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Abstract. The properties of the instability of combined 1 Introduction
gravity-inertial-Rossby waves ongplane are investigated.

The wave-energy exchange equation shows that there is aj, this paper we extend some aspects of an instability of com-
exchange of energy with the background stratified mediumyjneq gravity-inertial-Rossby waves ongaplane (McKen-
The energy source driving the instability lies in the back- zie 2009 to include the equatorial waveguide and the case
ground enthalpy released by the gravitational buoyancyof prescribed meridional wave numbers. The instability
force. arises from the merging of westward propagating Rossby and
Itis shown that if the phase speed of the westward propappincagé modes. The two key parameters in the problem,
gating low frequency-long wavelength Rossby wave exceed$amely the equatorial rotational Mach (or Froude) number
the Poincag-Kelvin (or “equivalent” shallow water) wave 37 and the latitudedp on which theg-plane is constructed,
speed, instability arises from the merging of Rossby andgefine, through the marginal stability condition, the unsta-

Poincag modes. There are two key parameters in this instapje region as lying equatorward of a critical latitude for any
bility condition; namely, the equatorial/rotational Mach (or given p.

Froude) numbeM and the latitudedy of the g-plane. In
general waves equatorward of a critical latitude for gigén r?

can be driven unstable, with corresponding growth rates o uce to a single partial differential wave equation which,
' P 99 : or Fourier type plane wave modes, becomes an ordinary
the order of a day or so. Although these conclusions may.

: second order differential equation describing the latitudinal
only be safely drawn for short wavelengths corresponding to d g

JWKB wav ket pr ting internally and located f rstructure of the perturbations. It is shown that the wave en-
a ave packet propagating internally and located fa ergy equation may be cast into a wave energy-exchange form
from boundaries, nevertheless such a local instability ma

I anificant role in at h d ) Yrom which it is evident that there is indeed an energy ex-
play a signiticant role In atmosphere-ocean dynamics. change with the inhomogeneous, stratified background. The

Keywords. Atmospheric composition and structure (Gen- energy source which may drive an instability is identified as
eral or miscellaneous) the background enthalpy released by gravitational buoyancy.

In Sect. 4 we present a local stability analysis based on
JWKB solutions of the wave structure equation. These so-
lutions describe the propagation of “short wavelength” wave
packets located well within boundaries and therefore bound-
ary terms (conditions) are surely irrelevant to the properties
of these waves. The corresponding local dispersion equation
shows that a wave coupling instability sets in when the low
frequency-long wavelength Rossby wave speed exceeds the

Correspondence tal. F. McKenzie Poincaé-Kelvin (or “equivalent” shallow water) wave speed.
BY

(mckenziej@ukzn.ac.za) If the B-plane is centred on the equator a waveguide system

The governing equations given in the next section re-
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can be formed, and analytic solutions in terms of Hermitewherey =ad6, 6 = 6p+ 30 anda is the radius of the planet.

polynomials are available which yield eigenvalues which doThe spherical geometry is replaced bg-@lane constructed

not exhibit instability. However these solutions are good ap-tangential to the planet at a given latitugiein which the lo-

proximations only if the effective rotational Mach number is cal Cartesian co-ordinates aredirected eastwardy north-

large, to ensure that the first reflection point lies well insideward andz vertically. In the Boussinesq approximation the

the Tropics. For moderate Mach numbers@fl) the lo- continuity equation assumes the incompressible form

cal JWKB solutions, appropriate to “short wavelength” wave divg =0 )

packets, may exhibit instability. The mid-latitude case reiter-~ =

ates the previous analysisI¢Kenzig 2009, however using The small amplitude density perturbatiop,, however

a different normalization, which now also includes the equa-evolves according to the buoyancy-adiabatic condition

torial case, as well as prescribed meridional wave numbers(Eckart 196Q Lighthill, 1980,

