has a scale heightH and is stratified according
to
dp0

dz
= −ρ0g (7)

wherep0(z) is the background pressure distribution.
Equations (1), (4) and (5) readily lead to the following

wave equation for the system (e.g.McKenzie, 2009)

∂

∂t

(
∂2

∂z2

(
∂2

∂t2
+f 2

)
+

(
∂2

∂t2
+N2

)(
∂2

∂x2
+

∂2

∂y2

))
qy

= −β

(
∂2

∂t2
+N2

)
∂qy

∂x
. (8)

This linear partial differential equation, which displays both
dispersive (through the frequenciesf andN ) and anisotropic
(through the preferred directionŝy and ẑ) properties, lends
itself to Fourier plane wave analysis. In the simplified case
with N assumed constant we may choose zonally and verti-
cally propagating solutions of the form

qy = Q(y)expi(ωt −kxx −kzz) (9)

in which the latitudinal structure iny is governed by the sec-
ond order differential equation

d2Q

dy2
= −K2Q, (10)

which follows from substituting Eq. (9) into Eq. (8). The
wave number is given by

K2
≡ −

(
k2
x +

β

2ω

)2

+
β2

4ω2
+

(ω2
−f 2)k2

z

(N2−ω2)
. (11)
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Equation (10) admits classical JWKB solutions, appropriate
to a slowly varying medium in the short-wave limit, of the
form

Q(y) ∝

√
1

ky

exp

(
±i

∫
kydy

)
(12)

in which the local wave numberky is given by the local dis-
persion equation which follows from Eq. (11) and may be
written in the wave normal surface form

(ω2
−f 2)k2

z

(N2−ω2)
+

β2

4ω2
= k2

y +

(
kx +

β

2ω

)2

. (13)

The wave normal surface is an ellipsoid or hyperboloid,
whose axis of revolution is parallel to thekz axis, but dis-
placed−β/2ω units along thekx axis, according asω ≤ f

andω < N . In this form it is particularly useful in construct-
ing ray trajectories for givenω, kx andkz, and withky thus
determined at each latitude, the ray direction is normal to the
wave normal surface (Lighthill , 1980). On the other hand the
local dispersion equation may also be written in the diagnos-
tic form

ω(ω2
−ω2

i ) = βV 2kx (14)

in which

ω2
i ≡ f 2

+V 2(k2
x +k2

y), (15a)

V ≡

√
N2−ω2/kz. (15b)

This is the appropriate form for any investigation of possi-
ble instabilities characterized by complex conjugate values
for the frequencyω (McKenzie, 2009). This form is also ap-
propriate to shallow water theory of an ocean of depthh in
which V is then replaced by

√
gh, the shallow water speed.

We shall refer toV as the Poincaré-Kelvin speed (Pedlosky,
1987).

Before considering energy arguments (next section) and
the stability analysis (Sect. 4) we briefly recapitulate the
waves given by Eq. (14). For wave frequenciesω � ωi (the
Poincaŕe frequency) Eq. (14) yields the Rossby wave disper-
sion equation

ω = −
βkx

f 2/V 2+(k2
x +k2

y)
. (16)

On the other hand for higher frequencies Eq. (14) gives the
Poincaŕe-inertial modes (modified by theβ-effect),

ω2
≈ f 2

+V 2(k2
x +k2

y)+βV 2kx/ωi . (17)

Note that Eq. (16) shows that the long wavelength(k2
→

0) Rossby wave propagates westward at the speedω/kx =

βV 2/f 2, whereas the short wavelength –(k2
→ ∞) – high

frequency Poincaré- inertial waves propagate at the Poincaré-
Kelvin speedV . Intuitively it is clear that ifβV/f 2 > 1 the
Rossby wave may couple with a westward Poincaré mode
over some intermediate band of frequencies and wave num-
bers. Analysis shows that this is indeed the criterion for the
onset of instability.