In the latter case it is shown that the unstable region is fur- 5, 5

ther diminished to a fairly narrow belt around the equator for§ —- =N"q:, (5)

moderate values of that wave number. On the other hand for

waves evanescent about a given latitude the unstable regio%rld

is extended. 2 002 g
The work is summarized in Sect. 5 in which we refer to ™ = 7\ ;%) + %

pertinent recent workMaas and Harlande2007 Paldor et

al., 2007). Further work on full wave solutions of the wave Wherecg = ypo/po. We shall assume that the atmosphere

equation for freely propagating waves will be important in is stably stratified so that the square of the Brunt-&fiis

the possible extension of the present conclusions based on IérequencyN? > 0. In effect the Boussinesg approximation

cal JWKB solutions. It may well be that the instability is of a ignores the variations in the perturbation dengity unless

local nature and that globally the system is stable. Howevermultiplied by g as in the buoyancy force, and therefore fil-

that does not imply that the instability should be dismissed agers out higher frequency acoustic waves. The background

insignificant. After all, the Schwarzschild criterion for atmo- densitypo(z) has a scale heighif and is stratified according

spheric stability N2 > 0, predicts local instability(? <0),  to

the onset of overturning and the development of the convecpg

tion zone of the Sun which is itself globally stable. Hence, 7, ~ 708 @

the non-linear evolution of this instability may play an im-

portant, hitherto unrecognised, role in atmosphere-ocean d

(6)

wherepo(z) is the background pressure distribution.
y- Equations 1), (4) and 6) readily lead to the following

namics. wave equation for the system (eldcKenzig 2009
2 Governing equations 0 (9 (2 + 12+ 9° + N? 22 + i

verming equat ar \ 922\ a2 012 ox2 " oy2 ) )P
The linearized equations of motion for small amplitude per- 52 3q
turbations about a background atmosphere stratified hydro= —p (ﬁ 2) 8—y (8)
statically and rotating with frequen€yz may be written (e.qg. ! *
Eckart 196Q Gill, 1982 Pedlosky 1987 as This linear partial differential equation, which displays both
dq dispersive (through the frequenciggandN) and anisotropic
3—; +/Xqg=—=Vpe+peg. (1) (through the preferred directionisandz) properties, lends

_ _ _ _ itself to Fourier plane wave analysis. In the simplified case
in which g = pou is the perturbation mass flux or momen- jth N assumed constant we may choose zonally and verti-
perturbation fluid velocity), p. is the pressure perturbation

andp.g is the buoyancy force. In the-plane approximation 9y = () &Xpi (@ —kex —k:2) )
the Coriolis parameter (or frequency) at any latitude, is  in which the latitudinal structure in is governed by the sec-
given by ond order differential equation

= f3, 2 d?
i fz ( ) _g _ —KZQ, (10)
in which: dy

o which follows from substituting Eq.9) into Eq. @). The

f=2Qsin6 = fo+ By, (38)  wave number is given by

= 2Qsinfo, 3b
j:;)—ZQCOSQO/a §3C§ K2=— k2+£ 2+’3_2+M (11)

= 0/, S\ 20 ) T T TN =)
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Equation (0) admits classical JWKB solutions, appropriate 3 Wave energy equation and the energy reservoir

to a slowly varying medium in the short-wave limit, of the
form The system of Egs.1j, (4) and 6) possess a wave energy

equation

00 o \/ki xp(+i [ k) CE
y 5, TdvE=0, (18)

in which the local wave numbé, is given by the local dis-

persion equation which follows from EglY) and may be which follows in a straightforward fashion by taking the

written in the wave normal surface form scalar product of the equation of motiof) fvith the mass

(wz_fz)kzz 82 X B \2 flyx g and using Eqgs.4) an'd 6) 'Fo guide the right hapd

NZ—w?) + Yo kS + (kx + Z) (13)  side termgg - Vp, and gp.q; into yielding the conservation
form (18) in which

The wave normal surface is an ellipsoid or hyperboloid,

whose axis of reyolution is parallgl to the a?ds, but dis- E— (q2+Vs2Pe2) /2, (19a)
placed— /2w units along thek, axis, according as < f

andw < N. In this form it is particularly useful in construct- Vs2 = gz/Nz =gH, (19b)
ing ray trajectories for givem, k, andk, and withk, thus F=peq. (19¢c)

determined at each latitude, the ray direction is normal to the
wave normal surface{ghthill, 1980. On the other hand the E is a measure of the wave energy density consisting of the
local dispersion equation may also be written in the diagnoskinetic energy (the first term) and the thermobaric energy (the
tic form second term)Hckart 1960, whilst F is a measure of the
w(wz_wiz) — BV2%, (14) wave energy flux. The quiolis term makes no cpntributiop
to the wave energy equation because the Coriolis “force” is

in which perpendicular tg. Although the wave energy equation is in

w?= 2+ VAKZ+KD), (15a) factaredundant equation (since it follows from the system’s
R equations), we quote and examine it here because of its ob-