3 Wave energy equation and the energy reservoir

The system of Eqs. (1), (4) and (5) possess a wave energy
equation

∂E

∂t
+div F = 0, (18)

which follows in a straightforward fashion by taking the
scalar product of the equation of motion (1) with the mass
flux q and using Eqs. (4) and (5) to guide the right hand
side termsq ·∇pe andgρeqz into yielding the conservation
form (18) in which

E =

(
q2

+V 2
s ρ2

e

)
/2, (19a)

V 2
s = g2/N2 .

= gH, (19b)

F = peq. (19c)

E is a measure of the wave energy density consisting of the
kinetic energy (the first term) and the thermobaric energy (the
second term) (Eckart, 1960), whilst F is a measure of the
wave energy flux. The Coriolis term makes no contribution
to the wave energy equation because the Coriolis “force” is
perpendicular toq. Although the wave energy equation is in
fact a redundant equation (since it follows from the system’s
equations), we quote and examine it here because of its ob-
vious physical interest. Equation (18) when integrated over
a volumeV enclosed by a surfaceS takes the form (using
Gauss’s theorem on the divergence term)

∂

∂t

∫
EdV =

∫
peq ·dS (20)

wheredS is directed along the inward pointing normal to the
surface. If the surface (or surfaces) enclosing the volume are
rigid, requiringqn = 0 on the boundary so that the pressure
pe from without can do no work on the volume of the fluid
contained within, then the surface integral on the right hand
side is indeed zero andE =const. However, in the case of
an ocean, although the bottom may be regarded as rigid, the
surface is free at which pressure must balance across it, and
through which there is no flow; that is to say, the surface is
a streamline. Hence there is a free surface contribution to
the surface integral on the right hand side of Eq. (20) which
cannot be put to zero. Therefore the wave energy measure
E may change with time. Similarly in the case of an atmo-
sphere bounded below by an ocean the surface integral can-
not, a priori, be set to zero. In the case of an atmosphere over
groundqn is indeed zero at ground, but conditions at large
heights are subject to radiation type conditions with the re-
sult that again the right hand side cannot automatically be put
to zero. Therefore in principle the wave energy Eq. (18) and
its integral form (20) do permit the wave energyE to change
with time and the wave system, described by Eq. (8), may
admit unstable solutions which grow in time without violat-
ing a wave energy theorem. Apologies to “old school” fluid
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dynamicists who will regard these conclusions as merely the
wave perturbation form of the general energy theorem which
states that “the total energy of a volume of fluid increases
at a rate equal to that at which work is being done on the
boundary by pressure from without” (e.g.Lamb, 1932).

Nevertheless, the further question arises as to what is the
possible energy source which may drive unstable solutions of
Eq. (8), if they exist. There is no obvious mean flow source to
drive Kelvin-Helmholtz-baroclinic type instabilities. How-
ever observe that the background hydrostatic Eq. (7) may be
cast in the form

w0+gz = const. (21)

in whichw0 is the enthalpy given by

w0 =

∫
dp0

ρ0
. (22)

The particular form forw0 depends on the equation of state
and whatever heating/cooling processes are active in the
background state. For example, in polytropic (adiabatic) pro-
cesses,p0 ∝ ρ

γ

0 , the enthalpy is given by

w0 =

{
RT0lnρ0 if γ = 1

γp0
(γ−1)ρ0

=
c2

0
γ−1 if γ 6= 1.

(23)

In general Eq. (21) may be regarded as the energy equation
for the background state which exhibits a vertical (negative)
gradient of the enthalpy in a fashion analogous to the temper-
ature gradient which may drive a thermal-convective insta-
bility. Hence enthalpy (the total thermodynamic heat content
of a system) released by gravitational buoyancy is available.
This energy source may be “tapped” to drive an instability
provided the system admits of wave modes capable of releas-
ing this latent state of background energy (Chandrasekhar,
1968).

Finally in this section we observe that the wave energy
Eq. (18) may be cast in the more “physical” or wave energy-
exchange form,

∂

∂t

(
ρ0u

2

2
+

V 2
s ρ2

e

2ρ0

)
+div (peu) = −

peuzρ
′

0

ρ0
=

peuz

H
, (24)

where the quantity(ρ0u
2
+V 2

s ρ2
e /ρ0)/2 is the wave energy

density andpeu is the actual wave energy flux. In this form
it is evident that there is indeed a wave energy exchange with
the inhomogeneous stratified background through the term
peuz/H on the right hand side of Eq. (24). A similar ex-
change term of the formρ0uxuydV0/dy is present in the case
of a sheared mean flow where the background zonal flow
speedV0(y) varies latitudinally, and this in turn may give
rise to Kelvin-Helmholtz type instability which feeds off the
mean flow energy.

4 JWKB dispersion equation and local stability analysis

It has been shown (McKenzie, 2009) that the diagnostic form
of the dispersion equation, a cubic inω, yields complex con-
jugate roots forω, characteristic of a convective instabil-
ity (Akhiezer et al., 1967), when the dimensionless param-
eterm = |cosφ|βV/f 2

0 > 1, where(kx,ky) = k(cosφ,sinφ).
Here the propagation angleφ lies in the second or third quad-
rant indicating westward propagation. The gravity-inertial
wave coalesces with a westward propagating Rossby wave.
A similar instability arises in wave hierarchies in which a
main wave interacts with a higher order wave of approx-
imately the same speed and instability arises as “a conse-
quence of an unresolvable competition between the two sets
of waves” (Whitham, 1974). Here we summarize the results
of the instability calculation using a different normalization
from (McKenzie, 2009) which enables us to investigate both
the equatorialβ-plane and the mid-latitudinal case, as well as
the possibility thatk2

y may be a given quantity, set, for exam-
ple, by boundary conditions. This last case, as we shall see,
leads to a somewhat modified form of the unstable region of
Mach number-latitude space. On normalizingω to 2� andk

to a the diagnostic form (14) may be written

ω̄(ω̄2
− ω̄2

i ) =
k̄

4M2
cosθ0cosφ (25)

where:

ω̄2
i = sin2θ0+

k̄2

4M2
, (26a)

k̄2
= k̄2

x + k̄2
y, (26b)

M =
�akzH

V
. (26c)

Here we assume thatω � N so thatV
.
= N/kz. Recall

that these equations also apply to shallow water theory in
an ocean of depthh so thatV =

√
gh andM = �a/

√
gh.

4.1 The equatorial waveguide

At the equator,θ0 = 0, f0 = 0 andf ≈ βy with the result
that the wave frequencyω exceedsf close to the equator.
Howeverf increases withy so that at some pointω <f may
be achieved, or more importantly there may exist a latitude
y = yr at which reflection (given byk2

y = 0 in the structure
Eq. (10) takes place where

βyr

V
= ±

√
ω2

V 2
−

(
k2
x +

βkx

ω

)
. (27)

Neary = yr the wave structure Eq. (10) assumes the clas-
sical Airy form characteristic of wave reflection processes.
For |y| < yr waves bounce between these two latitudes to
form a waveguide whilst propagating zonally. This case may
be solved explicity in terms of Hermite polynomials which
yield eigenvalues (arising from evanescent requirements as
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|y| → ∞) given by (Cane and Sarachik, 1976; Moore and
Philander, 1977)

ω2

V 2
−

(
k2
x +

βkx

ω

)
=

(2n+1)β

V
(28)

wheren = 0,1,2,..., is a non-negative integer. We note that
even in the most favourable case of the fundamentaln = 0,
Eq. (28) does not posess complex conjugate roots forω and
there is no instability. However, this analysis can only claim
to be approximately valid if the first reflection point given by

yr =
a

√
2M

, M =
�a

V
, (29)

lies well inside the Tropics,y � 4a, or equivalently that
the equatorial Rossby deformation radius is very much less
than the Earth’s radius. If the equatorial rotational Mach (or
Froude) numberM � 1 the description in terms of Hermite
polynomials is indeed a good approximation, and would also
apply to atmospheric waves withkzH � 1 because the wave
speedV = N/kz = NH/kzH ≈ c/kzH , giving an effective
Mach number

M =

(
�a

c

)
kzH. (30)

In this caseM is indeed large providedkzH � 1 even if
�a/c is order unity (actually for the Earth∼ 1.5). Similarly
the “baroclinic” mode in a two-layer system of the ocean
can yield wave speedsV of order 5 m s−1 once again making
�a/c large.