V=VNe=wk. (15b) vious physical interest. Equatiod) when integrated over

This is the appropriate form for any investigation of possi- @ volumeV enclosed by a surfacg takes the form (using
ble instabilities characterized by complex conjugate valuesGauss’s theorem on the divergence term)
for the frequencyw (McKenzig 2009. This form is also ap- 5
propriate to shallow water theory of an ocean of depih —/Edv = /peg-d§ (20)
which V is then replaced by/gh, the shallow water speed. o1
We shall refer toV as the Poinc&-Kelvin speedRedlosky  whereds is directed along the inward pointing normal to the
1987. surface. If the surface (or surfaces) enclosing the volume are
Before considering energy arguments (next section) andigid, requiringg, = 0 on the boundary so that the pressure
the stability analysis (Sect. 4) we briefly recapitulate the p, from without can do no work on the volume of the fluid
waves given by Eq.14). For wave frequencies < w; (the  contained within, then the surface integral on the right hand
Poincaé frequency) Eq.14) yields the Rossby wave disper- side is indeed zero and =const. However, in the case of

sion equation an ocean, although the bottom may be regarded as rigid, the
Bk, surface is free at which pressure must balance across it, and
=- 2Vt (k1K) (16) through which there is no flow; that is to say, the surface is
: oy a streamline. Hence there is a free surface contribution to
On the other hand for higher frequencies Elfj)(gives the  the surface integral on the right hand side of Eaf)) which
Poincaé-inertial modes (modified by thg-effect), cannot be put to zero. Therefore the wave energy measure
W2~ f2+V2(kf+k)2,)+ﬂV2kx/a),~. 17) E may change with time. Similarly in the case of an atmo-

sphere bounded below by an ocean the surface integral can-
Note that Eq. {6) shows that the long wavelength? — not, a priori, be set to zero. In the case of an atmosphere over
0) Rosshy wave propagates westward at the spgdd = groundg, is indeed zero at ground, but conditions at large
BV?2/f2, whereas the short wavelength(k2 — oo) — high heights are subject to radiation type conditions with the re-
frequency Poincd- inertial waves propagate at the Poirgzar  sult that again the right hand side cannot automatically be put
Kelvin speedV. Intuitively it is clear that if8V/f2>1the  to zero. Therefore in principle the wave energy E) @nd
Rossby wave may couple with a westward Poigcarode its integral form 0) do permit the wave energy to change
over some intermediate band of frequencies and wave numwith time and the wave system, described by B), (nay
bers. Analysis shows that this is indeed the criterion for theadmit unstable solutions which grow in time without violat-
onset of instability. ing a wave energy theorem. Apologies to “old school” fluid

www.ann-geophys.net/29/997/2011/ Ann. Geophys., 29, 990232011
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dynamicists who will regard these conclusions as merely thet JWKB dispersion equation and local stability analysis

wave perturbation form of the general energy theorem which

states that “the total energy of a volume of fluid increaseslt has been showrMcKenzie 2009 that the diagnostic form

at a rate equal to that at which work is being done on theof the dispersion equation, a cubicdnyields complex con-

boundary by pressure from without” (elgamb, 1932). jugate roots forw, characteristic of a convective instabil-
Nevertheless, the further question arises as to what is thBY (Akhiezer et al, 1267)1 when the d|menS|onIess_param-

possible energy source which may drive unstable solutions ot =Cosp|BV/fg > 1, where(k,, ky) = k(cosp, sing).

Eq. @), ifthey exist. There is no obvious mean flow source to Here the propagation angelies in the second or third quad-

drive Kelvin-Helmholtz-baroclinic type instabilities. How- rant indicating westward propagation. The gravity-inertial

ever observe that the background hydrostatic Egnay be ~ Wave coalesces with a westward propagating Rossby wave.

cast in the form A similar instability arises in wave hierarchies in which a
main wave interacts with a higher order wave of approx-
wo+ gz = const (21)  imately the same speed and instability arises as “a conse-
guence of an unresolvable competition between the two sets
in which wg is the enthalpy given by of waves” Whitham 1974). Here we summarize the results

of the instability calculation using a different normalization
from (McKenzig 2009 which enables us to investigate both
the equatoriaB-plane and the mid-latitudinal case, as well as
the possibility thakf, may be a given quantity, set, for exam-
The particular form forwg depends on the equation of state ple, by boundary conditions. This last case, as we shall see,
and whatever heating/cooling processes are active in théeads to a somewhat modified form of the unstable region of
background state. For example, in polytropic (adiabatic) pro-Mach number-latitude space. On normalizingo 22 andk

dpo

. (22)
0

wo =

cessespg pg , the enthalpy is given by to a the diagnostic formi4) may be written
. k

RToln ify=1 P(@° — %) = —— COFpCO 25
o | KToInAo L Y 23) W(0° = @) = 475 COHCOSP (25)

—YP _ _— 0 if y £1

(y—Dpo — y-1 where:
In general Eq.Z1) may be regarded as the energy equation _,, 2 k?
for the background state which exhibits a vertical (negative)®i = SIn* 6o+ aM2’ (262)
gradient of the enthalpy in a fashion analogous to the tempers2 _ I€f+155, (26D)

ature gradient which may drive a thermal-convective insta- Oak
bility. Hence enthalpy (the total thermodynamic heat content s — a_ZH
of a system) released by gravitational buoyancy is available. 4

This energy source may be “tapped” to drive an instability yore we assume thai & N so thatV = N/k,. Recall
provided the system admits of wave modes capable of releasy st these equations also apply to shallow water theory in

ing this latent state of background energh@ndrasekhar 51 gcean of depth so thatV = /gk andM = Qa//gh.
1968.

Finally in this section we observe that the wave energy4.1 The equatorial waveguide
Eq. (18) may be cast in the more “physical” or wave energy-
exchange form, At the equatorfgy =0, fo =0 and f ~ By with the result
that the wave frequency exceedsf close to the equator.
3 { pou? Vszpez _ Howevgrf increases vv_itiy so that at some poirat < f may
erl G 200 +div (peu) = — (24)  be achieved, or more importantly there may exist a latitude
y =y, at which reflection (given byc}z, =0 in the structure
Eqg. (10) takes place where

(26¢)

peuzpé __ Pelig
H 9

where the quantitypou?+ V?2p?/po)/2 is the wave energy
density andp,.u is the actual wave energy flux. In this form Byr \/wz <

V2

it is evident that there is indeed a wave energy exchange With7 ==
the inhomogeneous stratified background through the term
peu;/H on the right hand side of Eq24). A similar ex- Neary = y, the wave structure EqlQ) assumes the clas-
change term of the formgu,.u,d Vo/dy is presentin the case sical Airy form characteristic of wave reflection processes.
of a sheared mean flow where the background zonal flowFor |y| < y, waves bounce between these two latitudes to
speedVp(y) varies latitudinally, and this in turn may give form a waveguide whilst propagating zonally. This case may
rise to Kelvin-Helmholtz type instability which feeds off the be solved explicity in terms of Hermite polynomials which
mean flow energy. yield eigenvalues (arising from evanescent requirements as

k2 + ﬂkx). (27)
w
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|y| = o0) given by Cane and Sarachik976 Moore and  Near marginal stability the growth rateis approximately
Philandey 1977

@ (5 Bk\_ (2418 (33)
V2 (kx += ) v (28)
and is centred around the frequency
wheren =0,1,2,..., is a non-negative integer. We note that -
even in the most favourable case of the fundamentalo, ) k (34)

Eq. 28) does not posess complex conjugate rootsJf@nd " 2J/3M
there is no instability. However, this analysis can only claim Recent work flaas and Harlande2007) on equatorial wave
to be approximately valid if the first reflection point given by attractors and inertial oscillators in which they find a local-
ized instability, not requiring shear flow driving, is particu-
a M= % (29) larly important and possibly relevent to the present work.

= TV

lies well inside the Tropicsy <« 4a, or equivalently that

the equatorial Rossby deformation radius is very much lessn this case the instability condition (complex conjugate roots
than the Earth’s radius. If the equatorial rotational Mach (orfor & (Eq. 25)) becomes

Froude) numbeM > 1 the description in terms of Hermite

4.2 The mid-latitudinal case

polynomials is indeed a good approximation, and would alsoC0oSp|cosp| AM 26 k2 32 35
apply to atmospheric waves with H > 1 because the wave 2M = 33/2f Sin6o+ AM?2 (35)
speedV =N/k,=NH/k,H ~c/k;H, giving an effective
Mach number Since the right hand side has a minimum value ofa&in
occuring atk2/4M? = sirf6p, the instability requirement
M= (%) k.H. (30) (Eq. 35) may be written
c
cosholcospl _ (36)