It is interesting to note that the dispersion Eq. (28), for
the fundamental(n = 0) is of precisely the same form as the
JWKB Eq. (25) in whichω2

i is replaced byβV +V 2k2
x . It is

as if the stability parameterm were set equal to unity which
corresponds to the Rossby and Poincaré-Kelvin speeds being
equal. Therefore strictly speaking, although the dispersion
Eq. (28), with n = 0, does not exhibit complexω, the system
is marginally stable.

However ifM is not large but is in factO(1) the solution
in terms of Hermite polynomials is not a good approxima-
tion. In this case the local JWKB approximation for freely
propagating waves located far from boundaries is appropri-
ate. In the zeroth order we may setf = 0 (y � a) and with
ω2

i = V 2k2 in Eq. (15a) (and its normalization counterpart in
Eq.24) which becomes

ω̄

(
ω̄2

−
k̄2

4M2

)
=

k̄cosφ

4M2
. (31)

For westward propagating waves (cosφ < 0) the double root
condition shows this equation has complex roots forω̄ pro-
vided

k̄ <

√
33/2|cosφ|M. (32)

Near marginal stability the growth rateγ is approximately

γ ≈

√√√√ |cosφ|−
k̄2

33/2M

2
√

3M
(33)

and is centred around the frequency

ω̄r =
k̄

2
√

3M
. (34)

Recent work (Maas and Harlander, 2007) on equatorial wave
attractors and inertial oscillators in which they find a local-
ized instability, not requiring shear flow driving, is particu-
larly important and possibly relevent to the present work.

4.2 The mid-latitudinal case

In this case the instability condition (complex conjugate roots
for ω̄ (Eq.25)) becomes

cosθ0|cosφ|

2M
>

4M

33/2k̄

(
sin2θ0+

k̄2

4M2

)3/2

. (35)

Since the right hand side has a minimum value of sin2θ0
occuring at k̄2/4M2

= sin2θ0, the instability requirement
(Eq.35) may be written

cosθ0|cosφ|

2Msin2θ0
> 1. (36)

This is an alternative and equivalent form of the instability
condition already given byMcKenzie (2009) in which the
stability parameter is> 1. This a formal, analytic way of
expressing the requirementβV/f 2 > 1 already obtained on
intuitive grounds. Hence for a givenM the unstable region
lies at latitudes less than the critical latitudeθc given by

cosθc =

√
1+16M2−1

4M
(37)

where the cosφ has been absorbed intoM. Note that the
condition (Eq.36) is not a largeβ requirement.β is given
by the planet’s characteristics. The crucial quantity is in fact
the wave speedV . We note that in fact the instability con-
dition (36) lends itself to the more easily understood inter-
pretation that instability sets in if the Rossby wave speed ex-
ceeds the Poincaré-Kelvin speed. From Eq. (37) it follows
that waves withM > 3.4, the correspondingθc lies inside the
Tropics, which is therefore better described by the foregoing
equatorial approximation. However the fast barotropic wave
(V ∼ 200 m s−1), for whichM is as “low” asM ∼ 2.33, gives
θc = 27◦ and therefore aβ-plane centred on the tropics may
provide a good approximation. In such a case there is a band
of wave numbers exhibiting instability with growth rateγ
approximately given by

γ ≈

√√√√√√
k

4M2 |cosφ|−
2

33/2
(
sin2θ0+

k2

4M2

)3/2

√
3
(
sin2θ0+

k2

4M2

) (38)
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which, in the middle of the band (k =
√

2Msinθ0), yields

γ ≈
1

21/4
√

3

√
cosθ0|cosφ|

2M
−sin2θ0. (39)

Alternatively one may prescribe a real frequencyω and solve
Eq. (14) for k̄ as a function ofω of the form

k̄ =
cosθ0cosφ

2ω̄
±

√(
cosθ0cosφ

2ω̄

)2

+4M2
(
ω̄2−sin2θ0

)
.