In this caseM is indeed large provided, H > 1 even if 2M sirf 6o

2a/c is order unity (actually for the Earty 1.5). Similarly  This is an alternative and equivalent form of the instability
the “baroclinic” mode in a two-layer system of the ocean condition already given byicKenzie (2009 in which the
can yield wave speeds of order 5m s once again making  stability parameter is- 1. This a formal, analytic way of
Qa/c large. expressing the requiremeft//f? > 1 already obtained on
It is interesting to note that the dispersion EB8)( for intuitive grounds. Hence for a givel the unstable region

the fundamentaln = 0) is of precisely the same form as the |Jies at latitudes less than the critical latitugiegiven by
JWKB Eq. @5) in which »? is replaced by3V + V22, Itis

/T 16M2
as if the stability parameter were set equal to unity which  ¢og, = vitiemMT-1 (37)
corresponds to the Rossby and PoikeKEelvin speeds being am

equal. Therefore strictly speaking, although the dispersiorwhere the cog has been absorbed infd. Note that the

Eq. 28), with n = 0, does not exhibit complex, the system  condition (Eq.36) is not a large8 requirement.s is given

is marginally stable. by the planet’s characteristics. The crucial quantity is in fact
However if M is not large but is in facO (1) the solution ~ the wave speed. We note that in fact the instability con-

in terms of Hermite polynomials is not a good approxima- dition (36) lends itself to the more easily understood inter-

tion. In this case the local JWKB approximation for freely pretation that instability sets in if the Rossby wave speed ex-

propagating waves located far from boundaries is appropriceeds the PoincasKelvin speed. From Eq37) it follows

ate. In the zeroth order we may set=0 (y < a) and with that waves with\f > 3.4, the corresponding;. lies inside the

a’,z =V2k2in Eq. (159 (and its normalization counterpart in  Tropics, which is therefore better described by the foregoing

Eq.24) which becomes equatorial approximation. However the fast barotropic wave
(V ~200mst), for which M is as “low” asM ~ 2.33, gives
2 k2 kcosp 6c = 27° and therefore #-plane centred on the tropics may
oo =5 | = o (31) id d imation. In such there is a band
aM2 aM2 provide a good approximation. In such a case there is a ban

of wave numbers exhibiting instability with growth rate

For westward propagating waves (gos 0) the double root ~ @Pproximately given by

condition shows this equation has complex rootsadquro- X
vided a2 CosPl -

2
.32
33/2 (sm200+4’[‘722>

S r— @) V(e 1)

www.ann-geophys.net/29/997/2011/ Ann. Geophys., 29, 990232011
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which, in the middle of the band & +/2M sindp), yields

cosp|co .
olcosp| — sir6p.

Yy~ 21/4f\/ (39)

Alternatively one may prescribe a real frequeacgnd solve
Eq. (14) for k as a function ot of the form

_ D Si 2 i
P co 0530375 I co 0?°S¢ +4AM2 (&2 —S|n200).
20 2w
(40a)
This shows that if
cosholcosp| _ (40)
2M sinf6g

the expression inside the radical is negative in the frequency

J. F. McKenzie: Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

==]

band which separates the low frequency Rossby wave from

the high frequency inertial-gravity mode. The wavenumber
k is then complex and represents (stable) solutions deca:
ing away from the meridional boundary. The “evanescent” !
condition (Eq40Db), pertaining to the frequency gap between
inertial/gravity waves and Rossby waves is in fact just the

opposite of the instability condition (E§6).

4.3 The instability condition and growth rate for pre-
scribed meridional wavenumbers

It is some interest to examine the instability condition

y>

ig. 1. The marginal stability curves (given by Eqg. 42) in the
(0o, M) plane for various values of the meridional wave numtier

including an evanescent casé —4). The regions beneath the
curves are unstable.

In the casek§ > 0 the unstable region is confined to latitudes
less than

1
0. =tan 1 =— ).
2%,

(45)

(Eq.36) for prescribed (given) values of the N-S wave num- For moderate to large valuesiof (> 1) the unstable region is

ber k.
wavey—guide values fdk, inversely proportional to the width
between the walls.
evanescent solu'tlom}:2 < 0, which arise for values o,
lying outside the Rossby wave normal circle, that is if

p B? fo
kx+z>:|: 4(1)2+ V2

(41)

This can arise if zonal walls are erected yielding therefore confined to a fairly narrow belt around the equator.

On the other hand for evanescent wa: 0, the unstable

There is also the interesting case ofegion is extended in the parameter space. These properties

are depicted in Fig. 1.

5 Summary and discussion

The latitudinal wave structure governing combined inertial-

thenk§ < 0. The wave structure equation would then yield gravity-Rossby waves on g-plane in the Boussinesq ap-
exponential decay about that latitude. In these cases the irproximation admits JWKB wave packet solutions which are

stability condition (Eq36) takes the form

2

({0} Sl s
0= 0 2M ( )

where we have used the fact that the right side of B§) (

exhibits a minumum value at
1 ; 2

= > (2msirPoo-+2). (43)

Hence the instability region in th@/, 6p) plane lies beneath
the curve given by

K2

4M2) -1

\/ 1+ 16M2 (
Ann. Geophys., 29, 997003 2011

coYy =

aM (44)

valid in the “short wavelength” limit. The corresponding lo-
cal dispersion equation shows that if the “coupling” between
a westward propagating inertial-gravity wave and Rossby
wave is sufficiently strong these two modes coalesce and give
rise to a convective instability.A necessary and sufficient con-
dition for the unstable mode coupling to take place is that
the low frequency Rossby wave speed exceeds the high fre-
quency Poinca@-Kelvin speed. The implication of this phe-
nomenon is outlined in Sect. 4 for both the equatorial and
mid-latitudinal cases, as well as for the situation in which the
meridional wave number may be assigned prescribed values.
The set of papers byaldor et al.(2007); Paldor and
Sigalov(2008; Leon and Paldof2009 is pertinent and of
special interest since it develops numerical and analytic so-
lutions to the “full-wave” structure equation. Unfortunately

www.ann-geophys.net/29/997/2011/
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these solutions appear to apply only to cases where the cowGane, M. A. and Sarachik, E. G.: Forced baroclinic ocean motions:
pling parametem < 1 and hence the “local” instability con- I. The linear bounded equatorial case, J. Mar. Res., 34, 629665,
dition was not put to a proper test. Moreover zonal wall 1976.

boundary conditions, although providing the structure equa_Chandrasekhar, S.: Hydrodamic and hydromagnetic stability,
tion with a fixed eigenvalue problem, are not appropriate to_ Clarendon Press, Oxford, 1968.

freely propagating waves. Instead it would be preferable toEClF()?gS’SC'1:9';3(’)dr°dynam'cs of oceans and atmospheres, Pergamon

impose radiation-type conditions or finiteness requirementsGi"l A. E.: Atmoshere-ocean dynamics, International Geophysics
over the poles as is done for full wave solutions covering  ggries 30. 1982

the sphere (e.d.onguet-Higgins1969. Indeeq recer.ﬁ work | amb, Sir H.: Hydrodynamics, sixth edition, Cambridge University

(Maas and Harlande?007 shows that a local instability, not Press, 1932.

requiring mean shear flow, may arise in equatorial regions aseon, Y. and Paldor, N.: Linear waves in mid-latitudes on the ro-

a result of wave pile-up. tating spherical earth, J. Phys. Oceanography., 39, 3204-3215,
The wave energy-exchange EB4) shows that thereisan 2009 _ _ _ o

energy exchange through the stratification term on the rightighthill, M. J.: Waves in Fluids, Cambridge University Press,

hand side of that equation. This provides the channel be- 1980. _ _ o

tween horizontal and vertical momentum and access to th&©nguet-Higgins, M. S.. The eigenfunctions of Laplace's tidal

enthalpy latent in the background state to drive the instability Sduations overa sphere, Phil. Trans. Roy. Soc., 262(1132), 511~
. 607, 1968.

arising from the coalescence of the two westward propagat:

. . . o . Maas, L. R. and Harlander, V.: Equatorial wave attractors and iner-
ing modes. The non-linear evolution of this instability may ., oscillations. J. Fluid. Mech.. 570 46—67. 2007.

play an impor.tant, hitherto unrecognised, role in atmoshereyckenzie, J. F.: Instability of coupled gravity-inertial-Rossby
ocean dymanics. waves on g-plane in solar system atmospheres, Ann. Geophys.,
] ) 27, 4221-4227d0oi:10.5194/angeo-27-4221-2Q@D09.
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