(40a)

This shows that if

cosθ0|cosφ|

2Msin2θ0
< 1, (40b)

the expression inside the radical is negative in the frequency
band which separates the low frequency Rossby wave from
the high frequency inertial-gravity mode. The wavenumber
k̄ is then complex and represents (stable) solutions decay-
ing away from the meridional boundary. The “evanescent”
condition (Eq.40b), pertaining to the frequency gap between
inertial/gravity waves and Rossby waves is in fact just the
opposite of the instability condition (Eq.36).

4.3 The instability condition and growth rate for pre-
scribed meridional wavenumbers

It is some interest to examine the instability condition
(Eq.36) for prescribed (given) values of the N-S wave num-
ber ky . This can arise if zonal walls are erected yielding
wave-guide values forky inversely proportional to the width
between the walls. There is also the interesting case of
evanescent solutions,k2

y < 0, which arise for values ofkx

lying outside the Rossby wave normal circle, that is if

kx +
β

2ω
> ±

√
β2

4ω2
+

ω2−f 2
0

V 2
, (41)

thenk2
y < 0. The wave structure equation would then yield

exponential decay about that latitude. In these cases the in-
stability condition (Eq.36) takes the form

cosθ0 > 2Msin2θ0+
k2
y

2M
, (42)

where we have used the fact that the right side of Eq. (35)
exhibits a minumum value at

k2
x =

1

2

(
2Msin2θ0+k2

y

)
. (43)

Hence the instability region in the(M,θ0) plane lies beneath
the curve given by

cosθ0 =

√
1+16M2

(
1−

k2
y

4M2

)
−1

4M
. (44)

Fig. 1. The marginal stability curves (given by Eq. 42) in the
(θ0,M) plane for various values of the meridional wave numberk2

y

(including an evanescent casek2
y = −4). The regions beneath the

curves are unstable.

In the casek2
y > 0 the unstable region is confined to latitudes

less than

θc = tan−1
(

1

2ky

)
. (45)

For moderate to large values ofky (> 1) the unstable region is
therefore confined to a fairly narrow belt around the equator.
On the other hand for evanescent waves,k2

y < 0, the unstable
region is extended in the parameter space. These properties
are depicted in Fig. 1.

5 Summary and discussion

The latitudinal wave structure governing combined inertial-
gravity-Rossby waves on aβ-plane in the Boussinesq ap-
proximation admits JWKB wave packet solutions which are
valid in the “short wavelength” limit. The corresponding lo-
cal dispersion equation shows that if the “coupling” between
a westward propagating inertial-gravity wave and Rossby
wave is sufficiently strong these two modes coalesce and give
rise to a convective instability.A necessary and sufficient con-
dition for the unstable mode coupling to take place is that
the low frequency Rossby wave speed exceeds the high fre-
quency Poincaré-Kelvin speed. The implication of this phe-
nomenon is outlined in Sect. 4 for both the equatorial and
mid-latitudinal cases, as well as for the situation in which the
meridional wave number may be assigned prescribed values.

The set of papers byPaldor et al.(2007); Paldor and
Sigalov(2008); Leon and Paldor(2009) is pertinent and of
special interest since it develops numerical and analytic so-
lutions to the “full-wave” structure equation. Unfortunately
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these solutions appear to apply only to cases where the cou-
pling parameterm < 1 and hence the “local” instability con-
dition was not put to a proper test. Moreover zonal wall
boundary conditions, although providing the structure equa-
tion with a fixed eigenvalue problem, are not appropriate to
freely propagating waves. Instead it would be preferable to
impose radiation-type conditions or finiteness requirements
over the poles as is done for full wave solutions covering
the sphere (e.g.Longuet-Higgins, 1968). Indeed recent work
(Maas and Harlander, 2007) shows that a local instability, not
requiring mean shear flow, may arise in equatorial regions as
a result of wave pile-up.

The wave energy-exchange Eq. (24) shows that there is an
energy exchange through the stratification term on the right
hand side of that equation. This provides the channel be-
tween horizontal and vertical momentum and access to the
enthalpy latent in the background state to drive the instability
arising from the coalescence of the two westward propagat-
ing modes. The non-linear evolution of this instability may
play an important, hitherto unrecognised, role in atmoshere-
ocean dymanics.
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